Generic placeholder image

Adolescent Psychiatry

Editor-in-Chief

ISSN (Print): 2210-6766
ISSN (Online): 2210-6774

Review Article

Artificial Intelligence Tools for Suicide Prevention in Adolescents and Young Adults

Author(s): Mayank Gupta*, Dhanvendran Ramar, Rekha Vijayan and Nihit Gupta

Volume 12, Issue 1, 2022

Published on: 19 April, 2022

Page: [1 - 10] Pages: 10

DOI: 10.2174/2210676612666220408095913

Price: $65

Abstract

Background: Artificial Intelligence is making a significant transformation in human lives. Its application in the medical and healthcare field has also been observed to make an impact and improve overall outcomes. There has been a quest for similar processes in mental health due to the lack of observable changes in the areas of suicide prevention. In the last five years, there has been an emerging body of empirical research applying the technology of artificial intelligence (AI) and machine learning (ML) in mental health.

Objective: To review the clinical applicability of the AI/ML-based tools in suicide prevention.

Methods: The compelling question of predicting suicidality has been the focus of this research. We performed a broad literature search and then identified 36 articles relevant to meet the objectives of this review. We review the available evidence and provide a brief overview of the advances in this field.

Conclusion: In the last five years, there has been more evidence supporting the implementation of these algorithms in clinical practice. Its current clinical utility is limited to using electronic health records and could be highly effective in conjunction with existing tools for suicide prevention. Other potential sources of relevant data include smart devices and social network sites. There are some serious questions about data privacy and ethics which need more attention while developing these new modalities in suicide research.

Keywords: Machine learning, artificial intelligence, suicide prevention, adolescents and young adults, suicide risk assessment, electronic health records.

Next »
Adamou, M., Antoniou, G., Greasidou, E., Lagani, V., Charonyktakis, P., Tsamardinos, I., Doyle, M. (2019). Toward automatic risk assessment to support suicide prevention. Crisis, 40(4), 249-256.
[http://dx.doi.org/10.1027/0227-5910/a000561] [PMID: 30474411]
Adibuzzaman, M., DeLaurentis, P., Hill, J., Benneyworth, B.D. (2017). Big data in healthcare -The promises, challenges, and opportunities from a research perspective: A case study with a model database. AMIA Symposium, 2017384-392.
Anderson, H.D., Pace, W.D., Brandt, E., Nielsen, R.D., Allen, R.R., Libby, A.M., West, D.R., Valuck, R.J. (2015). Monitoring suicidal patients in primary care using electronic health records.JABFM, 28(1), 65- 71.
[http://dx.doi.org/10.3122/jabfm.2015.01.140181] [PMID: 25567824]
Ati, N.A.L., Paraswati, M.D., Windarwati, H.D. (2021). What are the risk factors and protective factors of suicidal behavior in adolescents? A systematic review. J. Child Adolesc. Psychiatr. Nurs., 34(1), 7-18.
[http://dx.doi.org/10.1111/jcap.12295] [PMID: 33025698]
Azer, S.A. (2017). Social media channels in health care research and rising ethical issues. AMA J. Ethics, 19(11), 1061-1069.
[http://dx.doi.org/10.1001/journalofethics.2017.19.11.peer1-1711] [PMID: 29168677]
Genie, B., Resnick, P., Lee, N.T. (2019) Algorithmic bias detection and mitigation: Best practices and policies to reduce consumer harms. Available from:. www.brookings.edu/research/algorithmic-bias-detection-and-mitigation-best-practices-and-policies-to-reduce-consumer-harms/
Berrouiguet, S., Barrigón, M.L., Castroman, J.L., Courtet, P., Artés-Rodríguez, A., Baca-García, E. (2019). Combining mobile-health (mHealth) and artificial intelligence (AI) methods to avoid suicide attempts: the Smartcrises study protocol. BMC Psychiatry, 19(1), 277.
[http://dx.doi.org/10.1186/s12888-019-2260-y] [PMID: 31493783]
Breiman, L. (2001). Random forests. Mach. Learn., 45(1), 5-32.
[http://dx.doi.org/10.1023/A:1010933404324]
Bodenreider, O. (2004). The unified medical language system (UMLS): Integrating biomedical terminology. Nucleic Acids Res., 32(Database issue), D267-D270.
[http://dx.doi.org/10.1093/nar/gkh061] [PMID: 14681409]
Brown, R.C., Bendig, E., Fischer, T., Goldwich, A.D., Baumeister, H., Plener, P.L. (2019). Can acute suicidality be predicted by Instagram data? Results from qualitative and quantitative language analyses. PLoS One, 14(9), e0220623.
[http://dx.doi.org/10.1371/journal.pone.0220623] [PMID: 31504042]
Brunn, M., Diefenbacher, A., Courtet, P., Genieys, W. (2020). The future is knocking how artificial intelligence will fundamentally change psychiatry. Acad. Psychiatry, 44(4), 461-466.
[http://dx.doi.org/10.1007/s40596-020-01243-8] [PMID: 32424706]
Bush, V. (1945). As we may think.The atlantic. Available from:.www.theatlantic.com/magazine/archive/1945/07/as-we-may-think/303881/
Carballo, J.J., Llorente, C., Kehrmann, L., Flamarique, I., Zuddas, A., Purper-Ouakil, D., Hoekstra, P.J., Coghill, D., Schulze, U.M.E., Dittmann, R.W., Buitelaar, J.K., Castro-Fornieles, J., Lievesley, K., Santosh, P., Arango, C. STOP Consortium. (2020). Psychosocial risk factors for suicidality in children and adolescents. Eur. Child Adolesc. Psychiatry, 29(6), 759-776.
[http://dx.doi.org/10.1007/s00787-018-01270-9] [PMID: 30684089]
Carson, N.J., Mullin, B., Sanchez, M.J., Lu, F., Yang, K., Menezes, M., Cook, B.L. (2019). Identification of suicidal behavior among psychiatrically hospitalized adolescents using natural language processing and machine learning of electronic health records. PLoS One, 14(2), e0211116.
[http://dx.doi.org/10.1371/journal.pone.0211116] [PMID: 30779800]
Chan, M.K.Y., Bhatti, H., Meader, N., Stockton, S., Evans, J., O’Connor, R.C., Kapur, N., Kendall, T. (2016). Predicting suicide following self-harm: Systematic review of risk factors and risk scales. Br. J. Psychiatry, 209(4), 277-283.
[http://dx.doi.org/10.1192/bjp.bp.115.170050] [PMID: 27340111]
Cheng, Q., Li, T.M., Kwok, C-L., Zhu, T., Yip, P.S. (2017). Assessing suicide risk and emotional distress in Chinese social media: A text mining and machine learning study. J. Med. Internet Res., 19(7), e243.
[http://dx.doi.org/10.2196/jmir.7276] [PMID: 28694239]
Cohen, J., Wright-Berryman, J., Rohlfs, L., Wright, D., Campbell, M., Gingrich, D., Santel, D., Pestian, J. (2020). A feasibility study using a machine learning suicide risk prediction model based on open-ended interview language in adolescent therapy sessions.Int. J. Environ. Res. Public Health, 17(21), E8187. .
[http://dx.doi.org/10.3390/ijerph17218187] [PMID: 33167554]
Cresswell, K., Cunningham-Burley, S., Sheikh, A. (2018). Health care robotics: Qualitative exploration of key challenges and future directions. J. Med. Internet Res., 20(7), e10410.
[http://dx.doi.org/10.2196/10410] [PMID: 29973336]
Curtin, S.C., Warner, M., Hedegaard, H. (2016). Increase in suicide in the United States, 1999-2014. NCHS Data Brief, 241(241), 1-8.
[PMID: 27111185]
Daws, R. (2020). Google returns to using human YouTube moderators after AI errors.Available from:.https://artificialintelligence-news.com/2020/09/21/google-human-youtube-moderators-ai-errors/
DelPozo-Banos, M., John, A., Petkov, N., Berridge, D.M., Southern, K. (2018). LLoyd, K., Jones, C., Spencer, S.,Travieso, C.M. Using neural networks with routine health records to identify suicide risk: Feasibility study. JMIR Ment. Health, 5(2), e10144.
[http://dx.doi.org/10.2196/10144] [PMID: 29934287]
Denecke, K., Bamidis, P., Bond, C., Gabarron, E., Househ, M., Lau, A.Y.S., Mayer, M.A., Merolli, M., Hansen, M. (2015). Ethical issues of social media usage in healthcare. Yearb. Med. Inform., 10(1), 137-147.
[PMID: 26293861]
Doraiswamy, P.M., Blease, C., Bodner, K. (2020). Artificial intelligence and the future of psychiatry: Insights from a global physician survey. Artif. Intell. Med., 102, 101753.
[http://dx.doi.org/10.1016/j.artmed.2019.101753] [PMID: 31980092]
Fiske, A., Henningsen, P., Buyx, A. (2019). Your robot therapist will see you now: Ethical implications of embodied artificial intelligence in psychiatry, psychology, and psychotherapy. J. Med. Internet Res., 21(5), e13216.
[http://dx.doi.org/10.2196/13216] [PMID: 31094356]
Ford, E., Shepherd, S., Jones, K., Hassan, L. (2021). Toward an ethical framework for the text mining of social media for health research: A systematic review. Front. Digital Health, 2, 592237.
[http://dx.doi.org/10.3389/fdgth.2020.592237] [PMID: 34713062]
Franco-Martín, M.A., Muñoz-Sánchez, J.L., Sainz-de-Abajo, B., Castillo-Sánchez, G., Hamrioui, S., de la Torre-Díez, I. (2018). A Systematic literature review of technologies for suicidal behavior prevention. J. Med. Syst., 42(4), 71.
[http://dx.doi.org/10.1007/s10916-018-0926-5] [PMID: 29508152]
Franklin, J.C., Ribeiro, J.D., Fox, K.R., Bentley, K.H., Kleiman, E.M., Huang, X., Musacchio, K.M., Jaroszewski, A.C., Chang, B.P., Nock, M.K. (2017). Risk factors for suicidal thoughts and behaviors: A meta-analysis of 50 years of research. Psychol. Bull., 143(2), 187-232.
[http://dx.doi.org/10.1037/bul0000084] [PMID: 27841450]
Haines-Delmont, A., Chahal, G., Bruen, A.J., Wall, A., Khan, C.T., Sadashiv, R., Fearnley, D. (2020). Testing suicide risk prediction algorithms using phone measurements with patients in acute mental health settings: Feasibility Study. JMIR Mhealth Uhealth, 8(6), e15901.
[http://dx.doi.org/10.2196/15901] [PMID: 32442152]
Hill, R.M., Oosterhoff, B., Do, C. (2020). Using machine learning to identify suicide risk: A classification tree approach to prospectively identify adolescent suicide attempters. Arch. Suicide Res., 24(2), 218-235.
[http://dx.doi.org/10.1080/13811118.2019.1615018] [PMID: 31079565]
Hong, S., Liu, Y.S., Cao, B., Cao, J., Ai, M., Chen, J., Greenshaw, A., Kuang, L. (2021). Identification of suicidality in adolescent major depressive disorder patients using sMRI: A machine learning approach. J. Affect. Disord., 280(Pt A), 72-76.
[http://dx.doi.org/10.1016/j.jad.2020.10.077]
Jung, J.S., Park, S.J., Kim, E.Y., Na, K-S., Kim, Y.J., Kim, K.G. (2019). Prediction models for high risk of suicide in Korean adolescents using machine learning techniques. PLoS One, 14(6), e0217639.
[http://dx.doi.org/10.1371/journal.pone.0217639] [PMID: 31170212]
Keskinbora, K.H. (2019).Medical ethics considerations on artificial intelligence. J. Clin. Neurosci., 64, 277-282..
[http://dx.doi.org/10.1016/j.jocn.2019.03.001] [PMID: 30878282]
Kessler, R.C., Warner, C.H., Ivany, C., Petukhova, M.V., Rose, S., Bromet, E.J., Brown, M., III, Cai, T., Colpe, L.J., Cox, K.L., Fullerton, C.S., Gilman, S.E., Gruber, M.J., Heeringa, S.G., Lewandowski-Romps, L., Li, J., Millikan-Bell, A.M., Naifeh, J.A., Nock, M.K., Rosellini, A.J., Sampson, N.A., Schoenbaum, M., Stein, M.B., Wessely, S., Zaslavsky, A.M., Ursano, R.J. Army STARRS Collaborators. (2015). Predicting suicides after psychiatric hospitalization in US Army soldiers: The Army Study To Assess Risk and rEsilience in Servicemembers (Army STARRS). JAMA Psychiatry, 72(1), 49-57.
[http://dx.doi.org/10.1001/jamapsychiatry.2014.1754] [PMID: 25390793]
Large, M., Kaneson, M., Myles, N., Myles, H., Gunaratne, P., Ryan, C. (2016). Meta-analysis of longitudinal cohort studies of suicide risk assessment among psychiatric patients: Heterogeneity in results and lack of improvement over time. PLoS One, 11(6), e0156322.
[http://dx.doi.org/10.1371/journal.pone.0156322] [PMID: 27285387]
Larsen, M.E., Nicholas, J., Christensen, H. (2016). A systematic assessment of smartphone tools for suicide prevention. PLoS One, 11(4), e0152285.
[http://dx.doi.org/10.1371/journal.pone.0152285] [PMID: 27073900]
Lee, S-I., Celik, S., Logsdon, B.A., Lundberg, S.M., Martins, T.J., Oehler, V.G., Estey, E.H., Miller, C.P., Chien, S., Dai, J., Saxena, A., Blau, C.A., Becker, P.S. (2018). A machine learning approach to integrate big data for precision medicine in acute myeloid leukemia. Nat. Commun., 9(1), 42.
[http://dx.doi.org/10.1038/s41467-017-02465-5] [PMID: 29298978]
Liu, X., Liu, X., Sun, J., Yu, N.X., Sun, B., Li, Q., Zhu, T. (2019). Proactive suicide prevention online (PSPO): Machine identification and crisis management for Chinese social media users with suicidal thoughts and behaviors. J. Med. Internet Res., 21(5), e11705.
[http://dx.doi.org/10.2196/11705] [PMID: 31344675]
Luxton, D.D. (2015). Artificial Intelligence in Behavioral and Mental Health Care.. Massachusetts, USA: Academic Press.
Martínez-Alés, G., Keyes, K.M. (2019). Fatal and non-fatal self-injury in the USA: Critical review of current trends and innovations in prevention. Curr. Psychiatry Rep., 21(10), 104.
[http://dx.doi.org/10.1007/s11920-019-1080-6] [PMID: 31522256]
McInnes, B.T., Pedersen, T., Carlis, J. (2007). Using UMLS concept unique identifiers (CUIs) for word sense disambiguation in the biomedical domain. AMIA Symposium, 2007533-537.
McKernan, L.C., Clayton, E.W., Walsh, C.G. (2018). Protecting life while preserving liberty: Ethical recommendations for suicide prevention with artificial intelligence. Front. Psychiatry, 9, 650.
[http://dx.doi.org/10.3389/fpsyt.2018.00650] [PMID: 30559686]
Metzger, M-H., Tvardik, N., Gicquel, Q., Bouvry, C., Poulet, E., Potinet-Pagliaroli, V. (2017). Use of emergency department electronic medical records for automated epidemiological surveillance of suicide attempts: A French pilot study. Int. J. Methods Psychiatr. Res., 26(2), e1522.
[http://dx.doi.org/10.1002/mpr.1522] [PMID: 27634457]
Miché, M., Studerus, E., Meyer, A.H., Gloster, A.T., Beesdo-Baum, K., Wittchen, H-U., Lieb, R. (2020). Prospective prediction of suicide attempts in community adolescents and young adults, using regression methods and machine learning. J. Affect. Disord., 265, 570-578.
[http://dx.doi.org/10.1016/j.jad.2019.11.093] [PMID: 31786028]
Mintz, Y., Brodie, R. (2019). Introduction to artificial intelligence in medicine. Minimally invasive therapy & allied technologies. MITAT, 28(2), 73-81.
Mörch, C-M., Gupta, A., Mishara, B.L. (2020). Canada protocol: An ethical checklist for the use of artificial Intelligence in suicide prevention and mental health. Artif. Intell. Med., 108, 101934.
[http://dx.doi.org/10.1016/j.artmed.2020.101934] [PMID: 32972663]
Navamani, T.M. (2019). Efficient deep learning approaches for health informatics.Deep learning and parallel computing environment for bioengineering systems.. Massachusetts, USA: Academic Press.
[http://dx.doi.org/10.1016/B978-0-12-816718-2.00014-2]
O’Connor, K. (2020). Youth suicide rate increases by nearly 60.. Available from.psychnews.psychiatryonline.org/doi/10.1176/appi.pn.2020.10b13
O’Dea, B., Wan, S., Batterham, P., Calear, A., Paris, C., Christensen, H. (2015). Detecting suicidality on twitter. Internet Interv., 2(2), 103.
Ophir, Y., Tikochinski, R., Asterhan, C.S.C., Sisso, I., Reichart, R. (2020). Deep neural networks detect suicide risk from textual facebook posts. Sci. Rep., 10(1), 16685.
[http://dx.doi.org/10.1038/s41598-020-73917-0] [PMID: 33028921]
Passos, I.C., Mwangi, B., Cao, B., Hamilton, J.E., Wu, M-J., Zhang, X.Y., Zunta-Soares, G.B., Quevedo, J. (2016). Kauer-Sant’Anna, M., Kapczinski, F., Soares, J.C. Identifying a clinical signature of suicidality among patients with mood disorders: A pilot study using a machine learning approach. J. Affect. Disord., 193, 109-116.
[http://dx.doi.org/10.1016/j.jad.2015.12.066] [PMID: 26773901]
Pestian, J.P., Grupp-Phelan, J., Bretonnel Cohen, K., Meyers, G., Richey, L.A., Matykiewicz, P., Sorter, M.T. (2016). A controlled trial using natural language processing to examine the language of suicidal adolescents in the emergency department. Suicide Life Threat. Behav., 46(2), 154-159.
[http://dx.doi.org/10.1111/sltb.12180] [PMID: 26252868]
Ruths, D., Pfeffer, J. (2014). Social sciences. Social media for large studies of behavior. Science, 346(6213), 1063-1064.
[http://dx.doi.org/10.1126/science.346.6213.1063] [PMID: 25430759]
Schedl, M. (2019). Deep learning in music recommendation systems.Front. Appl. Math. Stat., 5, 44. .
[http://dx.doi.org/10.3389/fams.2019.00044]
Schinkel, M., Paranjape, K., Nannan Panday, R.S., Skyttberg, N., Nanayakkara, P.W.B. (2019). Clinical applications of artificial intelligence in sepsis: A narrative review. Comput. Biol. Med., 115, 103488.
[http://dx.doi.org/10.1016/j.compbiomed.2019.103488] [PMID: 31634699]
Shatte, A.B.R., Hutchinson, D.M., Teague, S.J. (2019). Machine learning in mental health: A scoping review of methods and applications. Psychol. Med., 49(9), 1426-1448.
[http://dx.doi.org/10.1017/S0033291719000151] [PMID: 30744717]
Smith, C. (2006). The history of artificial intelligence.. Available from. https://courses.cs.washington.edu/courses/csep590/06au/projects/history-ai.pdf
Sordo, M. (2002). Introduction to neural networks in healthcare. Open Clin., 2002, 20719514.
Su, C., Aseltine, R., Doshi, R., Chen, K., Rogers, S.C., Wang, F. (2020). Machine learning for suicide risk prediction in children and adolescents with electronic health records. Transl. Psychiatry, 10(1), 413.
[http://dx.doi.org/10.1038/s41398-020-01100-0] [PMID: 33243979]
Taylor, J., Pagliari, C. 2018 Mining social media data: How are research sponsors and researchers addressing the ethical challenges? Res. Ethics Rev., 14(2), 1-39.
[http://dx.doi.org/10.1177/1747016117738559]
Terrasse, M., Gorin, M., Sisti, D. 2019 Social media, e-health, and medical ethics.Hastings Cent. Rep.,49(1), 24-33. .
[http://dx.doi.org/10.1002/hast.975] [PMID: 30790306]
Torous, J., Larsen, M.E., Depp, C., Cosco, T.D., Barnett, I., Nock, M.K., Firth, J. (2018). Smartphones, sensors, and machine learning to advance real-time prediction and interventions for suicide prevention: A review of current progress and next steps. Curr. Psychiatry Rep., 20(7), 51.
[http://dx.doi.org/10.1007/s11920-018-0914-y] [PMID: 29956120]
Tran, T., Luo, W., Phung, D., Harvey, R., Berk, M., Kennedy, R.L., Venkatesh, S. (2014). Risk stratification using data from electronic medical records better predicts suicide risks than clinician assessments. BMC Psychiatry, 14(1), 76.
[http://dx.doi.org/10.1186/1471-244X-14-76] [PMID: 24628849]
Turing, A.M. (1950). I.—Computing machinery and intelligence. Mind, LIX(236), 433-460.
[http://dx.doi.org/10.1093/mind/LIX.236.433]
Walsh, C.G., Ribeiro, J.D., Franklin, J.C. (2018). Predicting suicide attempts in adolescents with longitudinal clinical data and machine learning. J. Child Psychol. Psychiatry, 59(12), 1261-1270.
[http://dx.doi.org/10.1111/jcpp.12916] [PMID: 29709069]
Ward, J.S., Barker, A. (2013). Undefined by data: A survey of big data definitions.. ArXiv E-Prints.
Wei, Z., Mukherjee, S. (2020). Health-behaviors associated with the growing risk of adolescent suicide attempts: A data-driven cross-sectional study. Am. J. Health Promot., 2020, 890117120977378.
Wongkoblap, A., Vadillo, M.A., Curcin, V. (2017). Researching mental health disorders in the era of social media. J. Med. Internet Res., 19(6), e228.
[http://dx.doi.org/10.2196/jmir.7215] [PMID: 28663166]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy