Adamou, M., Antoniou, G., Greasidou, E., Lagani, V., Charonyktakis, P., Tsamardinos, I., Doyle, M. (2019). Toward automatic risk assessment to support suicide prevention.
Crisis, 40(4), 249-256.
[
http://dx.doi.org/10.1027/0227-5910/a000561] [PMID:
30474411]
Adibuzzaman, M., DeLaurentis, P., Hill, J., Benneyworth, B.D. (2017). Big data in healthcare -The promises, challenges, and opportunities from a research perspective: A case study with a model database.
AMIA Symposium, 2017384-392.
Anderson, H.D., Pace, W.D., Brandt, E., Nielsen, R.D., Allen, R.R., Libby, A.M., West, D.R., Valuck, R.J. (2015).
Monitoring suicidal patients in primary care using electronic health records.JABFM, 28(1), 65-
71.[
http://dx.doi.org/10.3122/jabfm.2015.01.140181] [PMID:
25567824]
Ati, N.A.L., Paraswati, M.D., Windarwati, H.D. (2021). What are the risk factors and protective factors of suicidal behavior in adolescents? A systematic review.
J. Child Adolesc. Psychiatr. Nurs., 34(1), 7-18.
[
http://dx.doi.org/10.1111/jcap.12295] [PMID:
33025698]
Berrouiguet, S., Barrigón, M.L., Castroman, J.L., Courtet, P., Artés-Rodríguez, A., Baca-García, E. (2019). Combining mobile-health (mHealth) and artificial intelligence (AI) methods to avoid suicide attempts: the Smartcrises study protocol.
BMC Psychiatry, 19(1), 277.
[
http://dx.doi.org/10.1186/s12888-019-2260-y] [PMID:
31493783]
Brown, R.C., Bendig, E., Fischer, T., Goldwich, A.D., Baumeister, H., Plener, P.L. (2019). Can acute suicidality be predicted by Instagram data? Results from qualitative and quantitative language analyses.
PLoS One, 14(9), e0220623.
[
http://dx.doi.org/10.1371/journal.pone.0220623] [PMID:
31504042]
Carballo, J.J., Llorente, C., Kehrmann, L., Flamarique, I., Zuddas, A., Purper-Ouakil, D., Hoekstra, P.J., Coghill, D., Schulze, U.M.E., Dittmann, R.W., Buitelaar, J.K., Castro-Fornieles, J., Lievesley, K., Santosh, P., Arango, C. STOP Consortium. (2020). Psychosocial risk factors for suicidality in children and adolescents.
Eur. Child Adolesc. Psychiatry, 29(6), 759-776.
[
http://dx.doi.org/10.1007/s00787-018-01270-9] [PMID:
30684089]
Carson, N.J., Mullin, B., Sanchez, M.J., Lu, F., Yang, K., Menezes, M., Cook, B.L. (2019). Identification of suicidal behavior among psychiatrically hospitalized adolescents using natural language processing and machine learning of electronic health records.
PLoS One, 14(2), e0211116.
[
http://dx.doi.org/10.1371/journal.pone.0211116] [PMID:
30779800]
Chan, M.K.Y., Bhatti, H., Meader, N., Stockton, S., Evans, J., O’Connor, R.C., Kapur, N., Kendall, T. (2016). Predicting suicide following self-harm: Systematic review of risk factors and risk scales.
Br. J. Psychiatry, 209(4), 277-283.
[
http://dx.doi.org/10.1192/bjp.bp.115.170050] [PMID:
27340111]
Cheng, Q., Li, T.M., Kwok, C-L., Zhu, T., Yip, P.S. (2017). Assessing suicide risk and emotional distress in Chinese social media: A text mining and machine learning study.
J. Med. Internet Res., 19(7), e243.
[
http://dx.doi.org/10.2196/jmir.7276] [PMID:
28694239]
Cohen, J., Wright-Berryman, J., Rohlfs, L., Wright, D., Campbell, M., Gingrich, D., Santel, D., Pestian, J. (2020).
A feasibility study using a machine learning suicide risk prediction model based on open-ended interview language in adolescent therapy sessions.Int. J. Environ. Res. Public Health, 17(21), E8187. .[
http://dx.doi.org/10.3390/ijerph17218187] [PMID:
33167554]
Cresswell, K., Cunningham-Burley, S., Sheikh, A. (2018). Health care robotics: Qualitative exploration of key challenges and future directions.
J. Med. Internet Res., 20(7), e10410.
[
http://dx.doi.org/10.2196/10410] [PMID:
29973336]
Curtin, S.C., Warner, M., Hedegaard, H. (2016). Increase in suicide in the United States, 1999-2014.
NCHS Data Brief, 241(241), 1-8.
[PMID:
27111185]
DelPozo-Banos, M., John, A., Petkov, N., Berridge, D.M., Southern, K. (2018). LLoyd, K., Jones, C., Spencer, S.,Travieso, C.M. Using neural networks with routine health records to identify suicide risk: Feasibility study.
JMIR Ment. Health, 5(2), e10144.
[
http://dx.doi.org/10.2196/10144] [PMID:
29934287]
Denecke, K., Bamidis, P., Bond, C., Gabarron, E., Househ, M., Lau, A.Y.S., Mayer, M.A., Merolli, M., Hansen, M. (2015). Ethical issues of social media usage in healthcare.
Yearb. Med. Inform., 10(1), 137-147.
[PMID:
26293861]
Fiske, A., Henningsen, P., Buyx, A. (2019). Your robot therapist will see you now: Ethical implications of embodied artificial intelligence in psychiatry, psychology, and psychotherapy.
J. Med. Internet Res., 21(5), e13216.
[
http://dx.doi.org/10.2196/13216] [PMID:
31094356]
Ford, E., Shepherd, S., Jones, K., Hassan, L. (2021). Toward an ethical framework for the text mining of social media for health research: A systematic review.
Front. Digital Health, 2, 592237.
[
http://dx.doi.org/10.3389/fdgth.2020.592237] [PMID:
34713062]
Franco-Martín, M.A., Muñoz-Sánchez, J.L., Sainz-de-Abajo, B., Castillo-Sánchez, G., Hamrioui, S., de la Torre-Díez, I. (2018). A Systematic literature review of technologies for suicidal behavior prevention.
J. Med. Syst., 42(4), 71.
[
http://dx.doi.org/10.1007/s10916-018-0926-5] [PMID:
29508152]
Franklin, J.C., Ribeiro, J.D., Fox, K.R., Bentley, K.H., Kleiman, E.M., Huang, X., Musacchio, K.M., Jaroszewski, A.C., Chang, B.P., Nock, M.K. (2017). Risk factors for suicidal thoughts and behaviors: A meta-analysis of 50 years of research.
Psychol. Bull., 143(2), 187-232.
[
http://dx.doi.org/10.1037/bul0000084] [PMID:
27841450]
Haines-Delmont, A., Chahal, G., Bruen, A.J., Wall, A., Khan, C.T., Sadashiv, R., Fearnley, D. (2020). Testing suicide risk prediction algorithms using phone measurements with patients in acute mental health settings: Feasibility Study.
JMIR Mhealth Uhealth, 8(6), e15901.
[
http://dx.doi.org/10.2196/15901] [PMID:
32442152]
Hill, R.M., Oosterhoff, B., Do, C. (2020). Using machine learning to identify suicide risk: A classification tree approach to prospectively identify adolescent suicide attempters.
Arch. Suicide Res., 24(2), 218-235.
[
http://dx.doi.org/10.1080/13811118.2019.1615018] [PMID:
31079565]
Hong, S., Liu, Y.S., Cao, B., Cao, J., Ai, M., Chen, J., Greenshaw, A., Kuang, L. (2021). Identification of
suicidality in adolescent major depressive disorder
patients using sMRI: A machine learning approach.
J. Affect. Disord., 280(Pt A), 72-76.
[
http://dx.doi.org/10.1016/j.jad.2020.10.077]
Jung, J.S., Park, S.J., Kim, E.Y., Na, K-S., Kim, Y.J., Kim, K.G. (2019). Prediction models for high risk of suicide in Korean adolescents using machine learning techniques.
PLoS One, 14(6), e0217639.
[
http://dx.doi.org/10.1371/journal.pone.0217639] [PMID:
31170212]
Kessler, R.C., Warner, C.H., Ivany, C., Petukhova, M.V., Rose, S., Bromet, E.J., Brown, M., III, Cai, T., Colpe, L.J., Cox, K.L., Fullerton, C.S., Gilman, S.E., Gruber, M.J., Heeringa, S.G., Lewandowski-Romps, L., Li, J., Millikan-Bell, A.M., Naifeh, J.A., Nock, M.K., Rosellini, A.J., Sampson, N.A., Schoenbaum, M., Stein, M.B., Wessely, S., Zaslavsky, A.M., Ursano, R.J. Army STARRS Collaborators. (2015). Predicting suicides after psychiatric hospitalization in US Army soldiers: The Army Study To Assess Risk and rEsilience in Servicemembers (Army STARRS).
JAMA Psychiatry, 72(1), 49-57.
[
http://dx.doi.org/10.1001/jamapsychiatry.2014.1754] [PMID:
25390793]
Large, M., Kaneson, M., Myles, N., Myles, H., Gunaratne, P., Ryan, C. (2016). Meta-analysis of longitudinal cohort studies of suicide risk assessment among psychiatric patients: Heterogeneity in results and lack of improvement over time.
PLoS One, 11(6), e0156322.
[
http://dx.doi.org/10.1371/journal.pone.0156322] [PMID:
27285387]
Lee, S-I., Celik, S., Logsdon, B.A., Lundberg, S.M., Martins, T.J., Oehler, V.G., Estey, E.H., Miller, C.P., Chien, S., Dai, J., Saxena, A., Blau, C.A., Becker, P.S. (2018). A machine learning approach to integrate big data for precision medicine in acute myeloid leukemia.
Nat. Commun., 9(1), 42.
[
http://dx.doi.org/10.1038/s41467-017-02465-5] [PMID:
29298978]
Liu, X., Liu, X., Sun, J., Yu, N.X., Sun, B., Li, Q., Zhu, T. (2019). Proactive suicide prevention online (PSPO): Machine identification and crisis management for Chinese social media users with suicidal thoughts and behaviors.
J. Med. Internet Res., 21(5), e11705.
[
http://dx.doi.org/10.2196/11705] [PMID:
31344675]
Luxton, D.D. (2015).
Artificial Intelligence in Behavioral and Mental Health Care.. Massachusetts, USA: Academic Press.
McInnes, B.T., Pedersen, T., Carlis, J. (2007). Using UMLS concept unique identifiers (CUIs) for word sense disambiguation in the biomedical domain.
AMIA Symposium, 2007533-537.
McKernan, L.C., Clayton, E.W., Walsh, C.G. (2018). Protecting life while preserving liberty: Ethical recommendations for suicide prevention with artificial intelligence.
Front. Psychiatry, 9, 650.
[
http://dx.doi.org/10.3389/fpsyt.2018.00650] [PMID:
30559686]
Metzger, M-H., Tvardik, N., Gicquel, Q., Bouvry, C., Poulet, E., Potinet-Pagliaroli, V. (2017). Use of emergency department electronic medical records for automated epidemiological surveillance of suicide attempts: A French pilot study.
Int. J. Methods Psychiatr. Res., 26(2), e1522.
[
http://dx.doi.org/10.1002/mpr.1522] [PMID:
27634457]
Miché, M., Studerus, E., Meyer, A.H., Gloster, A.T., Beesdo-Baum, K., Wittchen, H-U., Lieb, R. (2020). Prospective prediction of suicide attempts in community adolescents and young adults, using regression methods and machine learning.
J. Affect. Disord., 265, 570-578.
[
http://dx.doi.org/10.1016/j.jad.2019.11.093] [PMID:
31786028]
Mintz, Y., Brodie, R. (2019). Introduction to artificial intelligence in medicine. Minimally invasive therapy & allied technologies.
MITAT, 28(2), 73-81.
O’Dea, B., Wan, S., Batterham, P., Calear, A., Paris, C., Christensen, H. (2015). Detecting suicidality on twitter.
Internet Interv., 2(2), 103.
Ophir, Y., Tikochinski, R., Asterhan, C.S.C., Sisso, I., Reichart, R. (2020). Deep neural networks detect suicide risk from textual facebook posts.
Sci. Rep., 10(1), 16685.
[
http://dx.doi.org/10.1038/s41598-020-73917-0] [PMID:
33028921]
Passos, I.C., Mwangi, B., Cao, B., Hamilton, J.E., Wu, M-J., Zhang, X.Y., Zunta-Soares, G.B., Quevedo, J. (2016). Kauer-Sant’Anna, M., Kapczinski, F., Soares, J.C. Identifying a clinical signature of suicidality among patients with mood disorders: A pilot study using a machine learning approach.
J. Affect. Disord., 193, 109-116.
[
http://dx.doi.org/10.1016/j.jad.2015.12.066] [PMID:
26773901]
Pestian, J.P., Grupp-Phelan, J., Bretonnel Cohen, K., Meyers, G., Richey, L.A., Matykiewicz, P., Sorter, M.T. (2016). A controlled trial using natural language processing to examine the language of suicidal adolescents in the emergency department.
Suicide Life Threat. Behav., 46(2), 154-159.
[
http://dx.doi.org/10.1111/sltb.12180] [PMID:
26252868]
Schinkel, M., Paranjape, K., Nannan Panday, R.S., Skyttberg, N., Nanayakkara, P.W.B. (2019). Clinical applications of artificial intelligence in sepsis: A narrative review.
Comput. Biol. Med., 115, 103488.
[
http://dx.doi.org/10.1016/j.compbiomed.2019.103488] [PMID:
31634699]
Smith, C. (2006).
The history of artificial intelligence.. Available from. https://courses.cs.washington.edu/courses/csep590/06au/projects/history-ai.pdf
Sordo, M. (2002). Introduction to neural networks in healthcare.
Open Clin., 2002, 20719514.
Su, C., Aseltine, R., Doshi, R., Chen, K., Rogers, S.C., Wang, F. (2020). Machine learning for suicide risk prediction in children and adolescents with electronic health records.
Transl. Psychiatry, 10(1), 413.
[
http://dx.doi.org/10.1038/s41398-020-01100-0] [PMID:
33243979]
Torous, J., Larsen, M.E., Depp, C., Cosco, T.D., Barnett, I., Nock, M.K., Firth, J. (2018). Smartphones, sensors, and machine learning to advance real-time prediction and interventions for suicide prevention: A review of current progress and next steps.
Curr. Psychiatry Rep., 20(7), 51.
[
http://dx.doi.org/10.1007/s11920-018-0914-y] [PMID:
29956120]
Tran, T., Luo, W., Phung, D., Harvey, R., Berk, M., Kennedy, R.L., Venkatesh, S. (2014). Risk stratification using data from electronic medical records better predicts suicide risks than clinician assessments.
BMC Psychiatry, 14(1), 76.
[
http://dx.doi.org/10.1186/1471-244X-14-76] [PMID:
24628849]
Walsh, C.G., Ribeiro, J.D., Franklin, J.C. (2018). Predicting suicide attempts in adolescents with longitudinal clinical data and machine learning.
J. Child Psychol. Psychiatry, 59(12), 1261-1270.
[
http://dx.doi.org/10.1111/jcpp.12916] [PMID:
29709069]
Ward, J.S., Barker, A. (2013).
Undefined by data: A survey of big data definitions.. ArXiv E-Prints.
Wei, Z., Mukherjee, S. (2020). Health-behaviors associated with the growing risk of adolescent suicide attempts: A data-driven cross-sectional study.
Am. J. Health Promot., 2020, 890117120977378.