Generic placeholder image

Nanoscience & Nanotechnology-Asia

Editor-in-Chief

ISSN (Print): 2210-6812
ISSN (Online): 2210-6820

Research Article

Agar Microdilution Procedure: A Promising Technique for Antimicrobial Susceptibility Test of Colloidally Unstable Nanostructures

Author(s): Nahid Moradi, Seyedeh-Masoumeh Taghizadeh, Ali Ghanbariasad*, Aydin Berenjian and Alireza Ebrahiminezhad*

Volume 12, Issue 2, 2022

Published on: 31 May, 2022

Article ID: e010422202989 Pages: 7

DOI: 10.2174/2210681212666220401145425

Price: $65

Abstract

Background: Broth microdilution is the only available microscale endpoint technique used to evaluate the antimicrobial potency of nanostructures. In the case of unstable nanostructures or at high concentrations of nanostructures, this technique is not applicable due to aggregation and sedimentation issues. Most nanostructures can absorb visible light, and this optical feature can interfere with the OD600 measurement that is commonly employed for the evaluation of microbial cells growth. The demand for high-tech plate readers is another limitation of the broth microdilution procedure. Agar microdilution can be a promising novel procedure to overcome all these technical difficulties.

Objective: In the current experiment, the agar microdilution procedure was developed and introduced to be employed for the evaluation of antimicrobial potency of colloidally unstable nanostructures even at extremely high concentrations.

Methods: Thymus daenensis herbal nanoparticles (HrbNPs) were fabricated through a top-down approach and were tested against Methicillin-Resistant Staphylococcus Aureus (MRSA). Also, the particles were fortified with povidone-iodine and peracetic acid as potent antimicrobial compounds to achieve the enhanced antimicrobial activity.

Results: Viscose molten agar media prevented the particles from sedimentation during 96-well plate preparation. By agar solidification, the nanoparticles were immobilized in the media, and no aggregation or sedimentation could occur. After incubation, the bacterial growth was recognizable in the well as a thin creamy layer. The MIC of HrbNPs against MRSA was found to be 20 mg/ml. Fortification with povidone- iodine had no impact on the antimicrobial potency of HrbNPs. However, fortification of HrbNPs with peracetic acid resulted in a four-fold increase in the antimicrobial potency of nanoparticles, and MIC was reduced to 5 mg/mL.

Conclusion: Results indicated that agar microdilution can be a promising procedure for the antimicrobial susceptibility test of nanostructures at extremely high concentrations. Also, colloidally unstable nanostructures can be tested via this procedure without any concern for possible aggregation and sedimentation. On the other hand, it was found that fortification with antimicrobial compounds can be an effective approach to increasing the antimicrobial potency of HrbNPs against superbugs.

Keywords: Agar dilution procedure, antimicrobial nanoparticles, antibacterial activity, antimicrobial test, ball milling, susceptibility test.

Graphical Abstract

[1]
Jordt, H.; Stalder, T.; Kosterlitz, O.; Ponciano, J.M.; Top, E.M.; Kerr, B. Coevolution of host-plasmid pairs facilitates the emergence of novel multidrug resistance. Nat. Ecol. Evol., 2020, 4(6), 863-869.
[http://dx.doi.org/10.1038/s41559-020-1170-1] [PMID: 32251388]
[2]
WHO. Antimicrobial resistance: No action today, no cure tomorrow 2021. Available from: https://www.who.int/director-general/speeches/detail/antimicrobial-resistance-no-action-today-no-cure-tomorrow (Accessed on: June17, 2021).
[3]
WHO. WHO publishes list of bacteria for which new antibiotics are urgently needed., 2021. Available from: https://www.who.int/news/item/27-02-2017-who-publishes-list-of-bacteria-for-which-new-antibiotics-are-urgently-needed (Accessed on: June17, 2021).
[4]
Ghavam, M.; Manconi, M.; Manca, M.L.; Bacchetta, G. Extraction of essential oil from Dracocephalum kotschyi Boiss. (Lamiaceae), identification of two active compounds and evaluation of the antimicrobial properties. J. Ethnopharmacol., 2021, 267, 113513.
[http://dx.doi.org/10.1016/j.jep.2020.113513] [PMID: 33172599]
[5]
Annadurai, P.; Annadurai, V.; Yongkun, M.; Pugazhendhi, A.; Dhandayuthapani, K. Phytochemical composition, antioxidant and antimicrobial activities of Plecospermum spinosum Trecul. Process Biochem., 2021, 100, 107-116.
[http://dx.doi.org/10.1016/j.procbio.2020.09.031]
[6]
Zare, M.; Zare, M.; Butler, J.A.; Ramakrishna, S. Nanoscience-led antimicrobial surface engineering to prevent infections. ACS Appl. Nano Mater., 2021, 4(5), 4269-4283.
[http://dx.doi.org/10.1021/acsanm.1c00466]
[7]
Sharma, D.; Shandilya, P.; Saini, N.; Singh, P.; Thakur, V.; Saini, R.; Mittal, D.; Chandan, G.; Saini, V.; Saini, A. Insights into the synthesis and mechanism of green synthesized antimicrobial nanoparticles, answer to the multidrug resistance. Mater. Today Chem., 2021, 19, 100391.
[http://dx.doi.org/10.1016/j.mtchem.2020.100391]
[8]
El-Aassar, M.R.; Ibrahim, O.M.; Fouda, M.M.G.; Fakhry, H.; Ajarem, J.; Maodaa, S.N.; Allam, A.A.; Hafez, E.E. Wound dressing of chitosan-based-crosslinked gelatin/polyvinyl pyrrolidone embedded silver nanoparticles, for targeting multidrug resistance microbes. Carbohydr. Polym., 2021, 255, 117484.
[http://dx.doi.org/10.1016/j.carbpol.2020.117484] [PMID: 33436244]
[9]
Wang, L.; Hu, C.; Shao, L. The antimicrobial activity of nanoparticles: Present situation and prospects for the future. Int. J. Nanomedicine, 2017, 12, 1227-1249.
[http://dx.doi.org/10.2147/IJN.S121956] [PMID: 28243086]
[10]
Thorn, C.R.; Thomas, N.; Boyd, B.J.; Prestidge, C.A. Nano-fats for bugs: The benefits of lipid nanoparticles for antimicrobial therapy. Drug Deliv. Transl. Res., 2021, 11(4), 1598-1624.
[http://dx.doi.org/10.1007/s13346-021-00921-w] [PMID: 33675007]
[11]
Spirescu, V.A.; Chircov, C.; Grumezescu, A.M.; Andronescu, E. Polymeric nanoparticles for antimicrobial therapies: An up-to-date overview. Polymers (Basel), 2021, 13(5), 724.
[http://dx.doi.org/10.3390/polym13050724] [PMID: 33673451]
[12]
Qazvini, N.T.; Zinatloo, S. Synthesis and characterization of gelatin nanoparticles using CDI/NHS as a non-toxic cross-linking system. J. Mater. Sci. Mater. Med., 2011, 22(1), 63-69.
[http://dx.doi.org/10.1007/s10856-010-4178-2] [PMID: 21052793]
[13]
Zinatloo-Ajabshir, S.; Heidari-Asil, S.A.; Salavati-Niasari, M. Rapid and green combustion synthesis of nanocomposites based on Zn–Co–O nanostructures as photocatalysts for enhanced degradation of acid brown 14 contaminant under sunlight. Separ. Purif. Tech., 2022, 280, 119841.
[http://dx.doi.org/10.1016/j.seppur.2021.119841]
[14]
Zinatloo-Ajabshir, Z.; Zinatloo-Ajabshir, S. Preparation and characterization of Curcumin niosomal nanoparticles via a simple and eco-friendly route. J. Nanostruct., 2019, 9, 784-790.
[15]
Zinatloo-Ajabshir, S.; Mousavi-Kamazani, M. Recent advances in nanostructured Sn− Ln mixed-metal oxides as sunlight-activated nanophotocatalyst for high-efficient removal of environmental pollutants. Ceram. Int., 2021, 44(17), 23702-23724.
[http://dx.doi.org/10.1016/j.ceramint.2021.05.155]
[16]
Zinatloo, A.S.; Taheri, Q.N. Inverse miniemulsion method for synthesis of gelatin nanoparticles in presence of CDI/NHS as a non-toxic cross-linking system. J. Nanostruct., 2014, 4, 267-275.
[17]
Zinatloo, A.S.; Taheri, Q.N. Effect of some synthetic parameters on size and polydispersity index of gelatin nanoparticles cross-linked by CDI/NHS system. J. Nanostruct., 2015, 5, 137-144.
[18]
Geoprincy, G.; Saravanan, P.; Gandhi, N.N.; Renganathan, S. A novel approach for studying the combined antimicrobial effects of silver nanoparticles and antibiotics through agar over layer method and disk diffusion method. Dig. J. Nanomater. Biostruct., 2011, 6, 1557-1565.
[19]
Cunha, F.A.; Maia, K.R.; Mallman, E.J.J. da Conceição dos Santos Oliveira Cunha, Maciel, A.A.M.; dec Souza, I.P.d.; Menezes, E.A.; Fechine, P.B.A. Silver nanoparticles-disk diffusion test against Escherichia coli isolates. Rev. Inst. Med. Trop. São Paulo, 2016, 58, 73.
[http://dx.doi.org/10.1590/S1678-9946201658073] [PMID: 27680178]
[20]
Azhir, E.; Etefagh, R.; Mashreghi, M.; Pordeli, P. Preparation, characterization and antibacterial activity of manganese oxide nanoparticles. Phys. Chem. Res., 2015, 3, 197-204.
[21]
Karthik, S.; Suriyaprabha, R.; Balu, K.S.; Manivasakan, P.; Rajendran, V. Influence of ball milling on the particle size and antimicrobial properties of Tridax procumbens leaf nanoparticles. IET Nanobiotechnol., 2017, 11(1), 12-17.
[http://dx.doi.org/10.1049/iet-nbt.2016.0028] [PMID: 28476955]
[22]
Karthik, S.; Suriyaprabha, R.; Vinoth, M.; Srither, S.; Manivasakan, P.; Rajendran, V.; Valiyaveettil, S. Larvicidal, super hydrophobic and antibacterial properties of herbal nanoparticles from Acalypha indica for biomedical applications. RSC Advances, 2017, 7, 41763-41770.
[http://dx.doi.org/10.1039/C7RA05697D]
[23]
Subramani, K.; Murugan, V.; Shanmugam, B.K.; Rangaraj, S.; Palanisamy, M.; Venkatachalam, R.; Suresh, V. An ecofriendly route to enhance the antibacterial and textural properties of cotton fabrics using herbal nanoparticles from Azadirachta indica (neem). J. Alloys Compd., 2017, 723, 698-707.
[http://dx.doi.org/10.1016/j.jallcom.2017.06.242]
[24]
Subramani, K.; Kolathupalayam Shanmugam, B.; Rangaraj, S.; Palanisamy, M.; Periasamy, P.; Venkatachalam, R. Screening the UV-blocking and antimicrobial properties of herbal nanoparticles prepared from Aloe vera leaves for textile applications. IET Nanobiotechnol., 2018, 12(4), 459-465.
[http://dx.doi.org/10.1049/iet-nbt.2017.0097] [PMID: 29768230]
[25]
Institute, C. a. L. S., Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically: Approved standard.CLSI document M07-A8, 8th ed; Clinical and Laboratory Standards Institute: Pennsylvania, USA, 2009.
[26]
Qiu, Y.; Mu, Z.; Wang, N.; Wang, X.; Xu, M.; Li, H. The aggregation and sedimentation of two different sized copper oxide nanoparticles in soil solutions: Dependence on pH and dissolved organic matter. Sci. Total Environ., 2020, 731, 139215.
[http://dx.doi.org/10.1016/j.scitotenv.2020.139215] [PMID: 32388160]
[27]
Ng, W.M.; Katiyar, A.; Mathivanan, V.; Teng, X.J.; Leong, S.; Low, S.; Lim, J. Sedimentation kinetics of magnetic nanoparticle clusters: Iron oxide nanospheres vs. nanorods. Langmuir, 2020, 36(19), 5085-5095.
[http://dx.doi.org/10.1021/acs.langmuir.0c00135] [PMID: 32338911]
[28]
Schneid, A.D.C.; Silveira, C.P.; Galdino, F.E.; Ferreira, L.F.; Bouchmella, K.; Cardoso, M.B. Colloidal stability and redispersibility of mesoporous silica nanoparticles in biological media. Langmuir, 2020, 36(39), 11442-11449.
[http://dx.doi.org/10.1021/acs.langmuir.0c01571] [PMID: 32880180]
[29]
Golus, J.; Sawicki, R.; Widelski, J.; Ginalska, G. The agar microdilution method - a new method for antimicrobial susceptibility testing for essential oils and plant extracts. J. Appl. Microbiol., 2016, 121(5), 1291-1299.
[http://dx.doi.org/10.1111/jam.13253] [PMID: 27501239]
[30]
Wang, L.; Hasanzadeh Kafshgari, M.; Meunier, M. Optical properties and applications of plasmonic‐metal nanoparticles. Adv. Funct. Mater., 2020, 30(51), 2005400.
[http://dx.doi.org/10.1002/adfm.202005400]
[31]
Amirjani, A.; Firouzi, F.; Haghshenas, D.F. Predicting the size of silver nanoparticles from their optical properties. Plasmonics, 2020, 15(4), 1077-1082.
[http://dx.doi.org/10.1007/s11468-020-01121-x]
[32]
Carmona, D.; Lalueza, P.; Balas, F.; Arruebo, M.; Santamaría, J. Mesoporous silica loaded with peracetic acid and silver nanoparticles as a dual-effect, highly efficient bactericidal agent. Microporous Mesoporous Mater., 2012, 161, 84-90.
[http://dx.doi.org/10.1016/j.micromeso.2012.05.012]
[33]
Lalueza, P.; Carmona, D.; Monzón, M.; Arruebo, M.; Santamaría, J. Strong bactericidal synergy between peracetic acid and silver-exchanged zeolites. Microporous Mesoporous Mater., 2012, 156, 171-175.
[http://dx.doi.org/10.1016/j.micromeso.2012.02.035]
[34]
Borhan, M.Z.; Ahmad, R.; Rusop, M.; Abdullah, S. Optimization of ball milling parameters to produce Centella asiatica herbal nanopowders. J. Nanostructure Chem., 2013, 3(1), 79.
[http://dx.doi.org/10.1186/2193-8865-3-79]
[35]
Kokila, R.; Suriyaprabha, R.; Karthik, S.; Nandhini, G.; Rajendran, V. Antibacterial and antioxidant potential of herbal nanoparticles produced from the shells of Jatropha Curcas. Adv. NanoBio. MD, 2017, 1, 1-9.
[36]
Kumar, K.V.; Rosaiah, G.; Babu, K.; Swamy, N.T.; Krishna, N. A study on antimicrobial properties of herbal nanoparticles of selected mangrove plants. Res. J. Life Sci. Bioinform. Pharm. Chem. Sci., 2018, 4, 498-512.
[37]
Fu, J.; Liu, W.; Hao, Z.; Wu, X.; Yin, J.; Panjiyar, A.; Liu, X.; Shen, J.; Wang, H. Characterization of a low shrinkage dental composite containing bismethylene spiroorthocarbonate expanding monomer. Int. J. Mol. Sci., 2014, 15(2), 2400-2412.
[http://dx.doi.org/10.3390/ijms15022400] [PMID: 24518683]
[38]
Park, C.S.; Kim, D.H.; Shin, B.J.; Kim, D.Y.; Lee, H.K.; Tae, H.S. Conductive polymer synthesis with single-crystallinity via a novel plasma polymerization technique for gas sensor applications. Materials (Basel), 2016, 9(10), 812.
[http://dx.doi.org/10.3390/ma9100812] [PMID: 28773932]
[39]
de Oliveira, S.A.; da Silva, B.C.; Riegel-Vidotti, I.C.; Urbano, A.; de Sousa Faria-Tischer, P.C.; Tischer, C.A. Production and characterization of bacterial cellulose membranes with hyaluronic acid from chicken comb. Int. J. Biol. Macromol., 2017, 97, 642-653.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.01.077] [PMID: 28109811]
[40]
Pouramini, P.; Fotokian, M.H.; Dehghan, H.; Hensel, G. Effect of Thiobacillus and superabsorbent on essential oil components in Thyme species. J. Essent. Oil-Bear. Plants, 2019, 22(3), 799-810.
[http://dx.doi.org/10.1080/0972060X.2019.1623086]
[41]
Alimoradi, M.; Ataie Kachoie, M.; Moattar, F. Antibacterial effects of Thymus daenensis Celak ethanolic extract against food-borne bacteria. Egypt. J. Vet. Sci., 2021, 52(2), 155-162.
[http://dx.doi.org/10.21608/ejvs.2021.47370.1198]
[42]
Elahian, F.; Garshasbi, M.; Mehri Asiabar, Z.; Gholamian Dehkordi, N.; Yazdinezhad, A.; Mirzaei, S.A. Ecotypic variations affected the biological effectiveness of Thymus daenensis Celak essential oil. Evid. Based Complement. Alternat. Med., 2021, 2021, 6686558.
[http://dx.doi.org/10.1155/2021/6686558] [PMID: 33628312]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy