Generic placeholder image

Nanoscience & Nanotechnology-Asia

Editor-in-Chief

ISSN (Print): 2210-6812
ISSN (Online): 2210-6820

Review Article

Recent Advances in Synthesis, Characterization, and Application of Nanotechnology in Wastewater Treatment- A Review

Author(s): Jyoti Yadav* and Pratima Chauhan

Volume 12, Issue 3, 2022

Published on: 12 August, 2022

Article ID: e050422203135 Pages: 18

DOI: 10.2174/2210681212666220405162938

Price: $65

Abstract

Water issues, including inaccessibility of a high percentage of freshwater, water pollution, water scarcity for drinking, etc., are major global concerns. Our research work aims to clean wastewater and treat it safely by applying nanotechnology. Nanotechnology has a broad range of applications. With the help of metal-based nanoparticles, advanced techniques can be developed for treating wastewater. Water purification generally employs methods that involve adsorption, breaking down waste and harmful materials, and nanoscale filtration techniques. This research review mainly discusses the synthesis of nanoparticles and the application of nanotechnology in wastewater treatment.

Keywords: Water pollution, nanotechnology, silver nanoparticles, membranes, application, adsorption.

Graphical Abstract

[1]
Thorn, J. TE Emerging water-borne infections: Contributing factors, agents, and detection tools. Crit. Rev. Microbiol., 2002, 28(1), 1-26.
[http://dx.doi.org/10.1080/1040-840291046669] [PMID: 12003038]
[2]
Eshelby, K. Dying for a drink. BMJ, 2007, 334(7594), 610-612.
[http://dx.doi.org/10.1136/bmj.39150.398009.BEimages] [PMID: 17379906]
[3]
Ramalho, R.S. Introduction to wastewater treatment processes, 2nd ed.; Academic Press: New York, 1983, p. 10003.
[4]
Muga, H.E.; Mihelcic, J.R. Sustainability of wastewater treatment technologies. J. Environ. Manage., 2008, 88(3), 437-447.
[http://dx.doi.org/10.1016/j.jenvman.2007.03.008] [PMID: 17467148]
[5]
Xie, R.J.; Tan, E.K.; Lim, S.K.; Haw, E.; Chiew, C.P. Pre-treatment optimization of SWRO membrane desalination under tropical conditions. Desalin. Water Treat., 2009, 3(13), 183-192.
[http://dx.doi.org/10.5004/dwt.2009.459]
[6]
Alawadhi, A.A. Regional report on desalination-GCC countries. In: Proceedings of the IDA World Congress on Desalination and Water Reuse, Oct. 21-25, 2019 Dubai, UAE, pp. 8-13.
[7]
Vedavyasan, C.V. Pretreatment trends-an overview. Desalination Elsevier, 2007, 203(1-3), 296-299.
[http://dx.doi.org/10.1016/j.desal.2006.04.012]
[8]
Hutchinson, C.F.; Varady, R.G.; Drake, S. Old and new: Changing paradigms in arid lands water management. In: Water and Sustainability in Arid Regions; Springer, 2010; pp. 311-332.
[9]
Abdel-Shafy; I, H; Aly, R.O. Wastewater management in Egypt. In: Wastewater Reuse-Risk Assessment, Decision-Making, and Environmental Security; Springer, 2007; pp. 375-382.
[10]
Amer, M.; Attia, M.; Fahmy, H.; Tawfik, M. Water Policy Issues of Egypt-Country Policy Support Programme (CPSP). In: Sustainable Economic Development Department, National Policy Environment Division; The Govt. of the Netherlands: The Netherlands, 2005.
[11]
Sun, D.; Zhang, X. Membrane technology: Removing contaminants in wastewater. Filtr. Sep., 2007, 44(7), 14.
[http://dx.doi.org/10.1016/S0015-1882(07)70213-6]
[12]
Humayun, M.; Qu, Y.; Raziq, F.; Yan, R.; Li, Z.; Zhang, X.; Jing, L. Exceptional visible-light activities of TiO2-coupled N-doped porous perovskite LaFeO3 for 2,4-dichlorophenol decomposition and CO2 conversion. Environ. Sci. Technol., 2016, 50(24), 13600-13610.
[http://dx.doi.org/10.1021/acs.est.6b04958] [PMID: 27993053]
[13]
Humayun, M.; Hu, Z.; Khan, A.; Cheng, W.; Yuan, Y.; Zheng, Z.; Fu, Q.; Luo, W. Highly efficient degradation of 2,4-dichlorophenol over CeO2/g-C3N4 composites under visible-light irradiation: Detailed reaction pathway and mechanism. J. Hazard. Mater., 2019, 364, 635-644.
[http://dx.doi.org/10.1016/j.jhazmat.2018.10.088] [PMID: 30396137]
[14]
Savage, N.; Diallo, M.S. Nanomaterials and water purification: Opportunities and challenges. J. Nanopart. Res., 2005, 7(4-5), 331-342.
[http://dx.doi.org/10.1007/s11051-005-7523-5]
[15]
Mangun, C.L.; Yue, Z.; Economy, J.; Maloney, S.; Kemme, P.; Cropek, D. Adsorption of organic contaminants from water using tailored ACFs. Chem. Mater., 2001, 13(7), 2356-2360.
[http://dx.doi.org/10.1021/cm000880g]
[16]
Arora, R. Adsorption of heavy metals-A review. Mater. Today Proc., 2019, 18(7), 4745-4750.
[17]
Li, Q.; Mahendra, S.; Lyon, D.Y.; Brunet, L.; Liga, M.V.; Li, D.; Alvarez, P.J.J. Antimicrobial nanomaterials for water disinfection and microbial control: Potential applications and implications. Water Res., 2008, 42(18), 4591-4602.
[http://dx.doi.org/10.1016/j.watres.2008.08.015] [PMID: 18804836]
[18]
Hossain, F.; Perales-Perez, O.J.; Hwang, S.; Román, F. Antimicrobial nanomaterials as water disinfectant: Applications, limitations and future perspectives. Sci. Total Environ., 2014, 466-467, 1047-1059.
[http://dx.doi.org/10.1016/j.scitotenv.2013.08.009] [PMID: 23994736]
[19]
You, J.; Guo, Y.; Guo, R.; Liu, X. Review of visible light-active photocatalysts for water disinfection: Features and prospects. Chem. Eng. J., 2019, 373, 624-641.
[http://dx.doi.org/10.1016/j.cej.2019.05.071]
[20]
Meng, Z.D.; Zhu, L.; Choi, J.G.; Park, C.Y.; Oh, W.C. Preparation, characterization and photocatalytic behavior of WO3-fullerene/TiO2 catalysts under visible light. Nanoscale Res. Lett., 2011, 6(1), 459.
[http://dx.doi.org/10.1186/1556-276X-6-459] [PMID: 21774800]
[21]
Meng, Z.D.; Zhu, L.; Ye, S.; Sun, Q.; Ullah, K.; Cho, K.Y.; Oh, W.C. Fullerene modification CdSe/TiO2 and modification of photocatalytic activity under visible light. Nanoscale Res. Lett., 2013, 8(1), 189.
[http://dx.doi.org/10.1186/1556-276X-8-189] [PMID: 23618055]
[22]
Humayun, M.; Ullah, H.; Usman, M.; Habibi-Yangjeh, A.; Tahir, A.; Chundong, Wang; Wei, Luo Perovskite-type lanthanum ferrite-based photocatalysts: Preparation, properties, and applications. J. Energy Chem., 2021, 66, 314-338.
[http://dx.doi.org/10.1016/j.jechem.2021.08.023]
[23]
Lau, W.J.; Gray, S.; Matsuura, T.; Emadzadeh, D.; Chen, J.P.; Ismail, A.F. A review on polyamide thin film nanocomposite (TFN) membranes: History, applications, challenges and approaches. Water Res., 2015, 80, 306-324.
[http://dx.doi.org/10.1016/j.watres.2015.04.037] [PMID: 26011136]
[24]
Qu, X.; Alvarez, P.J.J.; Li, Q. Applications of nanotechnology in water and wastewater treatment. Water Res., 2013, 47(12), 3931-3946.
[http://dx.doi.org/10.1016/j.watres.2012.09.058] [PMID: 23571110]
[25]
David, N. Chemistry of the Environment. In: Checkmark Books; USA: New York, 2008.
[26]
Karr, J.R. Assessment of biotic interaction using fish communities. Braz. Arch. Biol. Technol., 1981, 50(3), 489-502.
[27]
Dekker, C. Solid-state nanopores. Nat. Nanotechnol., 2007, 2(4), 209-215.
[http://dx.doi.org/10.1038/nnano.2007.27] [PMID: 18654264]
[28]
Sovan lal, Pal; Jana, Utpal; Manna, P.K.; Manavalan, R. Nanoparticle: An overview of preparation and characterization. J. Pharm. Sci., 2011, 1(6), 228-234.
[29]
Hasany, S.F.; Ahmad, I.; Rajan, J.; Rehman, A. Systematic review of the preparation techniques of Iron Oxide Magnetic Nanoparticles. Nanosci. Nanotechnol., 2012, 2(6), 148-158.
[http://dx.doi.org/10.5923/j.nn.20120206.01]
[30]
Lue, J.; Zeng, T. Physical properties of nanomaterials. Encyclopedia Nanosci. Nanotechnol., 2007, 1.0, 1-46.
[31]
Gan, Y.X.; Jayatissa, A.H.; Yu, Z.; Chen, X.; Li, M. Hydrothermal synthesis of nanomaterials. J. Nanomater., 2020, 3, 8917013.
[http://dx.doi.org/10.1155/2020/8917013]
[32]
Martin, A.; Lars, O. Preparation of nanosize anatase and rutila TiO2 by hydrothermal treatment of microemulsions and their activity for photocatalytic wet oxidation of phenol. J. Phys. Chem. B, 2002, 106(41), 10674-10679.
[http://dx.doi.org/10.1021/jp025715y]
[33]
Oliveira, M.M.; Schnitzler, D.C.; Zarbin, A.J.G. (Ti, Sn) O2 mixed oxides nanoparticles obtained by the sol-gel route. Chem. Mater., 2003, 15(9), 1903-1909.
[http://dx.doi.org/10.1021/cm0210344]
[34]
Xie, R-C.; Shang, J.K. Morphological control in solvothermal synthesis of Titanium Oxide. J. Mater. Sci., 2007, 42(16), 6583-6589.
[http://dx.doi.org/10.1007/s10853-007-1506-0]
[35]
Mohammad, C.; Pall, T.; Stride, J.A. Carbon Nitride-Aromatic Diimide-Graphene nanohybrids: Metal-free photocatalysts for solar-to-hydrogen peroxide energy conversion with 0.2% efficiency. J. Am. Chem. Soc., 2009, 138(31), 10019-10025.
[http://dx.doi.org/10.1038/nnano.2008.365] [PMID: 19119279]
[36]
Hu, G.; Ma, D.; Cheng, M.; Liu, L.; Bao, X. Direct synthesis of uniform hollow carbon spheres by a self-assembly template approach. Chem. Commun. (Camb.), 2002, 17(17), 1948-1949.
[http://dx.doi.org/10.1039/b205723a] [PMID: 12271688]
[37]
Li, J.; Chen, Z.; Wang, R.J.; Proserpio, D.M. Low temperature route towards new materials: Solvothermal synthesis of metal chalcogenides in ethylenediamine. Coord. Chem. Rev., 1999, 190, 707-735.
[http://dx.doi.org/10.1016/S0010-8545(99)00107-1]
[38]
Dutta, D.P. Microwave-assisted synthesis of inorganic nanomaterials. In: Handbook on Synthesis Strategies of Advanced Materials; Springer, 2021; pp. 79-107.
[39]
Kumar, A.; Kuang, Y.; Liang, Z.; Sun, X. Microwave chemistry, recent advancements, and eco-friendly microwave-assisted synthesis of nanoarchitectures and their applications: A review. Materials Today Nano, 2020, 11, 100076.
[http://dx.doi.org/10.1016/j.mtnano.2020.100076]
[40]
Li, Z.; Zhuang, T.; Dong, J.; Wang, L.; Xia, J.; Wang, H.; Cui, X.; Wang, Z. Sonochemical fabrication of inorganic nanoparticles for applications in catalysis. Ultrason. Sonochem., 2021, 71, 105384.
[http://dx.doi.org/10.1016/j.ultsonch.2020.105384] [PMID: 33221623]
[41]
Veiko, V.P.; Skvortsov, A.M.; Cong, Tu Huynh; Petrov, A.A. Laser ablation of monocrystalline silicon under pulsed-frequency fiber laser. Sci. Techn. J. Inform. Technol., 2015, 15(3), 426.
[42]
Guo, T.; Nikolaev, P.; Andrew, G.; Tomanek, D.; Colbert, D.T.; Smalley, R.E. Self-assembly of tubular fullerenes. J. Phys. Chem., 1995, 99(27), 106947.
[http://dx.doi.org/10.1021/j100027a002]
[43]
Guo, T.; Nikolaev, P.; Thess, A.; Colbert, D.T.; Smalley, R.E. Catalytic growth of single- walled nanotubes by laser vaporization. Chem. Phys. Litt., 1995, 243, 49-54.
[http://dx.doi.org/10.1016/0009-2614(95)00825-O]
[44]
Eason, R. Pulsed Laser Deposition of Thin Films. Application-Led Growth of Functional Materials; Wiley-Interscience, 2006.
[http://dx.doi.org/10.1002/0470052120]
[45]
Yang, G.W. Laser ablation in liquids: Applications in the synthesis of nanocrystals. Prog. Mater. Sci., 2007, 52, 648-698.
[http://dx.doi.org/10.1016/j.pmatsci.2006.10.016]
[46]
Fabbro, R.; Fournier, J.; Ballard, P.; Devaux, D.; Virmont, J. Physical study of laser-produced plasma in confined geometry. J. Appl. Phys., 1990, 68, 775-785.
[http://dx.doi.org/10.1063/1.346783]
[47]
Sakka, T.; Iwanaga, S.; Ogata, Y.H.; Matsunawa, A.; Takemoto, T. Laser ablation at solid-liquid interface: An approach from optical emission spectra. J. Chem. Phys., 2000, 112, 8645-8653.
[http://dx.doi.org/10.1063/1.481465]
[48]
Robinson, A.L. Electron microscope inventors share nobel physics prize: Ernst ruska built the first electron microscope in 1931; Gerd binnig and heinrich rohrer developed the scanning tunneling microscope 50 years later. Science, 1986, 234(4778), 821-822.
[http://dx.doi.org/10.1126/science.234.4778.821] [PMID: 17758103]
[49]
Drenth, J. Principles of Protein X-ray Crystallography, 3rd ed.; Springer, 2007, p. 14.
[50]
Donald, R. Baer; Gary; Kateryna, Artyushkova; Christopher, D. Easton; Mark, H. Engelhard; Alexander, G. Shard Introduction to topical collection: Reproducibility challenges and solutions with a focus on guides to XPS analysis. J. Vac. Sci. Technol. A, 2021, 39, 021601.
[http://dx.doi.org/10.1116/6.0000873]
[51]
Ma, L.; Qiu, W.; Fan, X. Stress/strain characterization in electronic packaging by micro-Raman spectroscopy: A review. Microelectron. Reliab., 2021, 2021, 114045.
[http://dx.doi.org/10.1016/j.microrel.2021.114045]
[52]
Vunain, E.; Mishra, A.K.; Mamba, B.B. Dendrimers, mesoporous silicas and chitosan-based nanosorbents for the removal of heavy-metal ions: A review. Int. J. Biol. Macromol., 2016, 86, 570-586.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.02.005] [PMID: 26851359]
[53]
Sondi, I.; Salopek-Sondi, B. Silver nanoparticles as antimicrobial agent: A case study on E. coli as a model for Gram-negative bacteria. J. Colloid Interface Sci., 2004, 275(1), 177-182.
[http://dx.doi.org/10.1016/j.jcis.2004.02.012] [PMID: 15158396]
[54]
Baker, C.; Pradhan, A.; Pakstis, L.; Pochan, D.J.; Shah, S.I. Synthesis and antibacterial properties of silver nanoparticles. J. Nanosci. Nanotechnol., 2005, 5(2), 244-249.
[http://dx.doi.org/10.1166/jnn.2005.034] [PMID: 15853142]
[55]
Panacek, A.; Kvítek, L.; Prucek, R.; Kolar, M.; Vecerova, R.; Pizúrova, N.; Sharma, V.K.; Nevecna, T.; Zboril, R. Silver colloid nanoparticles: Synthesis, characterization, and their antibacterial activity. J. Phys. Chem. B, 2006, 110(33), 16248-16253.
[http://dx.doi.org/10.1021/jp063826h] [PMID: 16913750]
[56]
Kim, J.S.; Kuk, E.; Yu, K.N.; Kim, J.H.; Park, S.J.; Lee, H.J.; Kim, S.H.; Park, Y.K.; Park, Y.H.; Hwang, C.Y.; Kim, Y.K.; Lee, Y.S.; Jeong, D.H.; Cho, M.H. Antimicrobial effects of silver nanoparticles. Nanomedicine, 2007, 3(1), 95-101.
[http://dx.doi.org/10.1016/j.nano.2006.12.001] [PMID: 17379174]
[57]
Shrivastava, S.; Bera, T.; Roy, A.; Singh, G.; Ramachandrarao, P.; Dash, D. Characterization of enhanced antibacterial effects of novel silver nanoparticles. Nanotechnology, 2007, 18(22), 225103.
[http://dx.doi.org/10.1088/0957-4484/18/22/225103]
[58]
Morones, J.R.; Elechiguerra, J.L.; Camacho, A.; Holt, K.; Kouri, J.B.; Ramírez, J.T.; Yacaman, M.J. The bactericidal effect of silver nanoparticles. Nanotechnology, 2005, 16(10), 2346-2353.
[http://dx.doi.org/10.1088/0957-4484/16/10/059] [PMID: 20818017]
[59]
Makhluf, S.; Dror, R.; Nitzan, Y.; Abramovich, Y.; Jelinek, R.; Gedanken, A. Microwave-assisted synthesis of nanocrystalline MgO and its use as a bacteriocide. Adv. Funct. Mater., 2005, 15(10), 1708-1715.
[http://dx.doi.org/10.1002/adfm.200500029]
[60]
Lee, H.J.; Yeo, S.Y.; Jeong, S.H. Antibacterial effect of nanosized silver colloidal solution on textile fabrics. J. Mater. Sci., 2003, 38(10), 2199-2204.
[http://dx.doi.org/10.1023/A:1023736416361]
[61]
Lv, Y.; Liu, H.; Wang, Z. Silver nanoparticles decorated porous ceramic composite for water treatment. J. Membr. Sci., 2009, 331(1-2), 50-56.
[http://dx.doi.org/10.1016/j.memsci.2009.01.007]
[62]
Ma, N.; Fan, X.; Quan, X.; Zhang, Y. Ag-TiO2 / HAP / Al2O3 bioceramic composite membrane: Fabrication, characterization and bactericidal activity. J. Membr. Sci., 2009, 336(1-2), 109-117.
[http://dx.doi.org/10.1016/j.memsci.2009.03.018]
[63]
Ma, N.; Quan, X.; Zhang, Y.; Chen, S.; Zhao, H. Integration of separation and photocatalysis using an inorganic membrane modified with Si-doped TiO2 for water purification. J. Membr. Sci., 2009, 335(1-2), 58-67.
[http://dx.doi.org/10.1016/j.memsci.2009.02.040]
[64]
De Gusseme, B.; Hennebel, T.; Christiaens, E.; Saveyn, H.; Verbeken, K.; Fitts, J.P.; Boon, N.; Verstraete, W. Virus disinfection in water by biogenic silver immobilized in polyvinylidene fluoride membranes. Water Res., 2011, 45(4), 1856-1864.
[http://dx.doi.org/10.1016/j.watres.2010.11.046] [PMID: 21183198]
[65]
Ma, H.; Hsiao, B.S.; Chu, B. Thinfilms nanofibrous composite membranes containing cellulose or chitin barrier layers fabricated by ionic liquids. Polymer (Guildf.), 2011, 52(12), 2594-2599.
[http://dx.doi.org/10.1016/j.polymer.2011.03.051]
[66]
Mauter, M.S.; Wang, Y.; Okemgbo, K.C.; Osuji, C.O.; Giannelis, E.P.; Elimelech, M. Antifouling ultrafiltration membranes via post-fabrication grafting of biocidal nanomaterials. ACS Appl. Mater. Interfaces, 2011, 3(8), 2861-2868.
[http://dx.doi.org/10.1021/am200522v] [PMID: 21736330]
[67]
Pandey, J.K.; Swarnkar, R.K.; Soumya, K.K.; Dwivedi, P.; Singh, M.K.; Sundaram, S.; Gopal, R. Silver nanoparticles synthesized by pulsed laser ablation: As a potent antibacterial agent for human enteropathogenic gram-positive and gram-negative bacterial strains. Appl. Biotechnol., 2014, 174(3), 1021-1031.
[http://dx.doi.org/10.1007/s12010-014-0934-y] [PMID: 24801405]
[68]
Pantic, I. Application of silver nanoparticles in experimental physiology and clinical medicine: Current status and future prospects. Rev. Adv. Mater. Sci., 2014, 37.
[69]
Deshmukh, S.P.; Mullani, S.B.; Koli, V.B.; Patil, S.M.; Kasabe, P.J.; Dandge, P.B.; Pawar, S.A.; Delekar, S.D. Ag nanoparticles connected to the surface of TiO2 electrostatically for antibacterial photoinactivation studies. Photochem. Photobiol., 2018, 94(6), 1249-1262.
[http://dx.doi.org/10.1111/php.12983] [PMID: 30025150]
[70]
Sotiriou, G.A.; Pratsinis, S.E. Antibacterial activity of nanosilver ions and particles. Environ. Sci. Technol., 2010, 44(14), 5649-5654.
[http://dx.doi.org/10.1021/es101072s] [PMID: 20583805]
[71]
Kaviya, S.; Santhanalakshmi, J.; Viswanathan, B.; Muthumary, J.; Srinivasan, K. Biosynthesis of silver nanoparticles using Citrus sinensis peel extract and its antibacterial activity. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2011, 79(3), 594-598.
[http://dx.doi.org/10.1016/j.saa.2011.03.040] [PMID: 21536485]
[72]
Pal, S.; Tak, Y.K.; Song, J.M.D. Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the Gram-negative bacterium Escherichia coli. Appl. Environ. Microbiol., 2007, 73(6), 1712-1720.
[http://dx.doi.org/10.1128/AEM.02218-06] [PMID: 17261510]
[73]
Fiessinger, F.; Richard, Y.; Montiel, A.; Musquere, P. Advantages and disadvantages of chemical oxidation and disinfection by ozone and chlorine dioxide. Sci. Total Environ., 1981, 18, 245-261.
[http://dx.doi.org/10.1016/S0048-9697(81)80062-9] [PMID: 7233164]
[74]
EMIS. VITO-SCT, revision of technical notes WASS., 2009. Available from: https://emis.vito.be/en/bat/tools-overview/sheets/small-scale-wastewater-purification
[75]
Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature, 1972, 238(5358), 37-38.
[http://dx.doi.org/10.1038/238037a0] [PMID: 12635268]
[76]
Khalil, L.B.; Rophael, M.W.; Mourad, W.E. The removal of the toxic Hg (II) salts from water by photocatalysis. Appl. Catal. B, 2002, 36, 125-130.
[http://dx.doi.org/10.1016/S0926-3373(01)00285-5]
[77]
Botta, S.G.; Navio, J.A.; Hidalgo, M.C. Photocatalytic properties of ZrO2 and Fe/ZrO2 Semiconductors. J. Photochem. Photobiol. Chem., 1999, 129, 89-99.
[78]
Li, C.; Gu, G.; Liu, S. Progress in treatment of heavy metals and precious metal in wastewater by TiO2 photocatalysis. Techn. Equip. Environ. Pollut. Control, 2003, 4, 6.
[79]
Hidaka, G.; Nakamura, T.; Ishizaka, A. Heterogeneous photocatalytic degeneration of cyanide on TiO2 surface. Photobiol. A Chem., 1992, 66(36)
[80]
Jin, H.; Li, W.; Xiang, J. Nanometer particles of Fe3+/TiO2/SiO2 complex: Synthesis and usefulness in photocatalytic degradation of nitrite. J. Appl. Chem., 2001, 18, 6.
[81]
Wang, Y.; Lu, K.; Feng, C. Photocatalytic degradation of methyl orange by polyoxometalates supported on yttrium-doped TiO2. J. Rare Earths, 2011, 29, 866.
[http://dx.doi.org/10.1016/S1002-0721(10)60557-1]
[82]
Khataee, A.R.; Zarei, M.; Ordikhani, S.R. Heterogeneous photocatalysis of a dye solution using supported TiO2 nanoparticles combined with homogenous photoelectrochemical process: Molecular degradation products. J. Mol. Catal. Chem., 2011, 338, 84.
[83]
Abdullah, M.A.; Muhammed, S.A;, A. Photodegradation of rhodamine 6g and phenol red by nanosized tio2 under solar irradiation. J. Saudi Chem. Soc., 2011, 15, 121.
[84]
Veluru, J.B.; Appukuttan, S.N. Synthesis and characterization of rice grains like nitrogen doped TiO2 nanostructures. Mater. Lett., 2011, 65, 3064.
[85]
Malay, E.C. Photocatalytic degradation of amoxicillin, ampicillin and cloxacillin antibiotics in aqueous solution using UV/TiO2 and UV/H2O2/TiO2. Photocatalysis. Desalination, 2010, 252, 46.
[86]
Ana, L.G.; Gustavo, A.P.; Ricardo, A.T. Degradation of the antibiotic oxolinic acid by photocatalysis with TiO2 in suspension. Water Res., 2010, 44, 5158.
[87]
Blady, L.A.; Ricardo, A.T.; Gustavo, P. Solar photocatalytical treatment of carbofuran at lab and pilot scale: effect of classical parameters, evaluation of the toxicity and analysis of organic by-products. J. Hazard. Mater., 2011, 191, 196.
[88]
Wang, R.J.; Chen, C.C.; Lin, C.S. Phorate degradation by TiO2 photocatalysis: Parameter and reaction pathway investigations. Desalination, 2010, 250, 869.
[89]
Sharma, M.V.; Kumari, V.; Subrahmanyam, M. TiO2 supported over SBA-15: An efficient photocatalyst for the pesticide degradation using solar light. Chemosphere, 1562, 2008, 73.
[90]
Doong, R.; Chang, W. Photoassisted titanium dioxide mediated degradation of organophosphorus pesticides by hydrogen peroxide. J. Photochem. Photobiol. Chem., 1997, 107, 239.
[http://dx.doi.org/10.1016/S1010-6030(96)04579-0]
[91]
Lee, S.J.; Son, H.S.; Lee, H.K.; Zoh, K.D. Photocatalytic degradation of explosives contaminated water. Water Sci. Technol., 2002, 46(11-12), 139-145.
[http://dx.doi.org/10.2166/wst.2002.0729] [PMID: 12523745]
[92]
Dionysios, D.D; Amid, P.K.; Ann, M.K. Continuous mode photocatalytic degradation of chlorinated phenols and pesticides in water using a bench scale TiO2 rotating disk reactor. Appl. Catal. B, 2000, 24, 139.
[93]
Wang, W.P.; Huang, Y.K.; Yang, S.J. Photocatalytic degradation of nitrobenzene wastewater with H3PW12O40/TiO2. In: IEEE Mech. Automat. Control Eng; , 2010; 6, p. 1303.
[94]
Tahir, M.B.; Kiran, H.; Iqbal, T. The detoxification of heavy metals from aqueous environment using nano-photocatalysis approach: A review. Environ. Sci. Pollut. Res. Int., 2019, 26(11), 10515-10528.
[http://dx.doi.org/10.1007/s11356-019-04547-x] [PMID: 30835072]
[95]
Ciambelli, P.; La Guardia, G.; Vitale, L. Nanotechnology for green materials and processes. Stud. Surf. Sci. Catal., 2019, 179, 97-116.
[http://dx.doi.org/10.1016/B978-0-444-64337-7.00007-0]
[96]
Weng, B.; Qi, M.Y.; Han, C.; Tang, Z.R.; Xu, Y.J. Photocorrosion inhibition of semiconductor-based photocatalysts: Basic principle, current development, and future perspective. ACS Catal., 2019, 9, 4642-4687.
[http://dx.doi.org/10.1021/acscatal.9b00313]
[97]
Schafer, A. Natural organics removal using membranes: Principles, performance and cost; 1st; Technomic Pub, Co. Inc., CRC Press: Lancaster, PA, USA, 2001.
[98]
Judd, S.; Jefferson, B. Membranes for Industrial Wastewater Recovery and Re-Use; 1st; Elsevier, Oxford: United Kingdom, 2003.
[99]
Cheryan, M. Ultrafiltration and Microfiltration Handbook; ; Technomic Pub. Co. Inc.: Lancaster, PA, USA, 1986.
[100]
Baker, R.W. Membrane technology and application, 2nd ed.; Wiley: New York, USA, 2004, p. 545.
[101]
Kesting, R.E. Synthetic Polymeric Membrane A Structural Perspective, 2nd ed.; Wiley and Sons: New York, USA, 1985.
[102]
Nunes, S.P.; Peinemann, K.V. Membrane Technology in the Chemical Industry, 1st ed.; Wiley-VCH: Weinheim, Germany, 2001, p. 606381115.
[103]
Mallada, R.; Menendez, M. Inorganic membranes: Synthesis, characterization and application, 2nd ed.; Elsevier, Oxford: UK, 2006, Vol. 13, .
[104]
Bhat, A.H.; Rehman, W.U.; Khan, I.U.; Ahmad, S.; Ayoub, M.; Usmani, M.A. Nanocomposite membrane for environmental remediation. In: Polymer-Based Nanocomposites for Energy and Environmental Applications; Jawaid, M.; Khan, M.M., Eds.; Woodhead Publishing: Cambridge, UK, 2018; pp. 407-440.
[http://dx.doi.org/10.1016/B978-0-08-102262-7.00015-5]
[105]
Muntha, S.T.; Kausar, A.; Siddiq, M. Advances in polymeric nanofiltration membrane: A review. Polym. Plast. Technol. Eng., 2017, 56, 841-856.
[http://dx.doi.org/10.1080/03602559.2016.1233562]
[106]
Rashidi, H.R.; Sulaiman, N.M.N.; Hashim, N.A.; Hassan, C.R.C.; Ramli, M.R. Synthetic reactive dye wastewater treatment by using nanomembrane filtration. Desalination Water Treat., 2015, 55, 86-95.
[http://dx.doi.org/10.1080/19443994.2014.912964]
[107]
Belloň, T.; Polezhaev, P.; Vobecká, T.; Slouka, Z. Fouling of a heterogeneous anion-exchange membrane and single anion-exchange resin particle by ssdna manifests differently. J. Membr. Sci., 2019, 572, 619-631.
[http://dx.doi.org/10.1016/j.memsci.2018.11.034]
[108]
Sharma, G; Kumar, A; Sharma, S; Naushad, M; Prakash Dwivedi, R; Alothman, ZA; Mola, GT Novel development of nanoparticles to bimetallic nanoparticles and their composites: A review. J. King Saud Univ. Sci., 2019, 31, 257-269.
[http://dx.doi.org/10.1016/j.jksus.2017.06.012]
[109]
Naseem, T.; Waseem, M. A comprehensive review on the role of some important nanocomposites for antimicrobial and wastewater applications. Int. J. Environ. Sci. Technol., 2021. [Epub ahead of print].
[http://dx.doi.org/10.1007/s13762-021-03256-8]
[110]
Ramesh, K.; Gnanavel, B.; Shkir, Mohd. Enhanced visible light photocatalytic degradation of bisphenol A (BPA) by reduced graphene oxide (RGO)-metal oxide (TiO2, ZnO and WO3) based nanocomposites. Diamond Relat. Mater., 2021, 118, 108514.
[http://dx.doi.org/10.1016/j.diamond.2021.108514]
[111]
Jaworski, S.; Wierzbicki, M.; Sawosz, E.; Jung, A.; Gielerak, G.; Biernat, J.; Jaremek, H.; Łojkowski, W.; Woźniak, B.; Wojnarowicz, J.; Stobiński, L.; Małolepszy, A.; Mazurkiewicz-Pawlicka, M.; Łojkowski, M.; Kurantowicz, N.; Chwalibog, A. Graphene oxide-based nanocomposites decorated with silver nanoparticles as an antibacterial agent. Nanoscale Res. Lett., 2018, 13(1), 116.
[http://dx.doi.org/10.1186/s11671-018-2533-2] [PMID: 29687296]
[112]
Koutavarapua, R.; Reddya, C. Ultra-small zinc oxide nanosheets anchored onto sodium bismuth 2 sulfide nanoribbons as solar-driven photocatalysts for removal of 3 toxic pollutants and photoelectrocatalytic water oxidation. Chemosphere, 2021, 26, 128559.
[http://dx.doi.org/10.1016/j.chemosphere.2020.128559]
[113]
Abubakar, H. Preparation and characterization of zinc oxide/clay minerals nanocomposites as adsorbent for removal of Cu (II) and Pb (II) ions. Cit. Add. Metadata, 2020, 2020, 5-7.
[114]
Naseem, T.; Abdin, Z.; Waseem, M.; Hafeez, M.; Din, S.U.; Haq, S.; Rehman, M. Reduced graphene oxide/zinc oxide nanocomposite: From synthesis to its application for wastewater purifcation and antibacterial activity. J. Inorg. Organomet. Polym. Mater., 2020. [Epub ahead of print].
[http://dx.doi.org/10.1007/s10904-020-01529-2]
[115]
Zhen, J.; Zhang, S.; Zhuang, X.; Ahmad, S.; Lee, T.; Si, H.; Cao, C.; Ni, S-Q. Sulfate radicals based heterogeneous peroxymonosulfate system catalyzed by CuO-Fe3O4-Biochar nanocomposite for bisphenol A degradation. J. Water Proces., 2021, 41, 102078.
[http://dx.doi.org/10.1016/j.jwpe.2021.102078]
[116]
Bhavyasree, PG; Xavier, TS Green synthesis of copper oxide/carbon nanocomposites using the leaf extract of Adhatoda vasica Nees, their characterization and antimicrobial activity. Heliyon, 2020, 6, e03323.
[117]
Alshamsi, H.A.; Beshkar, F.; Amiri, O.; Salavati-Niasari, M. Porous hollow Ag/Ag2S/Ag3PO4 nanocomposites as highly efficient heterojunction photocatalysts for the removal of antibiotics under simulated sunlight irradiation. Chemosphere, 2021, 274, 129765.
[http://dx.doi.org/10.1016/j.chemosphere.2021.129765] [PMID: 33548649]
[118]
Kumari, S.; Sharma, P.; Yadav, S.; Kumar, J.; Vij, A.; Rawat, P.; Kumar, S.; Sinha, C.; Bhattacharya, J.; Srivastava, C.M.; Majumder, S. A novel synthesis of the graphene oxide-silver (GO-Ag) nanocomposite for unique physiochemical applications. ACS Omega, 2020, 5(10), 5041-5047.
[http://dx.doi.org/10.1021/acsomega.9b03976] [PMID: 32201790]
[119]
Suleman Ismail Abdalla, S.; Katas, H.; Chan, J.Y.; Ganasan, P.; Azmi, F.; Fauzi, M.; Busra, M. Antimicrobial activity of multifaceted lactoferrin or graphene oxide functionalized silver nanocomposites biosynthesized using mushroom waste and chitosan. RSC Advances, 2020, 10, 4969-4983.
[http://dx.doi.org/10.1039/C9RA08680C]
[120]
Mousavi, M.; Soleimani, M.; Hamzehloo, M.; Badiei, A.; Ghasemi, J.B. Photocatalytic degradation of different pollutants by the novel gCN-NS/Black-TiO2 heterojunction photocatalyst under visible light: Introducing a photodegradation model and optimization by response surface methodology (RSM). Mater. Chem. Phys., 2021, 258, 123912.
[http://dx.doi.org/10.1016/j.matchemphys.2020.123912]
[121]
Sh, G.A.D.; Zahra, F.A. The use of titanium oxide/polyethylene glycol nanocomposite in sorption of 134 Cs and 60 Co radionuclides from aqueous solutions. J. Radioanal. Nucl. Chem., 2020. [Epub ahead of print].
[http://dx.doi.org/10.1007/s10967-020-07167-9]
[122]
Mahfooz-Ur-Rehman, M.; Rehman, W.; Waseem, M.; Shah, B.A.; Shakeel, M.; Haq, S.; Zaman, U.; Bibi, I.; Khan, H.D. Fabrication of titanium-tin oxide nanocomposite with enhanced adsorption and antimicrobial applications. J. Chem. Eng. Data, 2019, 64, 2436-2444.
[http://dx.doi.org/10.1021/acs.jced.8b01243]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy