Generic placeholder image

Current Bioactive Compounds

Editor-in-Chief

ISSN (Print): 1573-4072
ISSN (Online): 1875-6646

Review Article

Chalcones and Flavones as Multifunctional Anticancer Agents- A Comprehensive Review

Author(s): Pavithra Palanikarasu*, Remya Ramachandran Surajambika* and Natarajan Ramalakshmi

Volume 18, Issue 10, 2022

Published on: 02 August, 2022

Article ID: e040422203042 Pages: 24

DOI: 10.2174/1573407218666220404093136

Price: $65

Abstract

Background: Chalcone and flavone moieties play an important role in medicinal chemistry for the development of potential therapeutic agents. These two derivatives serve a wide range of applications in recent studies and are promising lead molecules for the synthesis of compounds with vast therapeutic utility for many diseases, particularly for cancer therapy.

Objective: The present review focused on the fact that chalcone and flavone derivatives possess an interesting spectrum of anticancer activities and their representative mechanisms of action for antitumor therapy. Chalcone and flavones have potential in vitro and in vivo anticancer activity on multiple targets with different mechanisms, including topoisomerase inhibition, MDR channel inhibition Targeting NF-kB pathway, Serine/threonine protein kinase inhibition, PRAP1 inhibition, tubulin polymerase inhibition, Aromatase inhibition, cell cycle disruption, apoptosis inducing, immunomodulatory and inflammation mediatory mechanism. The advantage of chalcone and flavone scaffolds is their convenient synthetic methods and wide clinical potential.

Methods: We have scrutinized and reviewed 60 research articles published in different databases in recent years highlighting chalcones and flavones with different anticancer activities and evaluated their binding interactions in docking studies and potency in in vitro studies. Substituted chalcones and flavones with various heterocyclic nuclei and aliphatic and aromatic side chains are discussed. A thorough investigation on the mechanism by which each flavone and chalcone exerted its specific anticancer activity was done and is reviewed.

Results: It was seen that research conducted on chalcones and flavones proved it as a privileged structure with multifunctional anticancer activity. More exploration of these molecules will provide newer cancer therapeutic agents with less toxicity.

Conclusion: The review will be helpful for the wide variety of scientific community doing research on these versatile molecules.

Keywords: Anticancer, apoptosis, chalcones, cytotoxicity flavones, metastatic, MTT assay, polyphenol.

Graphical Abstract

[1]
Ur Rashid, H.; Xu, Y.; Ahmad, N.; Muhammad, Y.; Wang, L. Promising anti-inflammatory effects of chalcones via inhibition of cyclooxygenase, prostaglandin E2, inducible NO synthase and nuclear factor κb activities. Bioorg. Med. Chem., 2019, 87, 335-365.
[http://dx.doi.org/10.1016/j.bioorg.2019.03.033] [PMID: 30921740]
[2]
Hussain, S.; Singh, A.; Nazir, S.U.; Tulsyan, S.; Khan, A.; Kumar, R.; Bashir, N.; Tanwar, P.; Mehrotra, R. Cancer drug resistance: A fleet to conquer. J. Cell. Biochem., 2019, 120(9), 14213-14225.
[http://dx.doi.org/10.1002/jcb.28782] [PMID: 31037763]
[3]
Imperatore, C.; Della Sala, G.; Casertano, M.; Luciano, P.; Aiello, A.; Laurenzana, I.; Piccoli, C.; Menna, M. In vitro antiproliferative evaluation of synthetic meroterpenes inspired by marine natural products. Mar. Drugs, 2019, 17(12), 684.
[http://dx.doi.org/10.3390/md17120684] [PMID: 31817358]
[4]
Aiello, P.; Sharghi, M.; Mansourkhani, S.M.; Ardekan, A.P.; Jouybari, L.; Daraei, N.; Peiro, K.; Mohamadian, S.; Rezaei, M.; Heidari, M. Medicinal plants in the prevention and treatment of colon cancer. Oxid. Med. Cell, 2019, 2075614.
[5]
Quideau, S.; Deffieux, D.; Douat-Casassus, C.; Pouységu, L. Plant polyphenols: Chemical properties, biological activities, and synthesis. Angew. Chem. Int. Ed. Engl., 2011, 50(3), 586-621.
[http://dx.doi.org/10.1002/anie.201000044] [PMID: 21226137]
[6]
Ullah, M.F.; Khan, M.W. Food as medicine: Potential therapeutic tendencies of plant derived polyphenolic compounds. Asian Pac. J. Cancer Prev., 2008, 9(2), 187-195.
[PMID: 18712957]
[7]
Lephart, E.D. Polyphenols and cognitive function. In: Diet and Exercise in Cognitive Function and Neurological Diseases; Wiley-Blackwell, 2015; pp. 143-161.
[8]
Koca, U.; Berhow, M.A.; Febres, V.J.; Champ, K.I.; Carrillo-Mendoza, O.; Moore, G.A. Decreasing unpalatable flavonoid components in Citrus: The effect of transformation construct. Physiol. Plant., 2009, 137(2), 101-114.
[http://dx.doi.org/10.1111/j.1399-3054.2009.01264.x] [PMID: 19656329]
[9]
Orlikova, B.; Tasdemir, D.; Golais, F.; Dicato, M.; Diederich, M. Dietary chalcones with chemopreventive and chemotherapeutic potential. Genes Nutr., 2011, 6(2), 125-147.
[http://dx.doi.org/10.1007/s12263-011-0210-5] [PMID: 21484163]
[10]
Ferrer, J.L.; Jez, J.M.; Bowman, M.E.; Dixon, R.A.; Noel, J.P. Structure of chalcone synthase and the molecular basis of plant polyketide biosynthesis. Nat. Struct. Biol., 1999, 6(8), 775-784.
[http://dx.doi.org/10.1038/11553] [PMID: 10426957]
[11]
Rao, Y.K.; Fang, S.H.; Tzeng, Y.M. Differential effects of synthesized 2′-oxygenated chalcone derivatives: Modulation of human cell cycle phase distribution. Bioorg. Med. Chem., 2004, 12(10), 2679-2686.
[http://dx.doi.org/10.1016/j.bmc.2004.03.014] [PMID: 15110849]
[12]
Ballesteros, J.F.; Sanz, M.J.; Ubeda, A.; Miranda, M.A.; Iborra, S.; Payá, M.; Alcaraz, M.J. Synthesis and pharmacological evaluation of 2′-hydroxychalcones and flavones as inhibitors of inflammatory mediators generation. J. Med. Chem., 1995, 38(14), 2794-2797.
[http://dx.doi.org/10.1021/jm00014a032] [PMID: 7629818]
[13]
Viana, G.S.; Bandeira, M.A.; Matos, F.J. Analgesic and antiinflammatory effects of chalcones isolated from Myracrodruon urundeuva allemão. Phytomedicine, 2003, 10(2-3), 189-195.
[http://dx.doi.org/10.1078/094471103321659924] [PMID: 12725575]
[14]
Arty, I.S.; Timmerman, H.; Samhoedi, M. Sastrohamidjojo; Sugiyanto; van der Goot, H. Synthesis of benzylideneacetophenones and their inhibition of lipid peroxidation. Eur. J. Med. Chem., 2000, 35(4), 449-457.
[http://dx.doi.org/10.1016/S0223-5234(00)00137-9] [PMID: 10858605]
[15]
Dan, W.; Dai, J. Recent developments of chalcones as potential antibacterial agents in medicinal chemistry. Eur. J. Med. Chem., 2020, 187, 111980.
[http://dx.doi.org/10.1016/j.ejmech.2019.111980] [PMID: 31877539]
[16]
Trivedi, J.C.; Bariwal, J.B.; Upadhyay, K.D.; Naliapara, Y.T.; Joshi, S.K.; Pannecouque, C.C.; De Clercq, E.; Shah, A.K. Improved and rapid synthesis of new coumarinyl chalcone derivatives and their antiviral activity. Tetrahedron Lett., 2007, 48(48), 8472-8474.
[http://dx.doi.org/10.1016/j.tetlet.2007.09.175]
[17]
Nowakowska, Z. A review of anti-infective and anti-inflammatory chalcones. Eur. J. Med. Chem., 2007, 42(2), 125-137.
[http://dx.doi.org/10.1016/j.ejmech.2006.09.019] [PMID: 17112640]
[18]
Sivakumar, P.M.; Geetha Babu, S.K.; Mukesh, D. QSAR studies on chalcones and flavonoids as anti-tuberculosis agents using genetic function approximation (GFA) method. Chem. Pharm. Bull. (Tokyo), 2007, 55(1), 44-49.
[http://dx.doi.org/10.1248/cpb.55.44] [PMID: 17202700]
[19]
Narender, T. Shweta; Tanvir, K.; Rao, M.S.; Srivastava, K.; Puri, S.K. Prenylated chalcones isolated from Crotalaria genus inhibits in vitro growth of the human malaria parasite Plasmodium falciparum. Bioorg. Med. Chem. Lett., 2005, 15(10), 2453-2455.
[http://dx.doi.org/10.1016/j.bmcl.2005.03.081] [PMID: 15929201]
[20]
Li, R.; Chen, X.; Gong, B.; Selzer, P.M.; Li, Z.; Davidson, E.; Kurzban, G.; Miller, R.E.; Nuzum, E.O.; McKerrow, J.H.; Fletterick, R.J.; Gillmor, S.A.; Craik, C.S.; Kuntz, I.D.; Cohen, F.E.; Kenyon, G.L. Structure-based design of parasitic protease inhibitors. Bioorg. Med. Chem., 1996, 4(9), 1421-1427.
[http://dx.doi.org/10.1016/0968-0896(96)00136-8] [PMID: 8894100]
[21]
Cole, A.L.; Hossain, S.; Cole, A.M.; Phanstiel, O.I.V. Synthesis and bioevaluation of substituted chalcones, coumaranones and other flavonoids as anti-HIV agents. Bioorg. Med. Chem., 2016, 24(12), 2768-2776.
[http://dx.doi.org/10.1016/j.bmc.2016.04.045] [PMID: 27161874]
[22]
Abou-Zied, H.A.; Youssif, B.G.M.; Mohamed, M.F.A.; Hayallah, A.M.; Abdel-Aziz, M. EGFR inhibitors and apoptotic inducers: Design, synthesis, anticancer activity and docking studies of novel xanthine derivatives carrying chalcone moiety as hybrid molecules. Bioorg. Chem., 2019, 89, 102997.
[http://dx.doi.org/10.1016/j.bioorg.2019.102997] [PMID: 31136902]
[23]
Mohamed, M.F.A.; Shaykoon, M.S.A.; Abdelrahman, M.H.; Elsadek, B.E.M.; Aboraia, A.S.; Abuo-Rahma, G.E.A.A. Design, synthesis, docking studies and biological evaluation of novel chalcone derivatives as potential histone deacetylase inhibitors. Bioorg. Med. Chem., 2017, 72, 32-41.
[http://dx.doi.org/10.1016/j.bioorg.2017.03.005] [PMID: 28346873]
[24]
Lotito, S.B.; Frei, B. Consumption of flavonoid-rich foods and increased plasma antioxidant capacity in humans: Cause, consequence, or epiphenomenon? Free Radic. Biol. Med., 2006, 41(12), 1727-1746.
[http://dx.doi.org/10.1016/j.freeradbiomed.2006.04.033] [PMID: 17157175]
[25]
Davis, C.T.; Geissman, T.A. Basic dissociation constants of some substituted flavones1. J. Am. Chem. Soc., 1954, 76(13), 3507-3511.
[http://dx.doi.org/10.1021/ja01642a045]
[26]
Hanfer, M.; Benramdane, Z.; Cheriet, T.; Sarri, D.; Menad, A.; Mancini, I.; Seghiri, R.; Ameddah, S. Chemical constituents, in vitro anti-inflammatory, antioxidant and hemostatic activities of the n-butanol extract of Hyacinthoides lingulata (Poir.) Rothm. Nat. Prod. Res., 2021, 1-5.
[http://dx.doi.org/10.1080/14786419.2021.1937153] [PMID: 34121529]
[27]
Kumar, S.; Pandey, A.K. Chemistry and biological activities of flavonoids: An overview. Sci, 2013.
[http://dx.doi.org/10.1155/2013/162750]
[28]
Thirugnanasambantham, P.; Viswanathan, S.; Mythirayee, C.; Krishnamurty, V.; Ramachandran, S.; Kameswaran, L. Analgesic activity of certain flavone derivatives: A structure-activity study. J. Ethnopharmacol., 1990, 28(2), 207-214.
[http://dx.doi.org/10.1016/0378-8741(90)90030-W] [PMID: 2329811]
[29]
Nair, D.K.; Mobin, S.M.; Namboothiri, I.N. Synthesis of functionalized and fused furans and pyrans from the Morita–Baylis–Hillman acetates of nitroalkenes. Tetrahedron Lett., 2012, 53(26), 3349-3352.
[http://dx.doi.org/10.1016/j.tetlet.2012.04.084]
[30]
Santos, C.M.; Silva, A. An overview of 2-styrylchromones: Natural occurrence, synthesis, reactivity, and biological properties. Eur. J. Org. Chem., 2017, 2017(22), 3115-3133.
[http://dx.doi.org/10.1002/ejoc.201700003]
[31]
Larget, R.; Lockhart, B.; Renard, P.; Largeron, M. A convenient extension of the Wessely-Moser rearrangement for the synthesis of substituted alkylaminoflavones as neuroprotective agents in vitro. Bioorg. Med. Chem. Lett., 2000, 10(8), 835-838.
[http://dx.doi.org/10.1016/S0960-894X(00)00110-4] [PMID: 10782697]
[32]
Gormley, T.R.; O’sullivan, W.I. Flavanoid epoxides—XIII: Acid and base catalysed the reaction of 2′-tosyloxychalcone epoxides. Mechanism of the algar-flynn-oyamada reaction. Tetrahedron, 1973, 29(2), 369-373.
[http://dx.doi.org/10.1016/S0040-4020(01)93304-6]
[33]
Su, W.K.; Zhu, X.Y.; Li, Z.H. First Vilsmeier-Haack synthesis of flavones using bis-(trichloromethyl) carbonate/dimethyl formamide. Org. Prep. Proced. Int., 2009, 41(1), 69-75.
[http://dx.doi.org/10.1080/00304940802710947]
[34]
Raffa, D.; Maggio, B.; Raimondi, M.V.; Plescia, F.; Daidone, G. Recent discoveries of anticancer flavonoids. Eur. J. Med. Chem., 2017, 142, 213-228.
[http://dx.doi.org/10.1016/j.ejmech.2017.07.034] [PMID: 28793973]
[35]
Park, W.H. MAPK inhibitors differentially affect gallic acid-induced human pulmonary fibroblast cell growth inhibition. Mol. Med. Rep., 2011, 4(1), 193-04.
[PMID: 21461585]
[36]
Dinarello, C.A. Anti-inflammatory agents: Present and future. Cell, 2010, 140(6), 935-950.
[http://dx.doi.org/10.1016/j.cell.2010.02.043] [PMID: 20303881]
[37]
Yu, X.; He, G.; Du, G. Neuroprotective effect of baicalein in patients with Parkinson’s disease. Zhongguo Zhongyao Zazhi, 2012, 37(4), 421-425.
[PMID: 22667137]
[38]
Verma, A.K.; Singh, H.; Satyanarayana, M.; Srivastava, S.P.; Tiwari, P.; Singh, A.B.; Dwivedi, A.K.; Singh, S.K.; Srivastava, M.; Nath, C.; Raghubir, R.; Srivastava, A.K.; Pratap, R. Flavone-based novel antidiabetic and antidyslipidemic agents. J. Med. Chem., 2012, 55(10), 4551-4567.
[http://dx.doi.org/10.1021/jm201107g] [PMID: 22524508]
[39]
Sumbul, S.; Ahmad, M.A.; Mohd, A.; Mohd, A. Role of phenolic compounds in peptic ulcer: An overview. J. Pharm. Bioallied Sci., 2011, 3(3), 361-367.
[http://dx.doi.org/10.4103/0975-7406.84437] [PMID: 21966156]
[40]
Suresh Babu, K.; Hari Babu, T. T.; Srinivas, P.V.; Hara Kishore, K.; Murthy, U.S.; Rao, J.M. Synthesis and biological evaluation of novel C (7) modified chrysin analogues as antibacterial agents. Bioorg. Med. Chem. Lett., 2006, 16(1), 221-224.
[http://dx.doi.org/10.1016/j.bmcl.2005.09.009] [PMID: 16213726]
[41]
Gao, L.; Zu, M.; Wu, S.; Liu, A.L.; Du, G.H. 3D QSAR and docking study of flavone derivatives as potent inhibitors of influenza H1N1 virus neuraminidase. Bioorg. Med. Chem. Lett., 2011, 21(19), 5964-5970.
[http://dx.doi.org/10.1016/j.bmcl.2011.07.071] [PMID: 21843936]
[42]
Sagrera, G.; Bertucci, A.; Vazquez, A.; Seoane, G. Synthesis and antifungal activities of natural and synthetic biflavonoids. Bioorg. Med. Chem., 2011, 19(10), 3060-3073.
[http://dx.doi.org/10.1016/j.bmc.2011.04.010] [PMID: 21530273]
[43]
Casano, G.; Dumètre, A.; Pannecouque, C.; Hutter, S.; Azas, N.; Robin, M. Anti-HIV and antiplasmodial activity of original flavonoid derivatives. Bioorg. Med. Chem., 2010, 18(16), 6012-6023.
[http://dx.doi.org/10.1016/j.bmc.2010.06.067] [PMID: 20638854]
[44]
Veljkovic, V.; Mouscadet, J.F.; Veljkovic, N.; Glisic, S.; Debyser, Z. Simple criterion for selection of flavonoid compounds with anti-HIV activity. Bioorg. Med. Chem. Lett., 2007, 17(5), 1226-1232.
[http://dx.doi.org/10.1016/j.bmcl.2006.12.029] [PMID: 17189684]
[45]
Ayers, S.; Zink, D.L.; Mohn, K.; Powell, J.S.; Brown, C.M.; Murphy, T.; Brand, R.; Pretorius, S.; Stevenson, D.; Thompson, D.; Singh, S.B. Flavones from Struthiola argentea with anthelmintic activity in vitro. Phytochemistry, 2008, 69(2), 541-545.
[http://dx.doi.org/10.1016/j.phytochem.2007.08.003] [PMID: 17923139]
[46]
Yamamura, S.; Ozawa, K.; Ohtani, K.; Kasai, R.; Yamasaki, K. Antihistaminic flavones and aliphatic glycosides from Mentha spicata. Phytochemistry, 1998, 48(1), 131-136.
[http://dx.doi.org/10.1016/S0031-9422(97)01112-6] [PMID: 9745765]
[47]
Batovska, D.I.; Todorova, I.T. Trends in utilization of the pharmacological potential of chalcones. Curr. Clin. Pharmacol., 2010, 5(1), 1-29.
[http://dx.doi.org/10.2174/157488410790410579] [PMID: 19891604]
[48]
Iwamura, C.; Shinoda, K.; Yoshimura, M.; Watanabe, Y.; Obata, A.; Nakayama, T. Naringenin chalcone suppresses allergic asthma by inhibiting the type-2 function of CD4 T cells. Allergol. Int., 2010, 59(1), 67-73.
[http://dx.doi.org/10.2332/allergolint.09-OA-0118] [PMID: 20035147]
[49]
Ducki, S. Antimitotic chalcones and related compounds as inhibitors of tubulin assembly. Anticancer. Agents Med. Chem., 2009, 9(3), 336-347.
[http://dx.doi.org/10.2174/1871520610909030336] [PMID: 19275525]
[50]
Zuo, Y.; Yu, Y.; Wang, S.; Shao, W.; Zhou, B.; Lin, L.; Luo, Z.; Huang, R.; Du, J.; Bu, X. Synthesis and cytotoxicity evaluation of biaryl-based chalcones and their potential in TNFα-induced nuclear factor-κB activation inhibition. Eur. J. Med. Chem., 2012, 50, 393-404.
[http://dx.doi.org/10.1016/j.ejmech.2012.02.023] [PMID: 22386368]
[51]
Neto, R.A.M.; Santos, C.B.R.; Henriques, S.V.C.; Machado, L.O.; Cruz, J.N.; da Silva, C.H.T.P.; Federico, L.B.; Oliveira, E.H.C.; de Souza, M.P.C.; da Silva, P.N.B.; Taft, C.A.; Ferreira, I.M.; Gomes, M.R.F. Novel chalcones derivatives with potential antineoplastic activity investigated by docking and molecular dynamics simulations. J. Biomol. Struct. Dyn., 2022, 40(5), 2204-2216.
[http://dx.doi.org/10.1080/07391102.2020.1839562] [PMID: 33146078]
[52]
Chinthala, Y.; Thakur, S.; Tirunagari, S.; Chinde, S.; Domatti, A.K.; Arigari, N.K. K v N S, S.; Alam, S.; Jonnala, K.K.; Khan, F.; Tiwari, A.; Grover, P. Synthesis, docking and ADMET studies of novel chalcone triazoles for anti-cancer and anti-diabetic activity. Eur. J. Med. Chem., 2015, 93, 564-573.
[http://dx.doi.org/10.1016/j.ejmech.2015.02.027] [PMID: 25743216]
[53]
Shaik, A.B.; Bhandare, R.R.; Nissankararao, S.; Edis, Z.; Tangirala, N.R.; Shahanaaz, S.; Rahman, M.M. Design, facile synthesis and characterization of dichloro substituted chalcones and dihydropyrazole derivatives for their antifungal, antitubercular and antiproliferative activities. Molecules, 2020, 25(14), 3188.
[http://dx.doi.org/10.3390/molecules25143188] [PMID: 32668655]
[54]
Rathnakar, B.; Kumar, G.S.; Mahammad, S.P.; Gattu, S.; Kalyani, S.; Nimma, R.; Satyanarayana, M. Design, synthesis, and evaluation of novel combretastatin A-4 based chalcone derivatives as anticancer agents. J. Heterocycl. Chem., 2021, 58(2), 488-501.
[http://dx.doi.org/10.1002/jhet.4186]
[55]
Al Zahrani, N.A.; El-Shishtawy, R.M.; Elaasser, M.M.; Asiri, A.M. Synthesis of novel chalcone-based phenothiazine derivatives as antioxidant and anticancer agents. Molecules, 2020, 25(19), 4566.
[http://dx.doi.org/10.3390/molecules25194566] [PMID: 33036301]
[56]
Lim, Y.H.; Oo, C.W.; Koh, R.Y.; Voon, G.L.; Yew, M.Y.; Yam, M.F.; Loh, Y.C. Synthesis, characterization, and anti-cancer activity of new chalcone derivatives containing naphthalene and fluorine moieties. Drug Dev. Res., 2020, 81(8), 994-1003.
[http://dx.doi.org/10.1002/ddr.21715] [PMID: 32720715]
[57]
Stompor, M. Świtalska, M.; Bajek, A.; Wietrzyk, J. Influence of amide versus ester linkages on the anticancer properties of the new flavone-biotin conjugates. Z. Naturforsch. C J. Biosci., 2019, 74(7-8), 193-200.
[http://dx.doi.org/10.1515/znc-2018-0195] [PMID: 31100057]
[58]
Tendulkar, R.; Mahajanb, S. Synthesis and biological evaluation of novel flavones derivatives, as dual anticancer anti-inflammatory agents. Int. J. Innov. Sci. Technol, 2020, 5(3), 2456-2165.
[59]
Stompor, M. Świtalska, M.; Wietrzyk, J. Synthesis and biological evaluation of acyl derivatives of hydroxyflavones as potent antiproliferative agents against drug resistance cell lines. Z. Naturforsch. C J. Biosci., 2018, 73(1-2), 87-93.
[http://dx.doi.org/10.1515/znc-2017-0093] [PMID: 29116937]
[60]
Yun, B.H.; Lee, Y.H.; Park, K.T.; Jung, S.J.; Lee, Y.S. Synthesis of novel flavone derivatives possessing substituted benzamides and their biological evaluation against human cancer cells. Bioorg. Med. Chem. Lett., 2016, 26(17), 4170-4173.
[http://dx.doi.org/10.1016/j.bmcl.2016.07.063] [PMID: 27503682]
[61]
Zhang, N.; Yang, J.; Li, K.; Luo, J.; Yang, S.; Song, J.R.; Chen, C.; Pan, W.D. Synthesis of flavone derivatives via n-amination and evaluation of their anticancer activities. Molecules, 2019, 24(15), 2723.
[http://dx.doi.org/10.3390/molecules24152723] [PMID: 31357486]
[62]
Li, W.; Li, X.; Liu, M.; Wang, Q. Synthesis and antiproliferative activity of thioxoflavonesmannich base derivatives. Arch. Pharm. (Weinheim), 2017, 350(7), e1700044.
[http://dx.doi.org/10.1002/ardp.201700044]
[63]
Kowalski, K. Koceva-Chyła, A.; Szczupak, Ł; Hikisz, P.; Bernasińska, J.; Rajnisz, A.; Solecka, J.; Therrien, B. Ferrocenylvinyl-flavones: Synthesis, structure, anticancer, and antibacterial activity studies. J. Organomet. Chem., 2013, 741, 153-161.
[http://dx.doi.org/10.1016/j.jorganchem.2013.05.009]
[64]
Shin, S.Y.; Lee, Y.; Kim, B.S.; Lee, J.; Ahn, S.; Koh, D.; Lim, Y.; Lee, Y.H. Inhibitory effect of synthetic flavone derivatives on panaurora kinases: Induction of g2/m cell-cycle arrest and apoptosis in hct116 human colon cancer cells. Int. J. Mol. Sci., 2018, 19(12), 4086.
[http://dx.doi.org/10.3390/ijms19124086]
[65]
Jayashree, B.S.; Gurushyam, S.; Pai, A. Synthesis, characterisation, antioxidant, and anticancer evaluation of novel flavone-4-oximes. Indian Drugs, 2017, 54(11), 7-14.
[http://dx.doi.org/10.53879/id.54.11.11170]
[66]
Ma, X.; Wang, D.; Wei, G.; Zhou, Q.; Gan, X. Synthesis and anticancer activity of chalcone–quinoxalin conjugates. Synth. Commun., 2021, 51(9), 1363-1372.
[http://dx.doi.org/10.1080/00397911.2021.1881124]
[67]
Hsieh, C.Y.; Ko, P.W.; Chang, Y.J.; Kapoor, M.; Liang, Y.C.; Lin, H.H.; Horng, J.C.; Hsu, M.H.; Hsu, M.H. Design and synthesis of benzimidazole-chalcone derivatives as potential anticancer agents. Molecules, 2019, 24(18), 3259.
[http://dx.doi.org/10.3390/molecules24183259] [PMID: 31500191]
[68]
Sahu, N.K.; Balbhadra, S.S.; Choudhary, J.; Kohli, D.V. Exploring pharmacological significance of chalcone scaffold: A review. Curr. Med. Chem., 2012, 19(2), 209-225.
[http://dx.doi.org/10.2174/092986712803414132] [PMID: 22320299]
[69]
Singh, P.; Anand, A.; Kumar, V. Recent developments in biological activities of chalcones: A mini review. Eur. J. Med. Chem., 2014, 85, 758-777.
[http://dx.doi.org/10.1016/j.ejmech.2014.08.033] [PMID: 25137491]
[70]
Wang, G.; Liu, W.; Gong, Z.; Huang, Y.; Li, Y.; Peng, Z. Design, synthesis, biological evaluation and molecular docking studies of new chalcone derivatives containing diaryl ether moiety as potential anticancer agents and tubulin polymerization inhibitors. Bioorg. Med. Chem., 2020, 95, 103565.
[http://dx.doi.org/10.1016/j.bioorg.2019.103565] [PMID: 31927336]
[71]
Wang, G.; Liu, W.; Gong, Z.; Huang, Y.; Li, Y.; Peng, Z. Synthesis, biological evaluation, and molecular modelling of new naphthalene-chalcone derivatives as potential anticancer agents on MCF-7 breast cancer cells by targeting tubulin colchicine binding site. J. Enzyme Inhib. Med. Chem., 2020, 35(1), 139-144.
[http://dx.doi.org/10.1080/14756366.2019.1690479] [PMID: 31724435]
[72]
Mourad, A.A.E.; Mourad, M.A.E.; Jones, P.G. Novel HDAC/tubulin dual inhibitor: Design, synthesis and docking studies of α-phthalimido-chalcone hybrids as potential anticancer agents with apoptosis-inducing activity. Drug Des. Devel. Ther., 2020, 14, 3111-3130.
[http://dx.doi.org/10.2147/DDDT.S256756] [PMID: 32848361]
[73]
Rahimzadeh Oskuei, S.; Mirzaei, S.; Reza Jafari-Nik, M.; Hadizadeh, F.; Eisvand, F.; Mosaffa, F.; Ghodsi, R. Design, synthesis and biological evaluation of novel imidazole-chalcone derivatives as potential anticancer agents and tubulin polymerization inhibitors. Bioorg. Med. Chem., 2021, 112, 104904.
[http://dx.doi.org/10.1016/j.bioorg.2021.104904] [PMID: 33933802]
[74]
Shobeiri, N.; Rashedi, M.; Mosaffa, F.; Zarghi, A.; Ghandadi, M.; Ghasemi, A.; Ghodsi, R. Synthesis and biological evaluation of quinoline analogues of flavones as potential anticancer agents and tubulin polymerization inhibitors. Eur. J. Med. Chem., 2016, 114, 14-23.
[http://dx.doi.org/10.1016/j.ejmech.2016.02.069] [PMID: 26974371]
[75]
Yan, G.H.; Li, X.F.; Ge, B.C.; Shi, X.D.; Chen, Y.F.; Yang, X.M.; Xu, J.P.; Liu, S.W.; Zhao, P.L.; Zhou, Z.Z.; Zhou, C.Q.; Chen, W.H. Synthesis and anticancer activities of 3-arylflavone-8-acetic acid derivatives. Eur. J. Med. Chem., 2015, 90, 251-257.
[http://dx.doi.org/10.1016/j.ejmech.2014.11.030] [PMID: 25461325]
[76]
Ocasio-Malavé, C.; Donate, M.J.; Sánchez, M.M.; Sosa-Rivera, J.M.; Mooney, J.W.; Pereles-De León, T.A.; Carballeira, N.M.; Zayas, B.; Vélez-Gerena, C.E.; Martínez-Ferrer, M.; Sanabria-Ríos, D.J. Synthesis of novel 4-Boc-piperidone chalcones and evaluation of their cytotoxic activity against highly-metastatic cancer cells. Bioorg. Med. Chem. Lett., 2020, 30(1), 126760.
[http://dx.doi.org/10.1016/j.bmcl.2019.126760] [PMID: 31767266]
[77]
Jin, H.; Kim, H.S.; Seo, G.S.; Lee, S.H. A new chalcone derivative, 3-phenyl-1-(2,4,6-tris(methoxymethoxy)phenyl)prop-2-yn-1-one), inhibits phorbol ester-induced metastatic activity of colorectal cancer cells through upregulation of heme oxygenase-1. Eur. J. Pharmacol., 2018, 841, 1-9.
[http://dx.doi.org/10.1016/j.ejphar.2018.10.011] [PMID: 30321531]
[78]
Habashneh, A.Y.; El-Abadelah, M.M.; Zihlif, M.A.; Imraish, A.; Taha, M.O. Synthesis and antitumor activities of some new N1-(flavon-6-yl)amidrazone derivatives. Arch. Pharm. (Weinheim), 2014, 347(6), 415-422.
[http://dx.doi.org/10.1002/ardp.201300326] [PMID: 24615985]
[79]
Ahmed, M.F.; Santali, E.Y.; El-Haggar, R. Novel piperazine-chalcone hybrids and related pyrazoline analogues targeting VEGFR-2 kinase; design, synthesis, molecular docking studies, and anticancer evaluation. J. Enzyme Inhib. Med. Chem., 2021, 36(1), 307-318.
[http://dx.doi.org/10.1080/14756366.2020.1861606] [PMID: 33349069]
[80]
Silbermann, K.; Shah, C.P.; Sahu, N.U.; Juvale, K.; Stefan, S.M.; Kharkar, P.S.; Wiese, M. Novel chalcone and flavone derivatives as selective and dual inhibitors of the transport proteins ABCB1 and ABCG2. Eur. J. Med. Chem., 2019, 164, 193-213.
[http://dx.doi.org/10.1016/j.ejmech.2018.12.019] [PMID: 30594677]
[81]
Cai, C.Y.; Zhang, W.; Wang, J.Q.; Lei, Z.N.; Zhang, Y.K.; Wang, Y.J.; Gupta, P.; Tan, C.P.; Wang, B.; Chen, Z.S. Biological evaluation of non-basic chalcone CYB-2 as a dual ABCG2/ABCB1 inhibitor. Biochem. Pharmacol., 2020, 175, 113848.
[http://dx.doi.org/10.1016/j.bcp.2020.113848] [PMID: 32044354]
[82]
Komoto, T.T.; Bernardes, T.M.; Mesquita, T.B.; Bortolotto, L.F.B.; Silva, G.; Bitencourt, T.A.; Baek, S.J.; Marins, M.; Fachin, A.L. Chalcones repressed the AURKA and MDR proteins involved in metastasis and multiple drug resistance in breast cancer cell lines. Molecules, 2018, 23(8), E2018.
[http://dx.doi.org/10.3390/molecules23082018] [PMID: 30104527]
[83]
Boumendjel, A.; McLeer-Florin, A.; Champelovier, P.; Allegro, D.; Muhammad, D.; Souard, F.; Derouazi, M.; Peyrot, V.; Toussaint, B.; Boutonnat, J. A novel chalcone derivative which acts as a microtubule depolymerising agent and an inhibitor of P-gp and BCRP in in-vitro and in-vivo glioblastoma models. BMC Cancer, 2009, 9(1), 242.
[http://dx.doi.org/10.1186/1471-2407-9-242] [PMID: 19619277]
[84]
Na, Y.; Nam, J.M. Synthesis and topoisomerase II inhibitory and cytotoxic activity of oxiranylmethoxy- and thiiranylmethoxy-chalcone derivatives. Bioorg. Med. Chem. Lett., 2011, 21(1), 211-214.
[http://dx.doi.org/10.1016/j.bmcl.2010.11.037] [PMID: 21115246]
[85]
Thorat, N.M.; Sarkate, A.P.; Lokwani, D.K.; Tiwari, S.V.; Azad, R.; Thopate, S.R. N-Benzylation of 6-aminoflavone by reductive amination and efficient access to some novel anticancer agents via topoisomerase II inhibition. Mol. Divers., 2020, 1-2.
[PMID: 32249379]
[86]
Moreira, J.; Ribeiro, D.; Silva, P.M.A.; Nazareth, N.; Monteiro, M.; Palmeira, A.; Saraiva, L.; Pinto, M.; Bousbaa, H.; Cidade, H. New alkoxy flavone derivatives targeting caspases: Synthesis and antitumor activity evaluation. Molecules, 2018, 24(1), 129.
[http://dx.doi.org/10.3390/molecules24010129] [PMID: 30602686]
[87]
Yokoyama, T.; Kosaka, Y.; Mizuguchi, M. Structural insight into the interactions between death-associated protein kinase 1 and natural flavonoids. J. Med. Chem., 2015, 58(18), 7400-7408.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00893] [PMID: 26322379]
[88]
Srilaxmi, D.; Sreenivasulu, R.; Mak, K.K.; Pichika, M.R.; Jadav, S.S.; Ahsan, M.J.; Rao, M.V. Design, synthesis, anticancer evaluation and molecular docking studies of chalcone linked pyrido [4, 3-b] pyrazin-5 (6H)-one derivatives. J. Mol. Struct., 2021, 1229, 129851.
[http://dx.doi.org/10.1016/j.molstruc.2020.129851]
[89]
Joshi, A.J.; Bhojwani, H.R.; Joshi, U.; Begwani, K.V.; Wagal, O.S.; Sathaye, S.S.; Kanchan, D.M. Cinnamamide-Chalcone Derivatives as CDK2 Inhibitors: Synthesis, Pharmacological Evaluation, and Molecular Modelling Study; Researchsquare; , 2021. Available from: https://assets.researchsquare.com/files/rs-528960/v1/70b157c4-3c98-4fd3-a67f-427fd20c271f.pdf?c=1631883791
[90]
Wagal, O.S.; Joshi, A.J.; Joshi, U.J.; Bhojwani, H.R.; Begwani, K.V.; Dawne, H.A.; Gude, R.P.; Sathaye, S.S.; Kanchan, D.M. Studies in molecular modeling, in-vitro CDK2 inhibition and antimetastatic activity of some synthetic flavones. Front. Biosci., 2021, 26(4), 664-681.
[http://dx.doi.org/10.2741/4911] [PMID: 33049687]
[91]
Nguyen, T.B.; Lozach, O.; Surpateanu, G.; Wang, Q.; Retailleau, P.; Iorga, B.I.; Meijer, L.; Guéritte, F. Synthesis, biological evaluation, and molecular modeling of natural and unnatural flavonoidal alkaloids, inhibitors of kinases. J. Med. Chem., 2012, 55(6), 2811-2819.
[http://dx.doi.org/10.1021/jm201727w] [PMID: 22352892]
[92]
Seba, V.; Silva, G.; Santos, M.B.D.; Baek, S.J.; França, S.C.; Fachin, A.L.; Regasini, L.O.; Marins, M. Chalcone derivatives 4′-amino-1-naphthyl-chalcone (D14) and 4′-amino-4-methyl-1-naphthyl-chalcone (D15) suppress migration and invasion of osteosarcoma cells mediated by P53 regulating EMT-related genes. Int. J. Mol. Sci., 2018, 19(9), 2838.
[http://dx.doi.org/10.3390/ijms19092838] [PMID: 30235848]
[93]
Ngameni, B.; Cedric, K.; Mbaveng, A.T. Erdoğan, M.; Simo, I.; Kuete, V.; Daştan, A. Design, synthesis, characterization, and anticancer activity of a novel series of O-substituted chalcone derivatives. Bioorg. Med. Chem. Lett., 2021, 35, 127827.
[http://dx.doi.org/10.1016/j.bmcl.2021.127827] [PMID: 33508467]
[94]
Pawlak, A. Henklewska, M.; Hernández Suárez, B.; Łużny, M.; Kozłowska, E.; Obmińska-Mrukowicz, B.; Janeczko, T. Chalcone methoxy derivatives exhibit antiproliferative and proapoptotic activity on canine lymphoma and leukemia cells. Molecules, 2020, 25(19), 4362.
[http://dx.doi.org/10.3390/molecules25194362] [PMID: 32977440]
[95]
Coskun, D.; Erkisa, M.; Ulukaya, E.; Coskun, M.F.; Ari, F. Novel 1-(7-ethoxy-1-benzofuran-2-yl) substituted chalcone derivatives: Synthesis, characterization and anticancer activity. Eur. J. Med. Chem., 2017, 136, 212-222.
[http://dx.doi.org/10.1016/j.ejmech.2017.05.017] [PMID: 28494257]
[96]
Wang, H.M.; Zhang, L.; Liu, J.; Yang, Z.L.; Zhao, H.Y.; Yang, Y.; Shen, D.; Lu, K.; Fan, Z.C.; Yao, Q.W.; Zhang, Y.M.; Teng, Y.O.; Peng, Y. Synthesis and anti-cancer activity evaluation of novel prenylated and geranylated chalcone natural products and their analogs. Eur. J. Med. Chem., 2015, 92, 439-448.
[http://dx.doi.org/10.1016/j.ejmech.2015.01.007] [PMID: 25590864]
[97]
Syam, S.; Abdelwahab, S.I.; Al-Mamary, M.A.; Mohan, S. Synthesis of chalcones with anticancer activities. Molecules, 2012, 17(6), 6179-6195.
[http://dx.doi.org/10.3390/molecules17066179] [PMID: 22634834]
[98]
Farghaly, T.A.; Masaret, G.S.; Muhammad, Z.A.; Harras, M.F. Discovery of thiazole-based-chalcones and 4-hetarylthiazoles as potent anticancer agents: Synthesis, docking study and anticancer activity. Bioorg. Med. Chem., 2020, 98, 103761.
[http://dx.doi.org/10.1016/j.bioorg.2020.103761] [PMID: 32200332]
[99]
Liu, H.; Dong, A.; Gao, C.; Tan, C.; Xie, Z.; Zu, X.; Qu, L.; Jiang, Y. New synthetic flavone derivatives induce apoptosis of hepatocarcinoma cells. Bioorg. Med. Chem., 2010, 18(17), 6322-6328.
[http://dx.doi.org/10.1016/j.bmc.2010.07.019] [PMID: 20674374]
[100]
Ravishankar, D.; Watson, K.A.; Greco, F.; Osborn, H.M. Novel synthesised flavone derivatives provide significant insight into the structural features required for enhanced antiproliferative activity. RSC Advances, 2016, 6(69), 64544-64556.
[http://dx.doi.org/10.1039/C6RA11041J]
[101]
Bronikowska, J.; Szliszka, E. Kostrzewa-Susłow, E.; Jaworska, D.; Czuba, Z.P.; Bednarski, P.; Król, W. Novel structurally related flavones augment cell death induced by rhsTRAIL. Int. J. Mol. Sci., 2017, 18(6), 1211.
[http://dx.doi.org/10.3390/ijms18061211] [PMID: 28587286]
[102]
Hassan, A.H.E.; Lee, K.T.; Lee, Y.S. Flavone-based arylamides as potential anticancers: Design, synthesis and in vitro cell-based/cell-free evaluations. Eur. J. Med. Chem., 2020, 187, 111965.
[http://dx.doi.org/10.1016/j.ejmech.2019.111965] [PMID: 31877541]
[103]
Abosalim, H.M.; Nael, M.A. El‐Moselhy, T.F. Design, synthesis, and molecular docking of chalcone derivatives as potential anticancer agents. ChemistrySelect, 2021, 6(4), 888-895.
[http://dx.doi.org/10.1002/slct.202004088]
[104]
Chen, I.L.; Chen, J.Y.; Shieh, P.C.; Chen, J.J.; Lee, C.H.; Juang, S.H.; Wang, T.C. Synthesis and antiproliferative evaluation of amide-containing flavone and isoflavone derivatives. Bioorg. Med. Chem., 2008, 16(16), 7639-7645.
[http://dx.doi.org/10.1016/j.bmc.2008.07.013] [PMID: 18662883]
[105]
Gupta, S.; Maurya, P.; Upadhyay, A.; Kushwaha, P.; Krishna, S.; Siddiqi, M.I.; Sashidhara, K.V.; Banerjee, D. Synthesis and bio-evaluation of indole-chalcone based benzopyrans as promising antiligase and antiproliferative agents. Eur. J. Med. Chem., 2018, 143, 1981-1996.
[http://dx.doi.org/10.1016/j.ejmech.2017.11.015] [PMID: 29146133]
[106]
Dai, F.; Li, Q.; Wang, Y.; Ge, C.; Feng, C.; Xie, S.; He, H.; Xu, X.; Wang, C. Design, synthesis, and biological evaluation of mitochondria-targeted flavone–naphthalimide–polyamine conjugates with antimetastatic activity. J. Med. Chem., 2017, 60(5), 2071-2083.
[http://dx.doi.org/10.1021/acs.jmedchem.6b01846] [PMID: 28177238]
[107]
Ha, S.E.; Kim, S.M.; Vetrivel, P.; Kim, H.H.; Bhosale, P.B.; Heo, J.D.; Lee, H.J.; Kim, G.S. Inhibition of cell proliferation and metastasis by scutellarein regulating PI3K/Akt/NF-κB signaling through PTEN Activation in hepatocellular carcinoma. Int. J. Mol. Sci., 2021, 22(16), 8841.
[http://dx.doi.org/10.3390/ijms22168841] [PMID: 34445559]
[108]
Mitra, A.; Ghosh, R. A375 melanoma cells are sensitized to cisplatin-induced toxicity by a synthetic nitro-flavone derivative 2-(4-nitrophenyl)-4h-chromen-4-one through inhibition of PARP1. Research square, 2021, 48(8), 5993-6005.
[109]
Lim, S.S.; Lee, Y.S.; Cho, H.J.; Shin, H.K.; Park, J.H.Y. Synthesis of methoxylated flavone derivatives and examination of their effects on HT-29 human colon cancer cell growth. J. Cancer Prev., 2006, 2006, 211-217.
[110]
Javadi, M.H.; Iraji, A.; Montazeri, H.; Tarighi, P.; Eftekhari, S.; Navidpour, L.; Mirfazli, S.S. Design, synthesis and apoptosis inducing activity of non-steroidal flavone-methanesulfonate derivatives on mcf-7 cell line as potential sulfatase inhibitor. Med. Chem. Res., 2021, 30, 1677-1687.
[http://dx.doi.org/10.21203/rs.3.rs-459998/v1]
[111]
Kozak, W. Daśko, M.; Masłyk, M.; Kubiński, K.; Rachon, J.; Demkowicz, S. Steroid sulfatase inhibitors based on phosphate and thiophosphate flavone analogs. Drug Dev. Res., 2015, 76(8), 450-462.
[http://dx.doi.org/10.1002/ddr.21281] [PMID: 26415657]
[112]
Walle, T.; Walle, U.K. Novel methoxylated flavone inhibitors of cytochrome P450 1B1 in SCC-9 human oral cancer cells. J. Pharm. Pharmacol., 2007, 59(6), 857-862.
[http://dx.doi.org/10.1211/jpp.59.6.0012] [PMID: 17637178]
[113]
Le Bail, J.C.; Pouget, C.; Fagnere, C.; Basly, J.P.; Chulia, A.J.; Habrioux, G. Chalcones are potent inhibitors of aromatase and 17β-hydroxysteroid dehydrogenase activities. Life Sci., 2001, 68(7), 751-761.
[http://dx.doi.org/10.1016/S0024-3205(00)00974-7] [PMID: 11205867]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy