Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Mini-Review Article

Metal-based Complexes as Potential Anti-cancer Agents

Author(s): Sabyasachi Banerjee* and Subhasis Banerjee

Volume 22, Issue 15, 2022

Published on: 23 May, 2022

Page: [2684 - 2707] Pages: 24

DOI: 10.2174/1871520622666220331085144

Price: $65

Abstract

Metal based therapy is no new in biomedical research. In early days, the biggest limitation was the inequality among therapeutical and toxicological dosages. Ever since, Barnett Rosenberg discovered cisplatin, a new era has begun to treat cancer with metal complexes. Platinum complexes such as oxaliplatin, cisplatin, and carboplatin, seem to be the foundation of metal/s-based components to challenge malignancies. With advancement in the biomolemoecular mechanism, researchers have started developing non-classical platinum-based complexes, where a different mechanistic approach of the complexes is observed towards the biomolecular target. Till date, larger numbers of metal/s-based complexes were synthesized by overhauling the present structures chemically by substituting the ligand or preparing the whole novel component with improved cytotoxic and safety profiles. Howsoever, due to elevated accentuation upon the therapeutic importance of metal/s-based components, a couple of those agents are at present in clinical trials and several other are in anticipating regulatory endorsement to enter the trial. This literature highlights the detailed heterometallic multinuclear components, primarily focusing on platinum, ruthenium, gold and remarks on possible stability, synergism, mechanistic studies and structure activity relationships.

Keywords: Cancer, platinum, metal complexes, ruthenium, gold, heteronuclearity.

Graphical Abstract

[1]
Norn, S.; Permin, H.; Kruse, E.; Kruse, P.R. Mercury-a major agent in the history of medicine and alchemy. Dan. Medicinhist. Arbog, 2008, 36, 21-40.
[PMID: 19831290]
[2]
Agnew, J. Medicine in the Old West: A History, 1850–1900; McFarland: Jefferson, NC, 2010.
[3]
Waxman, S.; Anderson, K.C. History of the development of arsenic derivatives in cancer therapy. Oncologist, 2001, 6(2)(Suppl. 2), 3-10.
[http://dx.doi.org/10.1634/theoncologist.6-suppl_2-3] [PMID: 11331434]
[4]
Fricker, S.P. Medical uses of gold compounds. Gold Bull., 1996, 29(2), 53-60.
[http://dx.doi.org/10.1007/BF03215464]
[5]
Nicolini, M. Platinum and Other Metal Coordination Compounds in Cancer Chemotherapy; Springer: New York, 1997, Vol. 54, .
[6]
Jungwirth, U.; Kowol, C.R.; Keppler, B.K.; Hartinger, C.G.; Berger, W.; Heffeter, P. Anticancer activity of metal complexes: Involvement of redox processes. Antioxid. Redox Signal., 2011, 15(4), 1085-1127.
[http://dx.doi.org/10.1089/ars.2010.3663] [PMID: 21275772]
[7]
Ji, H-F.; Li, X-J.; Zhang, H-Y. Natural products and drug discovery. Can thousands of years of ancient medical knowledge lead us to new and powerful drug combinations in the fight against cancer and dementia? EMBO Rep., 2009, 10(3), 194-200.
[http://dx.doi.org/10.1038/embor.2009.12] [PMID: 19229284]
[8]
Frezza, M.; Hindo, S.; Chen, D.; Davenport, A.; Schmitt, S.; Tomco, D.; Dou, Q.P. Novel metals and metal complexes as platforms for cancer therapy. Curr. Pharm. Des., 2010, 16(16), 1813-1825.
[http://dx.doi.org/10.2174/138161210791209009] [PMID: 20337575]
[9]
Bruijnincx, P.C.; Sadler, P.J. New trends for metal complexes with anticancer activity. Curr. Opin. Chem. Biol., 2008, 12(2), 197-206.
[http://dx.doi.org/10.1016/j.cbpa.2007.11.013] [PMID: 18155674]
[10]
Mouriño, V.; Cattalini, J.P.; Boccaccini, A.R. Metallic ions as therapeutic agents in tissue engineering scaffolds: An overview of their bio-logical applications and strategies for new developments. J. R. Soc. Interface, 2012, 9(68), 401-419.
[http://dx.doi.org/10.1098/rsif.2011.0611] [PMID: 22158843]
[11]
Benedetti, B.T.; Peterson, E.J.; Kabolizadeh, P.; Martínez, A.; Kipping, R.; Farrell, N.P. Effects of noncovalent platinum drug-protein inter-actions on drug efficacy: Use of fluorescent conjugates as probes for drug metabolism. Mol. Pharm., 2011, 8(3), 940-948.
[http://dx.doi.org/10.1021/mp2000583] [PMID: 21548575]
[12]
Bhargava, A.; Vaishampayan, U.N. Satraplatin: Leading the new generation of oral platinum agents. Expert Opin. Investig. Drugs, 2009, 18(11), 1787-1797.
[http://dx.doi.org/10.1517/13543780903362437] [PMID: 19888874]
[13]
Milacic, V.; Fregona, D.; Dou, Q.P. Gold complexes as prospective metal-based anticancer drugs. Histol. Histopathol., 2008, 23(1), 101-108.
[PMID: 17952862]
[14]
Bindoli, A.; Pia, M.; Scutari, G.; Gabbiani, C.; Casini, A.; Messori, L. Thioredoxin reductase: A target for gold compounds acting as poten-tial anticancer drugs. Coord. Chem. Rev., 2009, 253, 1692-1707.
[http://dx.doi.org/10.1016/j.ccr.2009.02.026]
[15]
Kostova, I. Ruthenium complexes as anticancer agents. Curr. Med. Chem., 2006, 13(9), 1085-1107.
[http://dx.doi.org/10.2174/092986706776360941] [PMID: 16611086]
[16]
Karlenius, T.C.; Tonissen, K.F. Thioredoxin and cancer: A role for thioredoxin in all states of tumor oxygenation. Cancers (Basel), 2010, 2(2), 209-232.
[http://dx.doi.org/10.3390/cancers2020209] [PMID: 24281068]
[17]
Arredondo, M.; Núñez, M.T. Iron and copper metabolism. Mol. Aspects Med., 2005, 26(4-5), 313-327.
[http://dx.doi.org/10.1016/j.mam.2005.07.010] [PMID: 16112186]
[18]
Balamurugan, K.; Schaffner, W. Copper homeostasis in eukaryotes: Teetering on a tightrope. Biochim. Biophys. Acta, 2006, 1763(7), 737-746.
[http://dx.doi.org/10.1016/j.bbamcr.2006.05.001] [PMID: 16784785]
[19]
Pattan, S.R.; Pawar, S.B.; Vetal, S.S.; Gharate, U.D.; Bhawar, S.B. The scope of metal complexes in drug design – a review. Indian Drugs, 2012, 49(11), 5-12.
[http://dx.doi.org/10.53879/id.49.11.p0005]
[20]
Haas, K.L.; Franz, K.J. Application of metal coordination chemistry to explore and manipulate cell biology. Chem. Rev., 2009, 109(10), 4921-4960.
[http://dx.doi.org/10.1021/cr900134a] [PMID: 19715312]
[21]
Yan, Y.K.; Melchart, M.; Habtemariam, A.; Sadler, P.J. Organometallic chemistry, biology and medicine: Ruthenium arene anticancer complexes. Chem. Commun. (Camb.), 2005, 14(38), 4764-4776.
[http://dx.doi.org/10.1039/b508531b] [PMID: 16193110]
[22]
Salga, M.S.; Ali, H.M.; Abdulla, M.A.; Abdelwahab, S.I. Acute oral toxicity evaluations of some zinc(II) complexes derived from 1-(2-salicylaldiminoethyl)piperazine Schiff bases in rats. Int. J. Mol. Sci., 2012, 13(2), 1393-1404.
[http://dx.doi.org/10.3390/ijms13021393] [PMID: 22408397]
[23]
Wenzel, M.; Bertrand, B.; Eymin, M.J.; Comte, V.; Harvey, J.A.; Richard, P.; Groessl, M.; Zava, O.; Amrouche, H.; Harvey, P.D.; Le Gen-dre, P.; Picquet, M.; Casini, A. Multinuclear cytotoxic metallodrugs: Physicochemical characterization and biological properties of novel heteronuclear gold-titanium complexes. Inorg. Chem., 2011, 50(19), 9472-9480.
[http://dx.doi.org/10.1021/ic201155y] [PMID: 21875041]
[24]
Anderson, C.M.; Taylor, I.R.; Tibbetts, M.F.; Philpott, J.; Hu, Y.; Tanski, J.M. Hetero-multinuclear ruthenium(III)/platinum(II) complexes that potentially exhibit both antimetastatic and antineoplastic properties. Inorg. Chem., 2012, 51(23), 12917-12924.
[http://dx.doi.org/10.1021/ic301981s] [PMID: 23150984]
[25]
Garcia-Moreno, E.; Gascon, S.; Rodriguez-Yoldi, M.J.; Cerrada, E.; Laguna, M. S-propargylthiopyridine phosphane derivatives as anti-cancer agents: Characterization and antitumor activity. Organometallics, 2013, 32, 3710-3720.
[http://dx.doi.org/10.1021/om400340a]
[26]
Maity, B.; Roy, M.; Banik, B.; Majumdar, R.; Dighe, R.R.; Chakravarty, A.R. Ferrocene-promoted photoactivated DNA cleavage and anti-cancer activity of terpyridyl copper (II) phenanthroline complexes. Organometallics, 2010, 29(16), 3632-3641.
[http://dx.doi.org/10.1021/om100524x]
[27]
Florea, A-M.; Büsselberg, D. Cisplatin as an anti-tumor drug: Cellular mechanisms of activity, drug resistance and induced side effects. Cancers (Basel), 2011, 3(1), 1351-1371.
[http://dx.doi.org/10.3390/cancers3011351] [PMID: 24212665]
[28]
Chan, B.A.; Coward, J.I.G. Chemotherapy advances in small-cell lung cancer. J. Thorac. Dis., 2013, 5(5)(Suppl. 5), S565-S578.
[PMID: 24163749]
[29]
Monneret, C. Platinum anticancer drugs. From serendipity to rational design. Ann. Pharm. Fr., 2011, 69(6), 286-295.
[http://dx.doi.org/10.1016/j.pharma.2011.10.001] [PMID: 22115131]
[30]
Uehara, T.; Yamate, J.; Torii, M.; Maruyama, T. Comparative nephrotoxicity of Cisplatin and nedaplatin: Mechanisms and histopathologi-cal characteristics. J. Toxicol. Pathol., 2011, 24(2), 87-94.
[http://dx.doi.org/10.1293/tox.24.87] [PMID: 22272048]
[31]
Johnstone, T.C.; Suntharalingam, K.; Lippard, S.J. The next generation of platinum drugs: Targeted Pt(II) agents, nanoparticle delivery, and Pt(IV) prodrugs. Chem. Rev., 2016, 116(5), 3436-3486.
[http://dx.doi.org/10.1021/acs.chemrev.5b00597] [PMID: 26865551]
[32]
Peng, Y.; Liu, Y.E.; Ren, X.C.; Chen, X.J.; Su, H.L.; Zong, J.; Feng, Z.L.; Wang, D.Y.; Lin, Q.; Gao, X.S. A phase I clinical trial of dose escalation of lobaplatin in combination with fixed-dose docetaxel for the treatment of human solid tumours that had progressed following chemotherapy. Oncol. Lett., 2015, 9(1), 67-74.
[http://dx.doi.org/10.3892/ol.2014.2675] [PMID: 25435935]
[33]
Shah, N.; Dizon, D.S. New-generation platinum agents for solid tumors. Future Oncol., 2009, 5(1), 33-42.
[http://dx.doi.org/10.2217/14796694.5.1.33] [PMID: 19243296]
[34]
Karlin, D.A.; Breitz, H.B.; Weiden, P.I. Use of picoplatin to treat colorectal cancer. United States Patent Application Publication, 2012, 1, 1-19.
[35]
Wheate, N.J.; Walker, S.; Craig, G.E.; Oun, R. The status of platinum anticancer drugs in the clinic and in clinical trials. Dalton Trans., 2010, 39(35), 8113-8127.
[http://dx.doi.org/10.1039/c0dt00292e] [PMID: 20593091]
[36]
Liu, D.; Poon, C.; Lu, K.; He, C.; Lin, W. Self-assembled nanoscale coordination polymers with trigger release properties for effective anticancer therapy. Nat. Commun., 2014, 5(5), 4182.
[http://dx.doi.org/10.1038/ncomms5182] [PMID: 24964370]
[37]
Apps, M.G.; Choi, E.H.; Wheate, N.J. The state-of-play and future of platinum drugs. Endocr. Relat. Cancer, 2015, 22(4), R219-R233.
[http://dx.doi.org/10.1530/ERC-15-0237] [PMID: 26113607]
[38]
Yano, S.; Ohi, H.; Ashizaki, M.; Obata, M.; Mikata, Y.; Tanaka, R.; Nishioka, T.; Kinoshita, I.; Sugai, Y.; Okura, I.; Ogura, S.; Czaplewska, J.A.; Gottschaldt, M.; Schubert, U.S.; Funabiki, T.; Morimoto, K.; Nakai, M. Syntheses, characterization, and antitumor activities of plati-num(II) and palladium(II) complexes with sugar-conjugated triazole ligands. Chem. Biodivers., 2012, 9(9), 1903-1915.
[http://dx.doi.org/10.1002/cbdv.201100426] [PMID: 22976979]
[39]
Mi, Q.; Ma, Y.; Gao, X.; Liu, R.; Liu, P.; Mi, Y.; Fu, X.; Gao, Q. 2-Deoxyglucose conjugated platinum (II) complexes for targeted therapy: Design, synthesis, and antitumor activity. J. Biomol. Struct. Dyn., 2016, 34(11), 2339-2350.
[http://dx.doi.org/10.1080/07391102.2015.1114972] [PMID: 26524393]
[40]
Patra, M.; Johnstone, T.C.; Suntharalingam, K.; Lippard, S.J. A potent glucose-platinum conjugate exploits glucose transporters and pref-erentially accumulates in cancer cells. Angew. Chem. Int. Ed. Engl, 2016, 55(7), 2550-2554.
[http://dx.doi.org/10.1002/anie.201510551] [PMID: 26749149]
[41]
Roder, C.; Thomson, M.J. Auranofin: Repurposing an old drug for a golden new age. Drugs R D., 2015, 15(1), 13-20.
[http://dx.doi.org/10.1007/s40268-015-0083-y] [PMID: 25698589]
[42]
Zhang, P.; Sadler, P.J. Advances in the design of organometallic anticancer complexes. J. Organomet. Chem., 2017, 839, 5-14.
[http://dx.doi.org/10.1016/j.jorganchem.2017.03.038]
[43]
Alessio, E. Thirty years of the drug candidate nami-a and the myths in the field of ruthenium anticancer compounds: A personal perspec-tive. Eur. J. Inorg. Chem., 2017, 2017(12), 1549-1560.
[http://dx.doi.org/10.1002/ejic.201600986]
[44]
Mestroni, G.; Alessio, E.; Sava, G. New salts of anionic complexes of Ru(II) as antimetastatic and antineoplastic agents. U.S. Patent WO 98/00431, 1998.
[45]
Leijen, S.; Burgers, S.A.; Baas, P.; Pluim, D.; Tibben, M.; van Werkhoven, E.; Alessio, E.; Sava, G.; Beijnen, J.H.; Schellens, J.H. Phase I/II study with ruthenium compound NAMI-A and gemcitabine in patients with non-small cell lung cancer after first line therapy. Invest. New Drugs, 2015, 33(1), 201-214.
[http://dx.doi.org/10.1007/s10637-014-0179-1] [PMID: 25344453]
[46]
Lentz, F.; Drescher, A.; Lindauer, A.; Henke, M.; Hilger, R.A.; Hartinger, C.G.; Scheulen, M.E.; Dittrich, C.; Keppler, B.K.; Jaehde, U. Pharmacokinetics of a novel anticancer ruthenium complex (KP1019, FFC14A) in a phase I dose-escalation study. Anticancer Drugs, 2009, 20(2), 97-103.
[http://dx.doi.org/10.1097/CAD.0b013e328322fbc5] [PMID: 19209025]
[47]
Page, S. Ruthenium compounds as anticancer agents. Educ. Chem, 2012, 10, 26-29.
[48]
Allardyce, C.S.; Dyson, P.J. Metal-based drugs that break the rules. Dalton Trans., 2016, 45(8), 3201-3209.
[http://dx.doi.org/10.1039/C5DT03919C] [PMID: 26820398]
[49]
Webb, M.I.; Walsby, C.J. Albumin binding and ligand-exchange processes of the Ru(III) anticancer agent NAMI-A and its bis-DMSO analogue determined by ENDOR spectroscopy. Dalton Trans., 2015, 44(40), 17482-17493.
[http://dx.doi.org/10.1039/C5DT02021B] [PMID: 26174110]
[50]
Babak, M.V.; Meier, S.M.; Huber, K.V.M.; Reynisson, J.; Legin, A.A.; Jakupec, M.A.; Roller, A.; Stukalov, A.; Gridling, M.; Bennett, K.L.; Colinge, J.; Berger, W.; Dyson, P.J.; Superti-Furga, G.; Keppler, B.K.; Hartinger, C.G. Target profiling of an antimetastatic RAPTA agent by chemical proteomics: Relevance to the mode of action. Chem. Sci. (Camb.), 2015, 6(4), 2449-2456.
[http://dx.doi.org/10.1039/C4SC03905J] [PMID: 29308157]
[51]
Weiss, A.; Ding, X.; van Beijnum, J.R.; Wong, I.; Wong, T.J.; Berndsen, R.H.; Dormond, O.; Dallinga, M.; Shen, L.; Schlingemann, R.O.; Pili, R.; Ho, C.M.; Dyson, P.J.; van den Bergh, H.; Griffioen, A.W.; Nowak-Sliwinska, P. Rapid optimization of drug combinations for the optimal angiostatic treatment of cancer. Angiogenesis, 2015, 18(3), 233-244.
[http://dx.doi.org/10.1007/s10456-015-9462-9] [PMID: 25824484]
[52]
Peña, B.; David, A.; Pavani, C.; Baptista, M.S.; Pellois, J.P.; Turro, C.; Dunbar, K.R. Cytotoxicity studies of cyclometallated ruthenium(II) compounds: New applications for ruthenium dyes. Organometllics, 2014, 33(5), 1100-1103.
[http://dx.doi.org/10.1021/om500001h]
[53]
Li, Z.J.; Hou, Y.; Qin, D.A.; Jin, Z.M.; Hu, M.L. Two half-sandwiched ruthenium (II) compounds containing 5-fluorouracil derivatives: Synthesis and study of DNA intercalation. PLoS One, 2015, 10(3), e0120211.
[http://dx.doi.org/10.1371/journal.pone.0120211] [PMID: 25789618]
[54]
Liu, K.G.; Cai, X.Q.; Li, X.C.; Qin, D.A.; Hu, M.L. Arene-ruthenium(II) complexes containing 5-fluorouracil-1-methyl isonicotinate: Syn-thesis and characterization of their anticancer activity. Inorg. Chim. Acta, 2012, 388, 78-83.
[http://dx.doi.org/10.1016/j.ica.2012.02.046]
[55]
Motswainyana, W.M.; Ajibade, P.A. Anticancer activities of mononuclear ruthenium (II) coordination complexes. Adv Chem., 2015, 2015(2015), 1-21
[56]
Zou, T.; Lum, C.T.; Lok, C.N.; Zhang, J.J.; Che, C.M.; Che, C-M. Chemical biology of anticancer gold(III) and gold(I) complexes. Chem. Soc. Rev., 2015, 44(24), 8786-8801.
[http://dx.doi.org/10.1039/C5CS00132C] [PMID: 25868756]
[57]
Maia, P.I.; Deflon, V.M.; Abram, U. Gold(III) complexes in medicinal chemistry. Future Med. Chem., 2014, 6(13), 1515-1536.
[http://dx.doi.org/10.4155/fmc.14.87] [PMID: 25365235]
[58]
Fernández-Gallardo, J.; Elie, B.T.; Sulzmaier, F.J.; Sanaú, M.; Ramos, J.W.; Contel, M. Organometallic titanocene–gold compounds as potential chemotherapeutics in renal cancer. Study of their protein kinase inhibitory properties. Organometallics, 2014, 33(22), 6669-6681.
[http://dx.doi.org/10.1021/om500965k] [PMID: 25435644]
[59]
Gaber, A.; Alsanie, W.F.; Kumar, D.N.; Refat, M.S.; Saied, E.M. Novel papaverine metal complexes with potential anticancer activities. Molecules, 2020, 25(22), 5447.
[http://dx.doi.org/10.3390/molecules25225447] [PMID: 33233775]
[60]
Kalinowska-Lis, U.; Felczak, A. Chęcińska, L.; Szabłowska-Gadomska, I.; Patyna, E.; Małecki, M.; Lisowska, K.; Ochocki, J. Antibacte-rial activity and cytotoxicity of silver(I) complexes of pyridine and (Benz)imidazole derivatives. X-ray crystal structure of [Ag(2,6-di(CH(2)OH)py)(2)]NO(3). Molecules, 2016, 21(2), 87.
[http://dx.doi.org/10.3390/molecules21020087] [PMID: 26828469]
[61]
Siciliano, T.J.; Deblock, M.C.; Hindi, K.M.; Durmus, S.; Panzner, M.J.; Tessier, C.A.; Youngs, W.J. Synthesis and anticancer properties of gold(I) and silver(I) N-heterocyclic carbene complexes. J. Organomet. Chem., 2011, 696(5), 1066-1071.
[http://dx.doi.org/10.1016/j.jorganchem.2010.10.054]
[62]
Ali, K.A.; Abd-Elzaher, M.M.; Mahmoud, K. Synthesis and anticancer properties of silver(I) complexes containing 2,6-Bis(substituted)pyridine derivatives. Int. J. Med. Chem., 2013, 2013, 256836.
[http://dx.doi.org/10.1155/2013/256836] [PMID: 25386361]
[63]
Saturnino, C.; Arra, C.; Rea, D.; Bimonte, S.; Lappano, R. Organo-metallic compounds: Novel molecules in cancer therapy. Biochem. Pharmacol., 2014, 13(13), 1603-1615.
[64]
Santini, C.; Pellei, M.; Gandin, V.; Porchia, M.; Tisato, F.; Marzano, C. Advances in copper complexes as anticancer agents. Chem. Rev., 2014, 114(1), 815-862.
[http://dx.doi.org/10.1021/cr400135x] [PMID: 24102434]
[65]
Shokohi-Pour, Z.; Chiniforoshan, H.; Momtazi-Borojeni, A.A.; Notash, B. A novel Schiff base derived from the gabapentin drug and cop-per (II) complex: Synthesis, characterization, interaction with DNA/protein and cytotoxic activity. J. Photochem. Photobiol. B, 2016, 162, 34-44.
[http://dx.doi.org/10.1016/j.jphotobiol.2016.06.022] [PMID: 27333575]
[66]
Lian, W.J.; Wang, X.T.; Xie, C.Z.; Tian, H.; Song, X.Q.; Pan, H.T.; Qiao, X.; Xu, J.Y. Mixed-ligand copper(ii) Schiff base complexes: The role of the co-ligand in DNA binding, DNA cleavage, protein binding and cytotoxicity. Dalton Trans., 2016, 45(22), 9073-9087.
[http://dx.doi.org/10.1039/C6DT00461J] [PMID: 27163172]
[67]
Herman, A.; Tanski, J.M.; Tibbetts, M.F.; Anderson, C.M. Synthesis, characterization, and in vitro evaluation of a potentially selective anticancer, mixed-metal [ruthenium(III)-platinum(II)] trinuclear complex. Inorg. Chem., 2008, 47(1), 274-280.
[http://dx.doi.org/10.1021/ic062419h] [PMID: 18062685]
[68]
Vajpayee, V.; Song, Y.H.; Yang, Y.J.; Kang, S.C.; Cook, T.R.; Kim, D.W.; Lah, M.S.; Kim, I.S.; Wang, M.; Stang, P.J.; Chi, K-W. Self-assembly of cationic, hetero- or homo-nuclear Ru(II) macrocyclic rectangles and their photophysical, electrochemical and biological stud-ies. Organometallics, 2011, 30(23), 6482-6489.
[http://dx.doi.org/10.1021/om200908c] [PMID: 22180698]
[69]
Ma, L.; Ma, R.; Wang, Z.; Yiu, S.M.; Zhu, G. Heterodinuclear Pt(iv)-Ru(ii) anticancer prodrugs to combat both drug resistance and tumor metastasis. Chem. Commun. (Camb.), 2016, 52(71), 10735-10738.
[http://dx.doi.org/10.1039/C6CC04354B] [PMID: 27506281]
[70]
Zhu, G.; Ma, L. Heterodinuclear platinum-ruthenium complexes, preparation thereof and therapeutic use thereof. US9650402B2, 2017.
[71]
Zhang, J.; Jiang, C.; Figueiró Longo, J.P.; Azevedo, R.B.; Zhang, H.; Muehlmann, L.A. An updated overview on the development of new photosensitizers for anticancer photodynamic therapy. Acta Pharm. Sin. B, 2018, 8(2), 137-146.
[http://dx.doi.org/10.1016/j.apsb.2017.09.003] [PMID: 29719775]
[72]
Benov, L. Photodynamic therapy: Current status and future directions. Med. Princ. Pract., 2015, 24(Suppl. 1), 14-28.
[http://dx.doi.org/10.1159/000362416] [PMID: 24820409]
[73]
Yano, T.; Hishida, S.; Nakai, M.; Nakabayashi, Y. Anticancer activity of heterodinuclear ruthenium (II)–platinum (II) complexes as pho-tochemotherapeutic agents. Inorg. Chim. Acta, 2017, 454, 162-170.
[http://dx.doi.org/10.1016/j.ica.2016.04.011]
[74]
Zhu, J.; Rodríguez-Corrales, J.A.; Prussin, R.; Zhao, Z.; Dominijanni, A.; Hopkins, S.L.; Winkel, B.S.J.; Robertson, J.L.; Brewer, K.J. Ex-ploring the activity of a polyazine bridged Ru(ii)-Pt(ii) supramolecule in F98 rat malignant glioma cells. Chem. Commun. (Camb.), 2016, 53(1), 145-148.
[http://dx.doi.org/10.1039/C6CC07978D] [PMID: 27901157]
[75]
Köpf, H.; Köpf-Maier, P. Titanocene dichloride-the first metallocene with cancerostatic activity. Angew. Chem. Int. Ed., 1979, 18(6), 477-478.
[http://dx.doi.org/10.1002/anie.197904771] [PMID: 111586]
[76]
Lümmen, G.; Sperling, H.; Luboldt, H.; Otto, T.; Rübben, H. Phase II trial of titanocene dichloride in advanced renal-cell carcinoma. Cancer Chemother. Pharmacol., 1998, 42(5), 415-417.
[http://dx.doi.org/10.1007/s002800050838] [PMID: 9771957]
[77]
González-Pantoja, J.F.; Stern, M.; Jarzecki, A.A.; Royo, E.; Robles-Escajeda, E.; Varela-Ramírez, A.; Aguilera, R.J.; Contel, M. Titanocene-phosphine derivatives as precursors to cytotoxic heterometallic TiAu2 and TiM (M = Pd, Pt) compounds. Studies of their interactions with DNA. Inorg. Chem., 2011, 50(21), 11099-11110.
[http://dx.doi.org/10.1021/ic201647h] [PMID: 21958150]
[78]
Anderson, C.M.; Jain, S.S.; Silber, L.; Chen, K.; Guha, S.; Zhang, W.; McLaughlin, E.C.; Hu, Y.; Tanski, J.M. Synthesis and characteriza-tion of water-soluble, heteronuclear ruthenium(III)/ferrocene complexes and their interactions with biomolecules. J. Inorg. Biochem., 2015, 145, 41-50.
[http://dx.doi.org/10.1016/j.jinorgbio.2014.12.017] [PMID: 25621836]
[79]
Riera, X.; Caubet, A.; López, C.; Moreno, V. Study of the electrochemical properties of Pd (II) and Pt (II) complexes containing ferrocenyl ligands and their interaction with DNA. Polyhedron, 1999, 18, 2549-2555.
[http://dx.doi.org/10.1016/S0277-5387(99)00152-7]
[80]
Nieto, D.; González-Vadillo, A.M.; Bruña, S.; Pastor, C.J.; Ríos-Luci, C.; León, L.G.; Padrón, J.M.; Navarro-Ranninger, C.; Cuadrado, I. Heterometallic platinum(II) compounds with β-aminoethylferrocenes: Synthesis, electrochemical behaviour and anticancer activity. Dalton Trans., 2012, 41(2), 432-441.
[http://dx.doi.org/10.1039/C1DT11358E] [PMID: 22025199]
[81]
Nieto, D.; Bruna, S.; Gonzalez-Vadillo, A.M.; Perles, J.; Carrillo-Hermosilla, F.; Antinolo, A.; Padron, J.M.; Plata, G.B.; Cuadrado, I. Cata-lytically generated ferrocene-containing guanidines as efficient precursors for new redox-active heterometallic platinum (II) complexes with anticancer activity. Organometallics, 2015, 34, 5407-5417.
[http://dx.doi.org/10.1021/acs.organomet.5b00751]
[82]
Wenzel, M.; Bigaeva, E.; Richard, P.; Le Gendre, P.; Picquet, M.; Casini, A.; Bodio, E. New heteronuclear gold(I)-platinum(II) complexes with cytotoxic properties: Are two metals better than one? J. Inorg. Biochem., 2014, 141, 10-16.
[http://dx.doi.org/10.1016/j.jinorgbio.2014.07.011] [PMID: 25172993]
[83]
Serratrice, M.; Maiore, L.; Zucca, A.; Stoccoro, S.; Landini, I.; Mini, E.; Massai, L.; Ferraro, G.; Merlino, A.; Messori, L.; Cinellu, M.A. Cytotoxic properties of a new organometallic platinum(II) complex and its gold(I) heterobimetallic derivatives. Dalton Trans., 2016, 45(2), 579-590.
[http://dx.doi.org/10.1039/C5DT02714D] [PMID: 26609781]
[84]
Aranda, E.E.; Matias, T.A.; Araki, K.; Vieira, A.P.; de Mattos, E.A.; Colepicolo, P.; Luz, C.P.; Marques, F.L.N.; da Costa Ferreira, A.M. Design, syntheses, characterization, and cytotoxicity studies of novel heterobinuclear oxindolimine copper(II)-platinum(II) complexes. J. Inorg. Biochem., 2016, 165, 108-118.
[http://dx.doi.org/10.1016/j.jinorgbio.2016.08.001] [PMID: 27503192]
[85]
Munteanu, C.R.; Suntharalingam, K. Advances in cobalt complexes as anticancer agents. Dalton Trans., 2015, 44(31), 13796-13808.
[http://dx.doi.org/10.1039/C5DT02101D] [PMID: 26148776]
[86]
Singh, N.; Jang, S.; Jo, J.H.; Kim, D.H.; Park, D.W.; Kim, I.; Kim, H.; Kang, S.C.; Chi, K.W. Coordination-driven self-assembly and anti-cancer potency studies of Ruthenium–Cobalt-Based heterometallic rectangles. Chemistry, 2016, 22(45), 16157-16164.
[http://dx.doi.org/10.1002/chem.201603521] [PMID: 27689935]
[87]
Massai, L.; Fernández-Gallardo, J.; Guerri, A.; Arcangeli, A.; Pillozzi, S.; Contel, M.; Messori, L. Design, synthesis and characterisation of new chimeric ruthenium(II)-gold(I) complexes as improved cytotoxic agents. Dalton Trans., 2015, 44(24), 11067-11076.
[http://dx.doi.org/10.1039/C5DT01614B] [PMID: 25996553]
[88]
Bjelosevic, H.; Guzei, I.A.; Spencer, L.C.; Persson, T.; Kriel, F.H.; Hewer, R.; Nell, M.J.; Gut, J.; van Rensburg, C.E.; Rosenthal, P.J.; Coates, J. Platinum (II) and gold (I) complexes based on 1, 1′-bis (diphenylphosphino) metallocene derivatives: Synthesis, characteriza-tion and biological activity of the gold complexes. J. Organomet. Chem., 2012, 720, 52-59.
[http://dx.doi.org/10.1016/j.jorganchem.2012.08.034]
[89]
Wenzel, M.; de Almeida, A.; Bigaeva, E.; Kavanagh, P.; Picquet, M.; Le Gendre, P.; Bodio, E.; Casini, A. New luminescent polynuclear metal complexes with anticancer properties: Toward structure-activity relationships. Inorg. Chem., 2016, 55(5), 2544-2557.
[http://dx.doi.org/10.1021/acs.inorgchem.5b02910] [PMID: 26867101]
[90]
Pelletier, F.; Comte, V.; Massard, A.; Wenzel, M.; Toulot, S.; Richard, P.; Picquet, M.; Le Gendre, P.; Zava, O.; Edafe, F.; Casini, A.; Dy-son, P.J. Development of bimetallic titanocene-ruthenium-arene complexes as anticancer agents: Relationships between structural and bio-logical properties. J. Med. Chem., 2010, 53(19), 6923-6933.
[http://dx.doi.org/10.1021/jm1004804] [PMID: 20822096]
[91]
Ramadevi, P.; Singh, R.; Jana, S.S.; Devkar, R.; Chakraborty, D. Ruthenium complexes of ferrocene mannich bases: DNA/BSA interactions and cytotoxicity against A549 cell line. J. Photochem. Photobiol. Chem., 2015, 305, 1-10.
[http://dx.doi.org/10.1016/j.jphotochem.2015.02.010]
[92]
D’Sousa Costa, C.O.; Araujo Neto, J.H.; Baliza, I.R.S.; Dias, R.B.; Valverde, L.F.; Vidal, M.T.A.; Sales, C.B.S.; Rocha, C.A.G.; Moreira, D.R.M.; Soares, M.B.P.; Batista, A.A.; Bezerra, D.P. Novel piplartine-containing ruthenium complexes: Synthesis, cell growth inhibition, apoptosis induction and ROS production on HCT116 cells. Oncotarget, 2017, 8(61), 104367-104392.
[http://dx.doi.org/10.18632/oncotarget.22248] [PMID: 29262647]
[93]
Fernández-Gallardo, J.; Elie, B.T.; Sadhukha, T.; Prabha, S.; Sanaú, M.; Rotenberg, S.A.; Ramos, J.W.; Contel, M. Heterometallic titanium-gold complexes inhibit renal cancer cells in vitro and in vivo. Chem. Sci. (Camb.), 2015, 6(9), 5269-5283.
[http://dx.doi.org/10.1039/C5SC01753J] [PMID: 27213034]
[94]
Tabrizi, L.; Olasunkanmi, L.O.; Fadare, O.A. De novo design of thioredoxin reductase-targeted heterometallic titanocene-gold compounds of chlorambucil for mechanistic insights into renal cancer. Chem. Commun. (Camb.), 2019, 56(2), 297-300.
[http://dx.doi.org/10.1039/C9CC07406F] [PMID: 31808475]
[95]
Mui, Y.F.; Fernández-Gallardo, J.; Elie, B.T.; Gubran, A.; Maluenda, I.; Sanaú, M.; Navarro, O.; Contel, M. Titanocene–gold complexes containing N-heterocyclic carbene ligands inhibit growth of prostate, renal, and colon cancers in vitro. Organometallics, 2016, 35(9), 1218-1227.
[http://dx.doi.org/10.1021/acs.organomet.6b00051] [PMID: 27182101]
[96]
Elie, B.T.; Fernández-Gallardo, J.; Curado, N.; Cornejo, M.A.; Ramos, J.W.; Contel, M. Bimetallic titanocene-gold phosphane complexes inhibit invasion, metastasis, and angiogenesis-associated signaling molecules in renal cancer. Eur. J. Med. Chem., 2019, 161, 310-322.
[http://dx.doi.org/10.1016/j.ejmech.2018.10.034] [PMID: 30368130]
[97]
Gimeno, M.C.; Goitia, H.; Laguna, A.; Luque, M.E.; Villacampa, M.D.; Sepúlveda, C.; Meireles, M. Conjugates of ferrocene with biologi-cal compounds. Coordination to gold complexes and antitumoral properties. J. Inorg. Biochem., 2011, 105(11), 1373-1382.
[http://dx.doi.org/10.1016/j.jinorgbio.2011.07.015] [PMID: 21946437]
[98]
Lease, N.; Vasilevski, V.; Carreira, M.; de Almeida, A.; Sanaú, M.; Hirva, P.; Casini, A.; Contel, M. Potential anticancer heterometallic Fe-Au and Fe-Pd agents: Initial mechanistic insights. J. Med. Chem., 2013, 56(14), 5806-5818.
[http://dx.doi.org/10.1021/jm4007615] [PMID: 23786413]
[99]
Rana, B.K.; Nandy, A.; Bertolasi, V.; Bielawski, C.W.; Das Saha, K.; Dinda, J. Novel gold (I)–and gold (III)–N-heterocyclic carbene com-plexes: Synthesis and evaluation of their anticancer properties. Organometal., 2014, 33(10), 2544-2548.
[http://dx.doi.org/10.1021/om500118x]
[100]
Bertrand, B.; Stefan, L.; Pirrotta, M.; Monchaud, D.; Bodio, E.; Richard, P.; Le Gendre, P.; Warmerdam, E.; de Jager, M.H.; Groothuis, G.M.; Picquet, M.; Casini, A. Caffeine-based gold(I) N-heterocyclic carbenes as possible anticancer agents: Synthesis and biological prop-erties. Inorg. Chem., 2014, 53(4), 2296-2303.
[http://dx.doi.org/10.1021/ic403011h] [PMID: 24499428]
[101]
Pellei, M.; Gandin, V.; Marinelli, M.; Marzano, C.; Yousufuddin, M.; Dias, H.V.; Santini, C. Synthesis and biological activity of ester- and amide-functionalized imidazolium salts and related water-soluble coinage metal N-heterocyclic carbene complexes. Inorg. Chem., 2012, 51(18), 9873-9882.
[http://dx.doi.org/10.1021/ic3013188] [PMID: 22946642]
[102]
Hackenberg, F.; Müller-Bunz, H.; Smith, R.; Streciwilk, W.; Zhu, X.; Tacke, M. Novel ruthenium(II) and gold(I) NHC complexes: Synthe-sis, characterization, and evaluation of their anticancer properties. Organometallics, 2013, 32(19), 5551-5560.
[http://dx.doi.org/10.1021/om400819p]
[103]
Dragutan, I.; Dragutan, V.; Demonceau, A. Editorial of special issue ruthenium complex: The expanding chemistry of the ruthenium com-plexes. Molecules, 2015, 20(9), 17244-17274.
[http://dx.doi.org/10.3390/molecules200917244] [PMID: 26393560]
[104]
Zhang, J.J.; Muenzner, J.K.; Abu El Maaty, M.A.; Karge, B.; Schobert, R.; Wölfl, S.; Ott, I. A multi-target caffeine derived rhodium(i) N-heterocyclic carbene complex: Evaluation of the mechanism of action. Dalton Trans., 2016, 45(33), 13161-13168.
[http://dx.doi.org/10.1039/C6DT02025A] [PMID: 27334935]
[105]
Chtchigrovsky, M.; Eloy, L.; Jullien, H.; Saker, L.; Ségal-Bendirdjian, E.; Poupon, J.; Bombard, S.; Cresteil, T.; Retailleau, P.; Marinetti, A. Antitumor trans-N-heterocyclic carbene-amine-Pt(II) complexes: Synthesis of dinuclear species and exploratory investigations of DNA binding and cytotoxicity mechanisms. J. Med. Chem., 2013, 56(5), 2074-2086.
[http://dx.doi.org/10.1021/jm301780s] [PMID: 23421599]
[106]
El-Tabl, A.S.; Mohamed Abd El-Waheed, M.; Wahba, M.A.; Abd El-Halim Abou El-Fadl, N. Synthesis, characterization, and anticancer activity of new metal complexes derived from 2-Hydroxy-3-(hydroxyimino)-4-oxopentan-2-ylidene benzohydrazide. Bioinorg. Chem. Appl., 2015, 2015, 126023.
[http://dx.doi.org/10.1155/2015/126023] [PMID: 26199586]
[107]
Pfeiffer, H. Synthesis and biological activity of molybdenum carbonyl complexes and their peptide conjugates. Julius-Maximilians-Universität Würzburg 2012, 6-137.
[108]
Carter, R.; Westhorpe, A.; Romero, M.J.; Habtemariam, A.; Gallevo, C.R.; Bark, Y.; Menezes, N.; Sadler, P.J.; Sharma, R.A. Radiosensiti-sation of human colorectal cancer cells by ruthenium(II) arene anticancer complexes. Sci. Rep., 2016, 6, 20596.
[http://dx.doi.org/10.1038/srep20596] [PMID: 26867983]
[109]
Jadhav, G.R.; Sinha, S.; Chhabra, M.; Paira, P. Synthesis of novel anticancer ruthenium-arene pyridinylmethylene scaffolds via three-component reaction. Bioorg. Med. Chem. Lett., 2016, 26(11), 2695-2700.
[http://dx.doi.org/10.1016/j.bmcl.2016.04.005] [PMID: 27090558]
[110]
Wang, Z.; Qian, H.; Yiu, S.M.; Sun, J.; Zhu, G. Multi-targeted organometallic ruthenium(II)-arene anticancer complexes bearing inhibitors of poly(ADP-ribose) polymerase-1: A strategy to improve cytotoxicity. J. Inorg. Biochem., 2014, 131, 47-55.
[http://dx.doi.org/10.1016/j.jinorgbio.2013.10.017] [PMID: 24239912]
[111]
Martínez-Alonso, M.; Busto, N.; Jalón, F.A.; Manzano, B.R.; Leal, J.M.; Rodríguez, A.M.; García, B.; Espino, G. Derivation of structure-activity relationships from the anticancer properties of ruthenium(II) arene complexes with 2-aryldiazole ligands. Inorg. Chem., 2014, 53(20), 11274-11288.
[http://dx.doi.org/10.1021/ic501865h] [PMID: 25302401]
[112]
Hanif, M.; Nazarov, A.A.; Hartinger, C.G.; Kandioller, W.; Jakupec, M.A.; Arion, V.B.; Dyson, P.J.; Keppler, B.K. Osmium(II)-versus ruthenium(II)-arene carbohydrate-based anticancer compounds: Similarities and differences. Dalton Trans., 2010, 39(31), 7345-7352.
[http://dx.doi.org/10.1039/c003085f] [PMID: 20601976]
[113]
Maroto-Díaz, M.; Elie, B.T.; Gómez-Sal, P.; Pérez-Serrano, J.; Gómez, R.; Contel, M.; Javier de la Mata, F. Synthesis and anticancer activi-ty of carbosilane metallodendrimers based on arene ruthenium(ii) complexes. Dalton Trans., 2016, 45(16), 7049-7066.
[http://dx.doi.org/10.1039/C6DT00465B] [PMID: 26990859]
[114]
Mohan, N.; Muthumari, S.; Ramesh, R. Ruthenium (II) complexes containing aroylhydrazone ligands. J. Organomet. Chem., 2016, 807, 45-51.
[http://dx.doi.org/10.1016/j.jorganchem.2016.01.033]
[115]
Millett, A.J.; Habtemariam, A.; Romero-Canelón, I.; Clarkson, G.J.; Sadler, P.J. Contrasting anticancer activity of half-sandwich iridi-um(III) complexes bearing functionally diverse 2-phenylpyridine ligands. Organometallics, 2015, 34(11), 2683-2694.
[http://dx.doi.org/10.1021/acs.organomet.5b00097] [PMID: 26146437]
[116]
Moreno, V.; Font-Bardia, M.; Calvet, T.; Lorenzo, J.; Avilés, F.X.; Garcia, M.H.; Morais, T.S.; Valente, A.; Robalo, M.P. DNA interaction and cytotoxicity studies of new ruthenium(II) cyclopentadienyl derivative complexes containing heteroaromatic ligands. J. Organomet. Chem., 2011, 105(2), 241-249.
[http://dx.doi.org/10.1016/j.jinorgbio.2010.10.009] [PMID: 21194624]
[117]
Florindo, P.R.; Pereira, D.M.; Borralho, P.M.; Rodrigues, C.M.; Piedade, M.F.M.; Fernandes, A.C. Cyclopentadienyl-ruthenium(II) and iron(II) organometallic compounds with carbohydrate derivative ligands as good colorectal anticancer agents. J. Med. Chem., 2015, 58(10), 4339-4347.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00403] [PMID: 25923600]
[118]
Liu, Z.; Sadler, P.J. Organoiridium complexes: Anticancer agents and catalysts. Acc. Chem. Res., 2014, 47(4), 1174-1185.
[http://dx.doi.org/10.1021/ar400266c] [PMID: 24555658]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy