Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Mini-Review Article

Advances in the Novel Nanotechnology for Targeted Tumor Therapy by Transdermal Drug Delivery

Author(s): Yuchen Wang and Guan Jiang*

Volume 22, Issue 15, 2022

Published on: 12 May, 2022

Page: [2708 - 2714] Pages: 7

DOI: 10.2174/1871520622666220321093000

Price: $65

Abstract

Despite modern medicine advances greatly, cancer remains a serious challenge to world health for which effective methods of treatment have hardly been developed yet. However, throughout recent years, rapid-developing nanotechnology has provided a new outlook on cancer therapy by transdermal drug delivery. By disrupting the stratum corneum, drugs are delivered through the skin and navigated to the tumor site by drug delivery systems such as nanogels, microneedles, etc. The superiorities include the improvement of drug pharmacokinetics as well as reduced side effects. This paper reviews the reported novel development of transdermal drug delivery systems for targeted cancer therapy. Advanced techniques for penetrating the skin will be discussed as well.

Keywords: Transdermal drug delivery, nanotechnology, cancer treatment, microneedles, nanogels, modern medicine.

Graphical Abstract

[1]
Tran, P.H.L.; Duan, W.; Lee, B.J.; Tran, T.T.D. Nanogels for skin cancer therapy via transdermal delivery: Current designs. Curr. Drug Metab., 2019, 20(7), 575-582.
[http://dx.doi.org/10.2174/1389200220666190618100030] [PMID: 31237201]
[2]
Miller, D.L.; Weinstock, M.A. Nonmelanoma skin cancer in the United States: Incidence. J. Am. Acad. Dermatol., 1994, 30(5 Pt 1), 774-778.
[http://dx.doi.org/10.1016/S0190-9622(08)81509-5] [PMID: 8176018]
[3]
Marks, R. An overview of skin cancers. Incidence and causation. Cancer, 1995, 75(2 Suppl.), 607-612.
[http://dx.doi.org/10.1002/1097-0142(19950115)75:2+<607:AID-CNCR2820751402>3.0.CO;2-8] [PMID: 7804986]
[4]
Geller, A.C.; Annas, G.D. Epidemiology of melanoma and nonmelanoma skin cancer. Semin. Oncol. Nurs., 2003, 19(1), 2-11.
[http://dx.doi.org/10.1053/sonu.2003.50000] [PMID: 12638376]
[5]
D’Orazio, J.; Jarrett, S.; Amaro-Ortiz, A.; Scott, T. UV radiation and the skin. Int. J. Mol. Sci., 2013, 14(6), 12222-12248.
[http://dx.doi.org/10.3390/ijms140612222] [PMID: 23749111]
[6]
Simões, M.C.F.; Sousa, J.J.S.; Pais, A.A.C.C. Skin cancer and new treatment perspectives: A review. Cancer Lett., 2015, 357(1), 8-42.
[http://dx.doi.org/10.1016/j.canlet.2014.11.001] [PMID: 25444899]
[7]
Loescher, L.J.; Janda, M.; Soyer, H.P.; Shea, K.; Curiel-Lewandrowski, C. Advances in skin cancer early detection and diagnosis. Semin. Oncol. Nurs., 2013, 29(3), 170-181.
[http://dx.doi.org/10.1016/j.soncn.2013.06.003] [PMID: 23958215]
[8]
Larrañeta, E.; McCrudden, M.T.; Courtenay, A.J.; Donnelly, R.F. Microneedles: A new frontier in nanomedicine delivery. Pharm. Res., 2016, 33(5), 1055-1073.
[http://dx.doi.org/10.1007/s11095-016-1885-5] [PMID: 26908048]
[9]
Vogt, A.; Wischke, C.; Neffe, A.T.; Ma, N.; Alexiev, U.; Lendlein, A. Nanocarriers for drug delivery into and through the skin - Do exist-ing technologies match clinical challenges? J. Control. Release, 2016, 242, 3-15.
[http://dx.doi.org/10.1016/j.jconrel.2016.07.027] [PMID: 27449743]
[10]
Sivaram, A.J.; Rajitha, P.; Maya, S.; Jayakumar, R.; Sabitha, M. Nanogels for delivery, imaging and therapy. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2015, 7(4), 509-533.
[http://dx.doi.org/10.1002/wnan.1328] [PMID: 25581024]
[11]
Sharma, A.; Garg, T.; Aman, A.; Panchal, K.; Sharma, R.; Kumar, S.; Markandeywar, T. Nanogel-an advanced drug delivery tool: Current and future. Artif. Cells Nanomed. Biotechnol., 2016, 44(1), 165-177.
[http://dx.doi.org/10.3109/21691401.2014.930745] [PMID: 25053442]
[12]
Sultana, F.; Imran-Ul-Haque, M.M.; Arafat, M.; Sharmin, S. An overview of nanogel drug delivery system. J. Appl. Pharm. Sci., 2013, 3(8)(Suppl. 1), S95-S105.
[http://dx.doi.org/10.7324/JAPS.2013.38.S15]
[13]
Prakash, R.T.U.; Thiagarajan, P. Transdermal drug deliv-ery systems influencing factors, study methods and ther-apeutic applications. Int. J. Pharm., 2012, 2, 366-374.
[14]
Tran, P.H.L.; Duan, W.; Tran, T.T.D. Conjugation strategies for colonic delivery and its application in colorectal cancer therapy. Curr. Drug Metab., 2017, 18(11), 1016-1019.
[http://dx.doi.org/10.2174/1389200218666171031150001] [PMID: 29086687]
[15]
Tran, P.H.; Tran, T.T.; Vo, T.V.; Lee, B.J. Promising iron oxide-based magnetic nanoparticles in biomedical engineering. Arch. Pharm. Res., 2012, 35(12), 2045-2061.
[http://dx.doi.org/10.1007/s12272-012-1203-7] [PMID: 23263800]
[16]
Nguyen, K.T.; Pham, M.N.; Vo, T.V.; Duan, W.; Tran, P.H-L.; Tran, T.T-D. Strategies of engineering nanoparticles for treating neuro-degenerative disorders. Curr. Drug Metab., 2017, 18(9), 786-797.
[http://dx.doi.org/10.2174/1389200218666170125114751] [PMID: 28124594]
[17]
Tran, T.T.; Tran, P.H.; Yoon, T.J.; Lee, B.J. Fattigation-platform theranostic nanoparticles for cancer therapy. Mater. Sci. Eng. C, 2017, 75, 1161-1167.
[http://dx.doi.org/10.1016/j.msec.2017.03.012] [PMID: 28415402]
[18]
Tran, P.H.; Tran, T.T.; Vo, T.V. Polymer conjugate-based nanomaterials for drug delivery. J. Nanosci. Nanotechnol., 2014, 14(1), 815-827.
[http://dx.doi.org/10.1166/jnn.2014.8901] [PMID: 24730300]
[19]
Tran, P.H.; Tran, T.T.; Lee, B.J. Biodistribution and pharmacokinetics in rats and antitumor effect in various types of tumor-bearing mice of novel self-assembled gelatin-oleic acid nanoparticles containing paclitaxel. J. Biomed. Nanotechnol., 2014, 10(1), 154-165.
[http://dx.doi.org/10.1166/jbn.2014.1660] [PMID: 24724507]
[20]
Tran, K.N.; Tran, P.H.; Vo, T.V.; Tran, T.T. Design of fucoidan functionalized - iron oxide nanoparticles for biomedical applications. Curr. Drug Deliv., 2016, 13(5), 774-783.
[http://dx.doi.org/10.2174/1567201812666151020100921] [PMID: 27138526]
[21]
Tran, K.T.; Vo, T.V.; Duan, W.; Tran, P.H.; Tran, T.T. Perspectives of engineered marine derived polymers for biomedical nanoparticles. Curr. Pharm. Des., 2016, 22(19), 2844-2856.
[http://dx.doi.org/10.2174/1381612822666160217124735] [PMID: 26898745]
[22]
Phan, U.T.; Nguyen, K.T.; Vo, T.V.; Duan, W.; Tran, P.H.; Tran, T.D. Investigation of fucoidan-oleic acid conjugate for delivery of cur-cumin and paclitaxel. Anticancer. Agents Med. Chem., 2016, 16(10), 1281-1287.
[http://dx.doi.org/10.2174/1567201810666131124140259] [PMID: 27237629]
[23]
Tran, T.T.; Tran, P.H.; Wang, Y.; Li, P.; Kong, L. Nanoparticulate drug delivery to colorectal cancer: Formulation strategies and surface engineering. Curr. Pharm. Des., 2016, 22(19), 2904-2912.
[http://dx.doi.org/10.2174/1381612822666160217140932] [PMID: 26898738]
[24]
Nichols, J.W.; Bae, Y.H. EPR: Evidence and fallacy. J. Control. Release, 2014, 190, 451-464.
[http://dx.doi.org/10.1016/j.jconrel.2014.03.057] [PMID: 24794900]
[25]
Kim, S.; Park, K.M.; Ko, J.Y.; Kwon, I.C.; Cho, H.G.; Kang, D.; Yu, I.T.; Kim, K.; Na, K. Minimalism in fabrication of self-organized nanogels holding both anti-cancer drug and targeting moiety. Colloids Surf. B Biointerfaces, 2008, 63(1), 55-63.
[http://dx.doi.org/10.1016/j.colsurfb.2007.11.009] [PMID: 18164602]
[26]
Raghupathi, K.; Eron, S.J.; Anson, F.; Hardy, J.A.; Thayumanavan, S. Utilizing inverse emulsion polymerization to generate responsive nanogels for cytosolic protein delivery. Mol. Pharm., 2017, 14(12), 4515-4524.
[http://dx.doi.org/10.1021/acs.molpharmaceut.7b00643] [PMID: 29053277]
[27]
Chen, W.; Hou, Y.; Tu, Z.; Gao, L.; Haag, R. pH-degradable PVA-based nanogels via photo-crosslinking of thermo-preinduced nanoaggre-gates for controlled drug delivery. J. Control. Release, 2017, 259, 160-167.
[http://dx.doi.org/10.1016/j.jconrel.2016.10.032] [PMID: 27810557]
[28]
Lou, S.; Zhang, X.; Zhang, M.; Ji, S.; Wang, W.; Zhang, J.; Li, C.; Kong, D. Preparation of a dual cored hepatoma-specific star glycopoly-mer nanogel via arm-first ATRP approach. Int. J. Nanomedicine, 2017, 12, 3653-3664.
[http://dx.doi.org/10.2147/IJN.S134367] [PMID: 28553105]
[29]
Zhang, Y.; Ding, J.; Li, M.; Chen, X.; Xiao, C.; Zhuang, X.; Huang, Y.; Chen, X. One-step “click chemistry”-synthesized cross-linked prodrug nanogel for highly selective intracellular drug delivery and upregulated antitumor efficacy. ACS Appl. Mater. Interfaces, 2016, 8(17), 10673-10682.
[http://dx.doi.org/10.1021/acsami.6b00426] [PMID: 27077549]
[30]
Hildebrandt, H.; Paloheimo, O.; Mäntylä, E.; Willman, S.; Hakanen, S.; Albrecht, K.; Groll, J.; Möller, M.; Vihinen-Ranta, M. Reactive self-assembly and specific cellular delivery of NCO-sP(EO-stat-PO)-derived nanogels. Macromol. Biosci., 2018, 18(10), e1800094.
[http://dx.doi.org/10.1002/mabi.201800094] [PMID: 29974620]
[31]
Ruscito, A.; Chiessi, E.; Toumia, Y.; Oddo, L.; Domenici, F.; Paradossi, G. Microgel particles with distinct morphologies and common chemical compositions: A unified description of the responsivity to temperature and osmotic stress. Gels, 2020, 6(4), 34.
[http://dx.doi.org/10.3390/gels6040034] [PMID: 33081416]
[32]
Li, Z.; Huang, J.; Wu, J. pH-Sensitive nanogels for drug delivery in cancer therapy. Biomater. Sci., 2021, 9(3), 574-589.
[http://dx.doi.org/10.1039/D0BM01729A] [PMID: 33306076]
[33]
Elkassih, S.A.; Kos, P.; Xiong, H.; Siegwart, D.J. Degradable redox-responsive disulfide-based nanogel drug carriers via dithiol oxidation polymerization. Biomater. Sci., 2019, 7(2), 607-617.
[http://dx.doi.org/10.1039/C8BM01120F] [PMID: 30462102]
[34]
Oishi, M.; Nagasaki, Y. Stimuli-responsive smart nanogels for cancer diagnostics and therapy. Nanomedicine (Lond.), 2010, 5(3), 451-468.
[http://dx.doi.org/10.2217/nnm.10.18] [PMID: 20394537]
[35]
Maya, S.; Sarmento, B.; Nair, A.; Rejinold, N.S.; Nair, S.V.; Jayakumar, R. Smart stimuli sensitive nanogels in cancer drug delivery and imaging: a review. Curr. Pharm. Des., 2013, 19(41), 7203-7218.
[http://dx.doi.org/10.2174/138161281941131219124142] [PMID: 23489200]
[36]
Mirrahimi, M.; Abed, Z.; Beik, J.; Shiri, I.; Shiralizadeh Dezfuli, A.; Mahabadi, V.P.; Kamran Kamrava, S.; Ghaznavi, H.; Shakeri-Zadeh, A. A thermo-responsive alginate nanogel platform co-loaded with gold nanoparticles and cisplatin for combined cancer chemo-photothermal therapy. Pharmacol. Res., 2019, 143, 178-185.
[http://dx.doi.org/10.1016/j.phrs.2019.01.005] [PMID: 30611856]
[37]
Giulbudagian, M.; Rancan, F.; Klossek, A.; Yamamoto, K.; Jurisch, J.; Neto, V.C.; Schrade, P.; Bachmann, S.; Rühl, E.; Blume-Peytavi, U.; Vogt, A.; Calderón, M. Correlation between the chemical composition of thermoresponsive nanogels and their interaction with the skin barrier. J. Control. Release, 2016, 243, 323-332.
[http://dx.doi.org/10.1016/j.jconrel.2016.10.022] [PMID: 27793686]
[38]
Zha, Z.; Yue, X.; Ren, Q.; Dai, Z. Uniform polypyrrole nanoparticles with high photothermal conversion efficiency for photothermal abla-tion of cancer cells. Adv. Mater., 2013, 25(5), 777-782.
[http://dx.doi.org/10.1002/adma.201202211] [PMID: 23143782]
[39]
Yang, K.; Xu, H.; Cheng, L.; Sun, C.; Wang, J.; Liu, Z. In vitro and In vivo near-infrared photothermal therapy of cancer using polypyrrole organic nanoparticles. Adv. Mater., 2012, 24(41), 5586-5592.
[http://dx.doi.org/10.1002/adma.201202625] [PMID: 22907876]
[40]
Chen, M.; Fang, X.; Tang, S.; Zheng, N. Polypyrrole nanoparticles for high-performance in vivo near-infrared photothermal cancer thera-py. Chem. Commun. (Camb.), 2012, 48(71), 8934-8936.
[http://dx.doi.org/10.1039/c2cc34463g] [PMID: 22847451]
[41]
Tian, Y.; Zhang, J.; Tang, S.; Zhou, L.; Yang, W. Polypyrrole composite nanoparticles with morphology-dependent photothermal effect and immunological responses. Small, 2016, 12(6), 721-726.
[http://dx.doi.org/10.1002/smll.201503319] [PMID: 26701670]
[42]
Schoellhammer, C.M.; Blankschtein, D.; Langer, R. Skin permeabilization for transdermal drug delivery: Recent advances and future pro-spects. Expert Opin. Drug Deliv., 2014, 11(3), 393-407.
[http://dx.doi.org/10.1517/17425247.2014.875528] [PMID: 24392787]
[43]
Wong, T.W. Electrical, magnetic, photomechanical and cavitational waves to overcome skin barrier for transdermal drug delivery. J. Control. Release, 2014, 193, 257-269.
[http://dx.doi.org/10.1016/j.jconrel.2014.04.045] [PMID: 24801250]
[44]
Gratieri, T.; Alberti, I.; Lapteva, M.; Kalia, Y.N. Next generation intra- and transdermal therapeutic systems: Using non- and minimally-invasive technologies to increase drug delivery into and across the skin. Eur. J. Pharm. Sci., 2013, 50(5), 609-622.
[http://dx.doi.org/10.1016/j.ejps.2013.03.019] [PMID: 23567467]
[45]
Cázares-Delgadillo, J.; Ganem-Rondero, A.; Merino, V.; Kalia, Y.N. Controlled transdermal iontophoresis for poly-pharmacotherapy: Simultaneous delivery of granisetron, metoclopramide and dexamethasone sodium phosphate in vitro and in vivo. Eur. J. Pharm. Sci., 2016, 85, 31-38.
[http://dx.doi.org/10.1016/j.ejps.2016.01.027] [PMID: 26826281]
[46]
Toyoda, M.; Hama, S.; Ikeda, Y.; Nagasaki, Y.; Kogure, K. Anti-cancer vaccination by transdermal delivery of antigen peptide-loaded nanogels via iontophoresis. Int. J. Pharm., 2015, 483(1-2), 110-114.
[http://dx.doi.org/10.1016/j.ijpharm.2015.02.024] [PMID: 25681719]
[47]
Cole, G.; Ali, A.A.; McCrudden, C.M.; McBride, J.W.; McCaffrey, J.; Robson, T.; Kett, V.L.; Dunne, N.J.; Donnelly, R.F.; McCarthy, H.O. DNA vaccination for cervical cancer: Strategic optimisation of RALA mediated gene delivery from a biodegradable microneedle system. Eur. J. Pharm. Biopharm., 2018, 127, 288-297.
[http://dx.doi.org/10.1016/j.ejpb.2018.02.029] [PMID: 29510205]
[48]
Duong, H.T.T.; Yin, Y.; Thambi, T.; Nguyen, T.L.; Giang Phan, V.H.; Lee, M.S.; Lee, J.E.; Kim, J.; Jeong, J.H.; Lee, D.S. Smart vaccine delivery based on microneedle arrays decorated with ultra-pH-responsive copolymers for cancer immunotherapy. Biomaterials, 2018, 185, 13-24.
[http://dx.doi.org/10.1016/j.biomaterials.2018.09.008] [PMID: 30216806]
[49]
Bhatnagar, S.; Kumari, P.; Pattarabhiran, S.P.; Venuganti, V.V.K. Zein microneedles for localized delivery of chemotherapeutic agents to treat breast cancer: Drug loading, release behavior, and skin permeation studies. AAPS PharmSciTech, 2018, 19(4), 1818-1826.
[http://dx.doi.org/10.1208/s12249-018-1004-5] [PMID: 29616489]
[50]
Zhou, Z.; Lin, H.; Li, C.; Wu, Z. Recent progress of fully synthetic carbohydrate-based vaccine using TLR agonist as build-in adjuvant. Chin. Chem. Lett., 2018, 29, 19-26.
[http://dx.doi.org/10.1016/j.cclet.2017.09.047]
[51]
Hao, Y.; Dong, M.; Zhang, T.; Peng, J.; Jia, Y.; Cao, Y.; Qian, Z. Novel approach of using near-infrared responsive PEGylated gold nano-rod coated poly(l-lactide) microneedles to enhance the antitumor efficiency of docetaxel-loaded MPEG-PDLLA micelles for treating an A431 tumor. ACS Appl. Mater. Interfaces, 2017, 9(18), 15317-15327.
[http://dx.doi.org/10.1021/acsami.7b03604] [PMID: 28418236]
[52]
Li, D.; Hu, D.; Xu, H.; Patra, H.K.; Liu, X.; Zhou, Z.; Tang, J.; Slater, N.; Shen, Y. Progress and perspective of microneedle system for anti-cancer drug delivery. Biomaterials, 2021, 264, 120410.
[http://dx.doi.org/10.1016/j.biomaterials.2020.120410] [PMID: 32979655]
[53]
Quinn, H.L.; Kearney, M-C.; Courtenay, A.J.; McCrudden, M.T.C.; Donnelly, R.F. The role of microneedles for drug and vaccine delivery. Expert Opin. Drug Deliv., 2014, 11(11), 1769-1780.
[http://dx.doi.org/10.1517/17425247.2014.938635] [PMID: 25020088]
[54]
Donnelly, R.F.; Majithiya, R.; Singh, T.R.R.; Morrow, D.I.J.; Garland, M.J.; Demir, Y.K.; Migalska, K.; Ryan, E.; Gillen, D.; Scott, C.J.; Woolfson, A.D. Design, optimization and characterisation of polymeric microneedle arrays prepared by a novel laser-based micromould-ing technique. Pharm. Res., 2011, 28(1), 41-57.
[http://dx.doi.org/10.1007/s11095-010-0169-8] [PMID: 20490627]
[55]
Sanjay, S.T.; Zhou, W.; Dou, M.; Tavakoli, H.; Ma, L.; Xu, F.; Li, X. Recent advances of controlled drug delivery using microfluidic plat-forms. Adv. Drug Deliv. Rev., 2018, 128, 3-28.
[http://dx.doi.org/10.1016/j.addr.2017.09.013] [PMID: 28919029]
[56]
Thakur Singh, R.R.; Tekko, I.; McAvoy, K.; McMillan, H.; Jones, D.; Donnelly, R.F. Minimally invasive microneedles for ocular drug delivery. Expert Opin. Drug Deliv., 2017, 14(4), 525-537.
[http://dx.doi.org/10.1080/17425247.2016.1218460] [PMID: 27485251]
[57]
Blicharz, T.M.; Gong, P.; Bunner, B.M.; Chu, L.L.; Leonard, K.M.; Wakefield, J.A.; Williams, R.E.; Dadgar, M.; Tagliabue, C.A.; El Khaja, R.; Marlin, S.L.; Haghgooie, R.; Davis, S.P.; Chickering, D.E.; Bernstein, H. Microneedle-based device for the one-step painless collection of capillary blood samples. Nat. Biomed. Eng., 2018, 2(3), 151-157.
[http://dx.doi.org/10.1038/s41551-018-0194-1] [PMID: 31015714]
[58]
Mikszta, J.A.; Alarcon, J.B.; Brittingham, J.M.; Sutter, D.E.; Pettis, R.J.; Harvey, N.G. Improved genetic immunization via micromechanical disruption of skin-barrier function and targeted epidermal delivery. Nat. Med., 2002, 8(4), 415-419.
[http://dx.doi.org/10.1038/nm0402-415] [PMID: 11927950]
[59]
DeMuth, P.C.; Moon, J.J.; Suh, H.; Hammond, P.T.; Irvine, D.J. Releasable layer-by-layer assembly of stabilized lipid nanocapsules on microneedles for enhanced transcutaneous vaccine delivery. ACS Nano, 2012, 6(9), 8041-8051.
[http://dx.doi.org/10.1021/nn302639r] [PMID: 22920601]
[60]
Andrianov, A.K.; DeCollibus, D.P.; Gillis, H.A.; Kha, H.H.; Marin, A.; Prausnitz, M.R.; Babiuk, L.A.; Townsend, H.; Mutwiri, G. Poly[di(carboxylatophenoxy)phosphazene] is a potent adjuvant for intradermal immunization. Proc. Natl. Acad. Sci. USA, 2009, 106(45), 18936-18941.
[http://dx.doi.org/10.1073/pnas.0908842106] [PMID: 19864632]
[61]
Koh, K.J.; Liu, Y.; Lim, S.H.; Loh, X.J.; Kang, L.; Lim, C.Y.; Phua, K.K.L. Formulation, characterization and evaluation of mRNA-loaded dissolvable polymeric microneedles (RNApatch). Sci. Rep., 2018, 8(1), 11842.
[http://dx.doi.org/10.1038/s41598-018-30290-3] [PMID: 30087399]
[62]
An, M.; Liu, H. Dissolving microneedle arrays for transdermal delivery of amphiphilic vaccines. Small, 2017, 13(26), 1002.
[http://dx.doi.org/10.1002/smll.201700164] [PMID: 28544329]
[63]
Hong, X.; Wei, L.; Wu, F.; Wu, Z.; Chen, L.; Liu, Z.; Yuan, W. Dissolving and biodegradable microneedle technologies for transdermal sustained delivery of drug and vaccine. Drug Des. Devel. Ther., 2013, 7, 945-952.
[http://dx.doi.org/10.2147/DDDT.S44401] [PMID: 24039404]
[64]
Roxhed, N.; Griss, P.; Stemme, G. Membrane-sealed hollow microneedles and related administration schemes for transdermal drug deliv-ery. Biomed. Microdevices, 2008, 10(2), 271-279.
[http://dx.doi.org/10.1007/s10544-007-9133-8] [PMID: 17940907]
[65]
Martanto, W.; Moore, J.S.; Couse, T.; Prausnitz, M.R. Mechanism of fluid infusion during microneedle insertion and retraction. J. Control. Release, 2006, 112(3), 357-361.
[http://dx.doi.org/10.1016/j.jconrel.2006.02.017] [PMID: 16626836]
[66]
Donnelly, R.F.; Morrow, D.I.J.; McCrudden, M.T.C.; Alkilani, A.Z.; Vicente-Pérez, E.M.; O’Mahony, C.; González-Vázquez, P.; McCar-ron, P.A.; Woolfson, A.D. Hydrogel-forming and dissolving microneedles for enhanced delivery of photosensitizers and precursors. Photochem. Photobiol., 2014, 90(3), 641-647.
[http://dx.doi.org/10.1111/php.12209] [PMID: 24215482]
[67]
Donnelly, R.F.; Singh, T.R.R.; Garland, M.J.; Migalska, K.; Majithiya, R.; McCrudden, C.M.; Kole, P.L.; Mahmood, T.M.T.; McCarthy, H.O.; Woolfson, A.D. Hydrogel-forming microneedle arrays for enhanced transdermal drug delivery. Adv. Funct. Mater., 2012, 22(23), 4879-4890.
[http://dx.doi.org/10.1002/adfm.201200864] [PMID: 23606824]
[68]
Couzin-Frankel, J. Breakthrough of the year 2013. Cancer immunotherapy. Science, 2013, 342(6165), 1432-1433.
[http://dx.doi.org/10.1126/science.342.6165.1432] [PMID: 24357284]
[69]
Kennedy, L.B.; Salama, A.K.S. A review of cancer immunotherapy toxicity. CA Cancer J. Clin., 2020, 70(2), 86-104.
[http://dx.doi.org/10.3322/caac.21596] [PMID: 31944278]
[70]
Zaric, M.; Lyubomska, O.; Touzelet, O.; Poux, C.; Al-Zahrani, S.; Fay, F.; Wallace, L.; Terhorst, D.; Malissen, B.; Henri, S.; Power, U.F.; Scott, C.J.; Donnelly, R.F.; Kissenpfennig, A.; Kissenpfennig, A. Skin dendritic cell targeting via microneedle arrays laden with antigen-encapsulated poly-D,L-lactide-co-glycolide nanoparticles induces efficient antitumor and antiviral immune responses. ACS Nano, 2013, 7(3), 2042-2055.
[http://dx.doi.org/10.1021/nn304235j] [PMID: 23373658]
[71]
Hou, X.; Tao, Y.; Pang, Y.; Li, X.; Jiang, G.; Liu, Y. Nanoparticle-based photothermal and photodynamic immunotherapy for tumor treat-ment. Int. J. Cancer, 2018, 143(12), 3050-3060.
[http://dx.doi.org/10.1002/ijc.31717] [PMID: 29981170]
[72]
Zhu, X.; Zhang, Y.; Huang, H.; Zhang, H.; Hou, L.; Zhang, Z. Folic acid-modified and functionalized CuS nanocrystal-based nanoparticles for combined tumor chemo- and photothermal therapy. J. Drug Target., 2017, 25(5), 425-435.
[http://dx.doi.org/10.1080/1061186X.2016.1266651] [PMID: 27899044]
[73]
Zhu, H.; Liu, W.; Cheng, Z.; Yao, K.; Yang, Y.; Xu, B.; Su, G. Targeted delivery of siRNA with pH-responsive hybrid gold nanostars for cancer treatment. Int. J. Mol. Sci., 2017, 18(10), 2029.
[http://dx.doi.org/10.3390/ijms18102029] [PMID: 28937584]
[74]
Ju, Y.; Zhang, H.; Yu, J.; Tong, S.; Tian, N.; Wang, Z.; Wang, X.; Su, X.; Chu, X.; Lin, J.; Ding, Y.; Li, G.; Sheng, F.; Hou, Y. Monodis-perse Au-Fe2C janus nanoparticles: An attractive multifunctional material for triple-modal imaging-guided tumor photothermal therapy. ACS Nano, 2017, 11(9), 9239-9248.
[http://dx.doi.org/10.1021/acsnano.7b04461] [PMID: 28850218]
[75]
Song, S.; Shen, H.; Yang, T.; Wang, L.; Fu, H.; Chen, H.; Zhang, Z. Indocyanine green loaded magnetic carbon nanoparticles for near in-frared fluorescence/magnetic resonance dual-modal imaging and photothermal therapy of tumor. ACS Appl. Mater. Interfaces, 2017, 9(11), 9484-9495.
[http://dx.doi.org/10.1021/acsami.7b00490] [PMID: 28256824]
[76]
Hu, Y.; Chi, C.; Wang, S.; Wang, L.; Liang, P.; Liu, F.; Shang, W.; Wang, W.; Zhang, F.; Li, S.; Shen, H.; Yu, X.; Liu, H.; Tian, J. A com-parative study of clinical intervention and interventional photothermal therapy for pancreatic cancer. Adv. Mater., 2017, 29(33), 201700448.
[http://dx.doi.org/10.1002/adma.201700448] [PMID: 28682465]
[77]
Horowitz, M.; Robinson, S.D.M. Heat shock proteins and the heat shock response during hyperthermia and its modulation by altered physiological conditions. Prog. Brain Res., 2007, 162, 433-446.
[http://dx.doi.org/10.1016/S0079-6123(06)62021-9] [PMID: 17645931]
[78]
Calderwood, S.K.; Gong, J. Heat shock proteins promote cancer: It’s a protection racket. Trends Biochem. Sci., 2016, 41(4), 311-323.
[http://dx.doi.org/10.1016/j.tibs.2016.01.003] [PMID: 26874923]
[79]
Yokota, S.; Kitahara, M.; Nagata, K. Benzylidene lactam compound, KNK437, a novel inhibitor of acquisition of thermotol-erance and heat shock protein induction in human colon carcinoma cells. Cancer Res., 2000, 60(11), 2942-2948.
[PMID: 10850441]
[80]
Koishi, M.; Yokota, S.; Mae, T.; Nishimura, Y.; Kanamori, S.; Horii, N.; Shibuya, K.; Sasai, K.; Hiraoka, M. The effects of KNK437, a novel inhibitor of heat shock protein synthesis, on the acquisition of thermotolerance in a murine transplantable tumor in vivo. Clin. Cancer Res., 2001, 7(1), 215-219.
[PMID: 11205912]
[81]
Yoo, D.; Jeong, H.; Noh, S-H.; Lee, J-H.; Cheon, J. Magnetically triggered dual functional nanoparticles for resistance-free apoptotic hy-perthermia. Angew. Chem. Int. Ed. Engl., 2013, 52(49), 13047-13051.
[http://dx.doi.org/10.1002/anie.201306557] [PMID: 24281889]
[82]
Yang, Y.; Zhu, W.; Dong, Z.; Chao, Y.; Xu, L.; Chen, M.; Liu, Z. 1D coordination polymer nanofibers for low-temperature photothermal therapy. Adv. Mater., 2017, 29(40), 201703588.
[http://dx.doi.org/10.1002/adma.201703588] [PMID: 28833643]
[83]
Wen, Z.; Liu, F.; Liu, G.; Sun, Q.; Zhang, Y.; Muhammad, M.; Xu, Y.; Li, H.; Sun, S. Assembly of multifunction dyes and heat shock protein 90 inhibitor coupled to bovine serum albumin in nanoparticles for multimodal photodynamic/photothermal/chemo-therapy. J. Colloid Interface Sci., 2021, 590, 290-300.
[http://dx.doi.org/10.1016/j.jcis.2021.01.052] [PMID: 33548612]
[84]
Peng, S.; Wang, H.; Xin, Y.; Zhao, W.; Zhan, M.; Li, J.; Cai, R.; Lu, L. Second near-infrared photoactivatable hydrogen selenide nanogen-erators for metastasis-inhibited cancer therapy. Nano Today, 2021, 40, 101240.
[http://dx.doi.org/10.1016/j.nantod.2021.101240]
[85]
Manikkath, J.; Subramony, J.A. Toward closed-loop drug delivery: Integrating wearable technologies with transdermal drug delivery sys-tems. Adv. Drug Deliv. Rev., 2021, 179, 113997.
[http://dx.doi.org/10.1016/j.addr.2021.113997] [PMID: 34634396]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy