Generic placeholder image

Recent Advances in Computer Science and Communications

Editor-in-Chief

ISSN (Print): 2666-2558
ISSN (Online): 2666-2566

Review Article

Recent Query Reformulation Approaches for Information Retrieval System - A Survey

Author(s): Vishal Gupta* and Ashutosh Dixit

Volume 16, Issue 1, 2023

Published on: 24 June, 2022

Article ID: e040422203040 Pages: 14

DOI: 10.2174/2666255815666220404091920

Price: $65

Abstract

Around trillions of data are uploaded to the internet every year. Extracting useful information using only a few keywords has become a major challenge. The field of Query Reformulation (QR) is focused on the efficient retrieval of information to overcome this. It is widely used in the domain of information retrieval (IR) and related fields such as search engines, multimedia IR, cross-language IR, recommender systems, and so on. Query reformulation techniques incur extra computational costs. Due to this reason, the use of query reformulation techniques is sometimes prohibited in internet searches as searching over the internet requires a fast response time. But due to the success of NLP (Natural Language Processing) using machine learning/deep learning in recent years, there has been a boom of study in this area. In this literature, a variety of term selection, term extraction, and query reformulation strategies based on recent technologies used by researchers have been presented, necessitating a wide survey to focus research in this promising area. Recent QR approaches and the datasets, techniques, and evaluation metrics used in this paper will help researchers understand and focus more on research in this promising area so that a better solution will be proposed. From the survey, it may be observed that one of the hottest subjects in the field of IR right now is applying deep learning to IR systems for query reformulation.

Keywords: Artificial intelligence, fuzzy logic, information retrieval, term extraction, term selection, query reformulation.

Graphical Abstract

[1]
D. Crabtree, P. Andreae, and X. Goa, "The vocabulary problem in human-system communication", Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2007, pp. 191-200.
[http://dx.doi.org/10.1145/1281192.1281216]
[2]
R.Y. Lau, P.D. Bruza, and D. Song, "Belief revision for adaptive information retrieval", Proceedings of the 27th annual international ACM SIGIR conference on Research and development in information retrieval, 2004, pp. 130-137.
[3]
L. Gan, and H. Hong, "Improving query expansion for information retrieval using Wikipedia", International Journal of Database Theory and Application, vol. 8, no. 3, pp. 27-40, 2015.
[http://dx.doi.org/10.14257/ijdta.2015.8.3.03]
[4]
H. Imran, and A. Sharan, "Selecting effective expansion terms for better information retrieval", 2010.
[5]
S. Gauch, J. Wang, and S.M. Rachakonda, "A corpus analysis approach for automatic query expansion and its extension to multiple databases", ACM Trans. Inf. Syst., vol. 17, no. 3, pp. 250-269, 1999.
[http://dx.doi.org/10.1145/314516.314519]
[6]
H.K. Azad, and A. Deepak, "Query expansion techniques for information retrieval: A survey", Inf. Process. Manage., vol. 56, no. 5, pp. 1698-1735, 2019.
[http://dx.doi.org/10.1016/j.ipm.2019.05.009]
[7]
C. Carpineto, and G. Romano, G., “A survey of automatic query expansion in information retrieval", ACM Comput. Surv., vol. 44, no. 1, pp. 1-50, 2012.
[CSUR]. [http://dx.doi.org/10.1145/2071389.2071390]
[8]
J. Singh, and A. Sharan, "A new fuzzy logic-based query expansion model for efficient information retrieval using relevance feedback approach", Neural Comput. Appl., vol. 28, no. 9, pp. 2557-2580, 2017.
[http://dx.doi.org/10.1007/s00521-016-2207-x]
[9]
Y. Gupta, and A. Saini, "A novel term selection based automatic query expansion approach using PRF and semantic filtering", Int. J. Eng. Adv. Technol., vol. 8, pp. 130-137, 2019.
[10]
I. Khennak, and H. Drias, "An accelerated PSO for query expansion in web information retrieval: Application to medical dataset", Appl. Intell., vol. 47, no. 3, pp. 793-808, 2017.
[http://dx.doi.org/10.1007/s10489-017-0924-1]
[11]
S.S. Sathya, and P. Simon, "A document retrieval system with combination terms using genetic algorithm", International Journal of Computer and Electrical Engineering, vol. 2, no. 1, pp. 1-6, 2010.
[http://dx.doi.org/10.7763/IJCEE.2010.V2.104]
[12]
I. Khennak, and H. Drias, "Data mining techniques and natureinspired algorithms for query expansion", Proceedings of the International Conference on Learning and Optimization Algorithms: Theory and Applications, 2018, pp. 1-6.
[http://dx.doi.org/10.1145/3230905.3234631]
[13]
Y. Wang, H. Huang, and C. Feng, "Query expansion with local conceptual word embeddings in microblog retrieval", IEEE Trans. Knowl. Data Eng., 2019.
[14]
A. Keikha, F. Ensan, and E. Bagheri, "Query expansion using pseudo relevance feedback on Wikipedia", J. Intell. Inf. Syst., vol. 50, no. 3, pp. 455-478, 2018.
[http://dx.doi.org/10.1007/s10844-017-0466-3]
[15]
L. Wang, Z. Luo, C. Li, B. He, L. Sun, H. Yu, and Y. Sun, "An end-to-end pseudo relevance feedback framework for neural document retrieval", Inf. Process. Manage., vol. 57, no. 2, p. 102182, 2020.
[http://dx.doi.org/10.1016/j.ipm.2019.102182]
[16]
J. Guo, Y. Fan, Q. Ai, and W.B. Croft, "A deep relevance matching model for ad-hoc retrieval", Proceedings of the 25th ACM International on Conference on Information and Knowledge Management, 2016, pp. 55-64.
[http://dx.doi.org/10.1145/2983323.2983769]
[17]
C. Buckley, G. Salton, J. Allan, and A. Singhal, Automatic query expansion using smart: Trec 3. NIST special publication, 1995, p. 69–69.
[18]
R. Krovetz, and W.B. Croft, "Lexical ambiguity and information retrieval", ACM Trans. Inf. Syst., vol. 10, no. 2, pp. 115-141, 1992.
[http://dx.doi.org/10.1145/146802.146810]
[19]
J. Bai, J.Y. Nie, G. Cao, and H. Bouchard, "Using query contexts in information retrieval", Proceedings of the 30th annual international ACM SIGIR conference on Research and development in information retrieval, 2007, pp. 15-22.
[20]
M.H. Hsu, M.F. Tsai, and H.H. Chen, "Query expansion with conceptnet and wordnet: An intrinsic comparison", Asia Information Retrieval Symposium, 2006, pp. 1-13.
[http://dx.doi.org/10.1007/11880592_1]
[21]
E.M. Voorhees, Query expansion using lexical-semantic relations.SIGIR94.., Springer, 1994, pp. 61-69.
[22]
Y. Qiu, and H.P. Frei, "Concept based query expansion", Proceedings of the 16th annual international ACM SIGIR conference on Research and development in information retrieval, 1993, pp. 160-169.
[23]
C. Unger, A.C.N. Ngomo, and E. Cabrio, 6th open challenge on question answering over linked data (qald-6). Semantic Web Evaluation Challenge.. Springer, 2016, pp. 171-177.
[http://dx.doi.org/10.1007/978-3-319-46565-4_13]
[24]
J.J. Rocchio, "Relevance feedback in information retrieval", 1971.
[25]
S.E. Robertson, and K.S. Jones, "Relevance weighting of search terms", J. Am. Soc. Inf. Sci., vol. 27, no. 3, pp. 129-146, 1976.
[http://dx.doi.org/10.1002/asi.4630270302]
[26]
T.E. Doszkocs, "Aid, an associative interactive dictionary for online searching", Online Review, vol. 2, no. 2, pp. 163-173, 1978.
[http://dx.doi.org/10.1108/eb023972]
[27]
S.E. Robertson, "On term selection for query expansion", J. Doc., vol. 46, no. 4, pp. 359-364, 1990.
[http://dx.doi.org/10.1108/eb026866]
[28]
G. Salton, and C. Buckley, "Improving retrieval performance by relevance feedback", Readings in information retrieval, vol. 24, no. Issue 5, pp. 355-363, 1997.
[29]
H.K. Azad, and A. Deepak, "A new approach for query expansion using Wikipedia and WordNet", Inf. Sci., vol. 492, pp. 147-163, 2019.
[http://dx.doi.org/10.1016/j.ins.2019.04.019]
[30]
N. Lin, V.A. Kudinov, H.M. Zaw, and S. Naing, "Query expansion for myanmar information retrieval used by wordnet", In 2020 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus), 2020, pp. 395-399
IEEE, 2020. [http://dx.doi.org/10.1109/EIConRus49466.2020.9039137]
[31]
P. Jaccard, "The distribution of the flora in the alpine zone", New Phytol., vol. 11, no. 2, pp. 37-50, 1912.
[http://dx.doi.org/10.1111/j.1469-8137.1912.tb05611.x]
[32]
L.R. Dice, "Measures of the amount of ecologic association between species", Ecology, vol. 26, no. 3, pp. 297-302, 1945.
[http://dx.doi.org/10.2307/1932409]
[33]
K.W. Church, and P. Hanks, "Word association norms, mutual information, and lexicography", Comput. Linguist., vol. 16, no. 1, pp. 22-29, 1990.
[34]
S. Bhatia, D. Majumdar, and P. Mitra, "Query suggestions in the absence of query logs", Proceedings of the 34th international ACM SIGIR conference on research and development in Information Retrieval, 2011, pp. 795-804.
[http://dx.doi.org/10.1145/2009916.2010023]
[35]
R. Attar, and A.S. Fraenkel, "Local feedback in full-text retrieval systems", J. Assoc. Comput. Mach., vol. 24, no. 3, pp. 397-417, 1977.
[http://dx.doi.org/10.1145/322017.322021]
[36]
G. Chandra, and S.K. Dwivedi, "Query expansion based on term selection for Hindi–English cross lingual IR", J. King Saud University-Comput. Inform. Sci., vol. 32, no. 3, pp. 310-319, 2020.
[http://dx.doi.org/10.1016/j.jksuci.2017.09.002]
[37]
C. Carpineto, R. De Mori, G. Romano, and B. Bigi, "An information-theoretic approach to automatic query expansion", ACM Trans. Inf. Syst., vol. 19, no. 1, pp. 1-27, 2001.
[http://dx.doi.org/10.1145/366836.366860]
[38]
Z. Lu, and H. Li, "A deep architecture for matching short texts", Adv. Neural Inf. Process. Syst., pp. 1367-1375, 2013.
[39]
W. Wong, R.W.P. Luk, H.V. Leong, K. Ho, and D.L. Lee, "Reexamining the effects of adding relevance information in a relevance feedback environment", Inf. Process. Manage., vol. 44, no. 3, pp. 1086-1116, 2008.
[http://dx.doi.org/10.1016/j.ipm.2007.12.002]
[40]
J. Miao, J.X. Huang, and Z. Ye, "Proximity-based rocchio’s model for pseudo relevance", Proceedings of the 35th international ACM SIGIR conference on Research and development in information retrieval, 2012, pp. 535-544.
[41]
V. Lavrenko, and W.B. Croft, "Relevance based language models", Proceedings of the 24th annual international ACM SIGIR conference on Research and development in information retrieval, 2001, pp. 120-127.
[42]
B. Croft, and J. Lafferty, Language modeling for information retrieval., vol. 13. Springer Science & Business Media, 2013.
[43]
C. Zhai, and J. Lafferty, "Model-based feedback in the language modeling approach to information retrieval", Proceedings of the tenth international conference on Information and knowledge management, 2001, pp. 403-410.
[http://dx.doi.org/10.1145/502585.502654]
[44]
A.M. Robertson, and P. Willett, "A comparison of spellingcorrection methods for the identification of word forms in historical text databases", Lit. Linguist. Comput., vol. 8, no. 3, pp. 143-152, 1993.
[http://dx.doi.org/10.1093/llc/8.3.143]
[45]
G. Amati, C. Joost, and V. Rijsbergen, "Probabilistic models for information retrieval based on divergence from randomness", ACM Trans Inf. Sys., vol. 20, no. 4, pp. 357-389, 2002.
[46]
Y. Chang, I. Ounis, and M. Kim, "Query reformulation using automatically generated query concepts from a document space", Inf. Process. Manage., vol. 42, no. 2, pp. 453-468, 2006.
[http://dx.doi.org/10.1016/j.ipm.2005.03.025]
[47]
D. Harman, "Relevance feedback and other query modification techniques", 1992.
[48]
Z. Zhang, Q. Wang, L. Si, and J. Gao, "Learning for efficient supervised query expansion via two-stage feature selection", Proceedings of the 39th International ACM SIGIR conference on Research and Development in Information Retrieval, 2016, pp. 265-274.
[http://dx.doi.org/10.1145/2911451.2911539]
[49]
J.H. Paik, D. Pal, and S.K. Parui, "Incremental blind feedback: An effective approach to automatic query expansion", ACM Trans. Asian Lang. Inf. Process., vol. 13, no. 3, pp. 1-22, 2014.
[http://dx.doi.org/10.1145/2611521]
[50]
A. Bernardini, and C. Carpineto, "Fub at trec 2008 relevance feedback track: Extending rocchio with distributional term analysis", Tech. Rep., 2008.
[51]
A. Sihvonen, and P. Vakkari, "Subject knowledge improves interactive query expansion assisted by a thesaurus", J. Doc., vol. 60, no. 6, pp. 673-690, 2004.
[http://dx.doi.org/10.1108/00220410410568151]
[52]
J. Singh, and A. Sharan, "Relevance feedback-based query expansion model using ranks combining and Word2Vec approach", J. Inst. Electron. Telecommun. Eng., vol. 62, no. 5, pp. 591-604, 2016.
[http://dx.doi.org/10.1080/03772063.2015.1136575]
[53]
R. Mandala, T. Tokunaga, and H. Tanaka, "Query expansion using heterogeneous thesauri", Inf. Process. Manage., vol. 36, no. 3, pp. 361-378, 2000.
[http://dx.doi.org/10.1016/S0306-4573(99)00068-0]
[54]
H. Cui, J.R. Wen, J.Y. Nie, and W.Y. Ma, "Probabilistic query expansion using query logs", Proceedings of the 11th international conference on World Wide Web, 2002, pp. 325-332.
[55]
H. Cui, J.R. Wen, J.Y. Nie, and W.Y. Ma, "Query expansion by mining user logs", IEEE Trans. Knowl. Data Eng., vol. 15, no. 4, pp. 829-839, 2003.
[http://dx.doi.org/10.1109/TKDE.2003.1209002]
[56]
R. Kraft, and J. Zien, "Mining anchor text for query refinement", Proceedings of the 13th international conference on World Wide Web, 2004, pp. 666-674.
[http://dx.doi.org/10.1145/988672.988763]
[57]
J. Bai, D. Song, P. Bruza, J.Y. Nie, and G. Cao, "Query expansion using term relationships in language models for information retrieval", Proceedings of the 14th ACM international conference on Information and knowledge management, 2005, pp. 688-695.
[http://dx.doi.org/10.1145/1099554.1099725]
[58]
S. Riezler, A. Vasserman, I. Tsochantaridis, V. Mittal, and Y. Liu, "“Statistical machine translation for query expansion in answer retrieval”, In Annual Meeting-Association For", Comput. Linguist., vol. 45, p. 464, 2007.
[59]
K.S. Lee, W.B. Croft, and J. Allan, "A cluster-based resampling method for pseudo-relevance feedback", Proceedings of the 31st annual international ACM SIGIR conference on Research and development in information retrieval, 2008, pp. 235-242.
[http://dx.doi.org/10.1145/1390334.1390376]
[60]
J. Arguello, J.L. Elsas, J. Callan, and J.G. Carbonell, "Document representation and query expansion models for blog recommendation", ICWSM, 2008.
[61]
Z. Yin, M. Shokouhi, and N. Craswell, "Query expansion using external evidence", European Conference on Information Retrieval, 2009, pp. 362-374.
[62]
Y. Lv, and C. Zhai, "Positional relevance model for pseudorelevance feedback", Proceedings of the 33rd international ACM SIGIR conference on Research and development in information retrieval, 2010, pp. 579-586.
[63]
R. Blanco, and C. Lioma, "Graph-based term weighting for information retrieval", Inf. Retrieval, vol. 15, no. 1, pp. 54-92, 2012.
[http://dx.doi.org/10.1007/s10791-011-9172-x]
[64]
A. Bouchoucha, J. He, and J.Y. Nie, "Diversified query expansion using conceptnet", In Proceedings of the 22nd ACM international conference on Information & Knowledge Management, 2013, pp. 1861-1864
. [http://dx.doi.org/10.1145/2505515.2507881]
[65]
J. Singh, and A. Sharan, "Rank fusion and semantic genetic notion based automatic query expansion model", Swarm Evol. Comput., vol. 38, pp. 295-308, 2018.
[http://dx.doi.org/10.1016/j.swevo.2017.09.007]
[66]
M. Gallant, H. Isah, F. Zulkernine, and S. Khan, "Xu: An automated query expansion and optimization tool", In 2019 IEEE 43rd Annual Computer Software and Applications Conference (COMPSAC), 2019, pp. 443-452
IEEE, 2019. [http://dx.doi.org/10.1109/COMPSAC.2019.00070]
[67]
S. Bhattacharjee, R. Haque, G.M. de Buy Wenniger, and A. Way, "Investigating query expansion and coreference resolution in question answering on BERT", International Conference on Applications of Natural Language to Information Systems, 2020, pp. 47-59.
[http://dx.doi.org/10.1007/978-3-030-51310-8_5]
[68]
Q. Liu, H. Huang, J. Xuan, G. Zhang, Y. Gao, and J. Lu, "A fuzzy word similarity measure for selecting top-k similar words in query expansion", IEEE Trans. Fuzzy Syst., vol. 29, no. 8, pp. 2132-2144, 2020.
[69]
A.P. Bhopale, and A. Tiwari, "Leveraging neural network phrase embedding model for query reformulation in Ad-Hoc biomedical information retrieval", Malays. J. Comput. Sci., vol. 34, no. 2, pp. 151-170, 2021.
[70]
Z. Zheng, K. Hui, B. He, X. Han, L. Sun, and A. Yates, "Contextualized query expansion via unsupervised chunk selection for text retrieval", Inf. Process. Manage., vol. 58, no. 5, p. 102672, 2021.
[http://dx.doi.org/10.1016/j.ipm.2021.102672]
[71]
M. Boughanem, I. Akermi, G. Pasi, and K. Abdulahhad, Information Retrieval and Artificial Intelligence. A Guided Tour of Artificial Intelligence Research., Springer: Cham, 2020, pp. 147-180.
[http://dx.doi.org/10.1007/978-3-030-06170-8_5]
[72]
Q. Zhang, D. Wu, G. Zhang, and J. Lu, "Fuzzy user interest drift detection based recommender systems", In Proceedings of IEEE International Conference on Fuzzy Systems, 2016, pp. 1274-1281 .
FUZZ-IEEE, 2016. [http://dx.doi.org/10.1109/FUZZ-IEEE.2016.7737835]
[73]
H. Zuo, G. Zhang, W. Pedrycz, V. Behbood, and J. Lu, "Granular fuzzy regression domain adaptation in takagisugeno fuzzy models", IEEE Trans. Fuzzy Syst., vol. 26, no. 2, pp. 847-858, 2018.
[http://dx.doi.org/10.1109/TFUZZ.2017.2694801]
[74]
F. Liu, G. Zhang, and J. Lu, "Heterogeneous unsupervised domain adaptation based on fuzzy feature fusion", In Proceedings of IEEE International Conference on Fuzzy Systems, FUZZ-IEEE, 2017, pp. 1-6.
[http://dx.doi.org/10.1109/FUZZ-IEEE.2017.8015569]
[75]
A. Liu, G. Zhang, and J. Lu, "Fuzzy time windowing for gradual concept drift adaptation", In Proceedings of IEEE International Conference on Fuzzy Systems, 2017 FUZZ-IEEE, 2017.
[http://dx.doi.org/10.1109/FUZZ-IEEE.2017.8015596]
[76]
Y. Song, G. Zhang, J. Lu, and H. Lu, "A fuzzy kernel c-means clustering model for handling concept drift in regression", In Proceedings of IEEE International Conference on Fuzzy Systems, 2017 FUZZ-IEEE, 2017.
[http://dx.doi.org/10.1109/FUZZ-IEEE.2017.8015515]
[77]
K.A. Crockett, N. Adel, J. O’Shea, A. Crispin, D. Chandran, and J.P. Carvalho, "Application of fuzzy semantic similarity measures to event detection within tweets", In Proceedings of IEEE International Conference on Fuzzy Systems, 2017 FUZZ-IEEE, 2017.
[http://dx.doi.org/10.1109/FUZZ-IEEE.2017.8015488]
[78]
J. Ma, G. Zhang, and J. Lu, "A method for multiple periodic factor prediction problems using complex fuzzy sets", IEEE Trans. Fuzzy Syst., vol. 20, no. 1, pp. 32-45, 2012.
[http://dx.doi.org/10.1109/TFUZZ.2011.2164084]
[79]
J.I. Forcen, M. Pagola, H. Bustince, J.M. Soto-Hidalgo, and J. Chamorro-Mart’ınez, "Adding fuzzy color information for image classification", In Proceedings of IEEE International Conference on Fuzzy Systems, 2017, pp. 1-6
FUZZ-IEEE, 2017. [http://dx.doi.org/10.1109/FUZZ-IEEE.2017.8015622]
[80]
B. Ziolko, D. Emms, and M. Ziolko, "Fuzzy evaluations of image segmentations", IEEE Trans. Fuzzy Syst., vol. 26, no. 4, pp. 1789-1799, 2018.
[http://dx.doi.org/10.1109/TFUZZ.2017.2752130]
[81]
Y. Gupta, A. Saini, A.K. Saxena, and A. Sharan, "Fuzzy logic based similarity measure for information retrieval system performance improvement", International Conference on Distributed Computing and Internet Technology, 2014, pp. 224-232.
[http://dx.doi.org/10.1007/978-3-319-04483-5_23]
[82]
J. Singh, M. Prasad, O.K. Prasad, M.J. Er, A.K. Saxena, and C. Lin, "A novel fuzzy logic model for pseudo-relevance feedback-based query expansion", Int. J. Fuzzy Syst., vol. 18, no. 6, pp. 980-989, 2016.
[http://dx.doi.org/10.1007/s40815-016-0254-1]
[83]
Q. Liu, H. Huang, J. Lu, Y. Gao, and G. Zhang, "Enhanced word embedding similarity measures using fuzzy rules for query expansion", Proceedings of IEEE International Conference on Fuzzy Systems, 2017, pp. 1-6.
[http://dx.doi.org/10.1109/FUZZ-IEEE.2017.8015482]
[84]
Y. Gupta, and A. Saini, "A novel fuzzy-pso term weighting automatic query expansion approach using combined semantic filtering", Knowl. Base. Syst., vol. 136, pp. 97-120, 2017.
[http://dx.doi.org/10.1016/j.knosys.2017.09.004]
[85]
M.A. Zingla, C. Latiri, P. Mulhem, C. Berrut, and Y. Slimani, "Hybrid query expansion model for text and microblog information retrieval", Inf. Retrieval, vol. 21, no. 4, pp. 337-367, 2018.
[http://dx.doi.org/10.1007/s10791-017-9326-6]
[86]
H. Lan, and J. Huang, "The cross-language query expansion algorithm based on hybrid clustering", International Conference on Computer Engineering and Networks, 2018, pp. 279-286.
[87]
J. Sankhavara, "Feature weighting in finding feedback documents for query expansion in biomedical document retrieval", SN Computer Science, vol. 1, no. 2, pp. 1-7, 2020.
[http://dx.doi.org/10.1007/s42979-020-0069-x]
[88]
H.K. Azad, and A. Deepak, "A novel model for query expansion using pseudo-relevant web knowledge", 2019.
[89]
H. Zamani, B. Mitra, X. Song, N. Craswell, and S. Tiwary, "Neural ranking models with multiple document fields", Proceedings of the eleventh ACM international conference on web search and data mining, 2018, pp. 700-708.
[http://dx.doi.org/10.1145/3159652.3159730]
[90]
A. Bouziri, C. Latiri, and E. Gaussier, "LTR-expand: Query expansion model based on learning to rank association rules", J. Intell. Inf. Syst., vol. 55, no. 2, pp. 1-26, 2020.
[http://dx.doi.org/10.1007/s10844-020-00596-8]
[91]
R. Padaki, Z. Dai, and J. Callan, "Rethinking query expansion for BERT reranking", European Conference on Information Retrieval, 2020, pp. 297-304.
[92]
S.W. Fan-Jiang, T.H. Lo, and B. Chen, "Spoken document retrieval leveraging bert-based modeling and query reformulation", In ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2020, pp. 8144-8148
IEEE, 2020. [http://dx.doi.org/10.1109/ICASSP40776.2020.9052910]
[93]
K. Cao, C. Chen, S. Baltes, C. Treude, and X. Chen, "Automated query reformulation for efficient search based on query logs from stack overflow", In 2021 IEEE/ACM 43rd International Conference on Software Engineering (ICSE), 2021, pp. 1273-1285
IEEE, 2021. [http://dx.doi.org/10.1109/ICSE43902.2021.00116]
[94]
J.F. Lilian, K. Sundarakantham, and S.M. Shalinie, "QeCSO: Design of hybrid Cuckoo Search based Query expansion model for efficient information retrieval", Sadhana, vol. 46, no. 3, pp. 1-11, 2021.
[http://dx.doi.org/10.1007/s12046-021-01706-0]
[95]
H. Imran, and A. Sharan, Genetic Algorithm Based Model for Effective Document Retrieval.Intelligent Control and Computer Engineering, Lecture Notes in Electrical Engineering., vol. Vol. 70. Springer: Dordrecht, 2011.
[http://dx.doi.org/10.1007/978-94-007-0286-8_16]
[96]
J. Singh, "Ranks aggregation and semantic genetic approach based hybrid model for query expansion", Int. J. Comput. Intelligence Syst., vol. 10, no. 1, pp. 34-55, 2017.
[http://dx.doi.org/10.2991/ijcis.2017.10.1.4]
[97]
G.D. Raj, S. Mukherjee, G.V. Uma, R.L. Jasmine, and R. Balamurugan, "Query expansion for patent retrieval using a modified stellar-mass black hole optimization", J. Ambient Intell. Humaniz. Comput., pp. 1-13, 2020.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy