Generic placeholder image

Nanoscience & Nanotechnology-Asia

Editor-in-Chief

ISSN (Print): 2210-6812
ISSN (Online): 2210-6820

Research Article

An Unsteady Nanofluid Flow Past Parallel Porous Plates: A Numerical Study

Author(s): Zachariah M. Mburu, Sabyasachi Mondal* and Precious Sibanda

Volume 12, Issue 2, 2022

Published on: 27 May, 2022

Article ID: e300322202866 Pages: 15

DOI: 10.2174/2210681212666220330153232

Price: $65

Abstract

Background: This study investigates an unsteady, two-dimensional, incompressible viscous boundary layer flow of an electrically conducting nanofluid past parallel plates. The plates are permeable to allow both suction and injection to take place. It is assumed that viscosity, thermal conductivity and mass diffusivity of the nanofluid vary with temperature. The novelty of this study is in consideration of the combined effects of chemical reaction, permeability, externally applied magnetic field, and momentum diffusivity on the flow varibles. The magnetic field force is significant because it provides information regarding the boundary layer characteristics.

Methods: The highly nonlinear partial differential equations are solved numerically using the newly developed Bivariate Spectral Quasilinearization Method (BSQLM) along with varying thermal and concentration boundary conditions. The BSQLM method is an innovative technique that is more reliable and robust as it demands fewer grid points and has a global approach to solving PDEs.

Results: An analysis and comparison of results with existing literature are reported. Excellent agreement has been found between our results and those previously published. Among the findings, we show, inter alia, a significant increase in the profiles for fluid velocity, temperature and concentration with an increase in the chemical reaction, applied magnetic field, and thermal radiation. The BSQLM converges fast and is computationally efficient when applied to boundary layer problems that are defined on a large computational domain.

Conclusion: A numerical study on nanofluid flow between parallel porous plates has been carried out, and here are the key findings:

1. Heat flux is directly related to thermal radiation, the applied magnetic field, permeability, and the chemical reaction involved.

2. Mass flux increases with increased chemical reaction, permeability, and the magnetic parameters.

3. The nanofluid concentration is directly related to the Prandtl and magnetic numbers and inversely related to the Reynolds number and chemical reaction.

4. The skin-friction coefficient reduces with higher values of magnetic field and permeability parameters and increases with an increment in thermal radiation and chemical reaction.

5. The BSQLM has a high convergence rate with high accuracy.

Keywords: Nanofluid, porous plates, bivariate spectral quasilinearization method, chemical reaction, unsteady flow, magnetic fields.

Graphical Abstract

[1]
Wang, X.; Xianfan, X.; Choi, S.; Stephen, U. Thermal conductivity of nanoparticle-fluid mixture. J. Thermophys. Heat Trans., 1999, 13(4), 474-480.
[http://dx.doi.org/10.2514/2.6486]
[2]
Rundora, L.; Makinde, O.D. Effects of suction/injection on unsteady reactive variable viscosity non-Newtonian fluid flow in a channel filled with porous medium and convective boundary conditions. J. Petrol. Sci. Eng., 2013, 108, 328-335.
[http://dx.doi.org/10.1016/j.petrol.2013.05.010]
[3]
Ireka, I.E. Computational analysis of non-isothermal flow of nonNewtonian fluids., PhD Thesis, University of Cape Town: South Africa. 2015.
[4]
Zhang, X.; Pan, C.; Xu, Z. Experimental investigations on liquid metal MHD turbulent flows through a circular pipe with a conductive wall. Fusion Eng. Des., 2017, 125, 647-652.
[http://dx.doi.org/10.1016/j.fusengdes.2017.04.087]
[5]
Zhong, J.; Yi, M.; Bau, H.H. Magneto hydrodynamic (MHD) pump fabricated with ceramic tapes. Sens. Actuators A Phys., 2002, 96(1), 59-66.
[http://dx.doi.org/10.1016/S0924-4247(01)00764-6]
[6]
Ahmed, N.; Kalita, H.; Barua, D.P. Unsteady MHD free convective flow past a vertical porous plate immersed in a porous medium with Hall current, thermal diffusion and heat source. Int. J. Eng. Sci. Technol., 2010, 2(6), 59-74.
[7]
Alam, M.S.; Rahman, M.M.; Sattar, M.A. On the effectiveness of viscous dissipation and Joule heating on steady Magnetohydrodynamic heat and mass transfer flow over an inclined radiate isothermal permeable surface in the presence of thermophoresis. Commun. Nonlinear Sci. Numer. Simul., 2009, 14(5), 2132-2143.
[http://dx.doi.org/10.1016/j.cnsns.2008.06.008]
[8]
Mbeledogu, I.U.; Ogulu, A. Heat and mass transfer of an unsteady MHD natural convection flow of a rotating fluid past a vertical porous flat plate in the presence of radiative heat transfer. Int. J. Heat Mass Transf., 2007, 50(9-10), 1902-1908.
[http://dx.doi.org/10.1016/j.ijheatmasstransfer.2006.10.016]
[9]
El-Amin, M.F.; Salama, A.; Sun, S. A conditionally stable scheme for a transient flow of a non-Newtonian fluid saturating a porous medi-um. Procedia Comput. Sci., 2012, 9, 651-660.
[http://dx.doi.org/10.1016/j.procs.2012.04.070]
[10]
Chen, C.H. Heat and mass transfer in MHD flow by natural convection from a permeable, inclined surface with variable wall temperature and concentration. Acta Mech., 2004, 172(3-4), 219-235.
[http://dx.doi.org/10.1007/s00707-004-0155-5]
[11]
Dharmaiah, G.C.H.; Baby, R.; Vedavathi, N.; Balamurugan, K.S. Heat and mass transfer on MHD fluid flow over a semi-infinite flat plate with radiation absorption, heat source and diffusion thermo effect. Front. Heat Mass Transf., 2018, 11(6), 1-8.
[http://dx.doi.org/10.5098/hmt.11.6]
[12]
Rosca, A.V.; Rosca, N.C.; Grosan, T.; Pop, I. Non-Darcy mixed convection from a horizontal plate embedded in a nanofluid saturated porous media. Int. Commun. Heat Mass Transf., 2012, 39(8), 1080-1085.
[http://dx.doi.org/10.1016/j.icheatmasstransfer.2012.06.025]
[13]
Chandrasekhara, B.C.; Namboodiri, P.; Hanumanthappa, A.R. Similarity solutions for buoyancy induced flows in a saturated porous me-dium adjacent to impermeable horizontal surfaces. Wärme- Stoffübertrag., 1984, 18(1), 17-23.
[http://dx.doi.org/10.1007/BF01461486]
[14]
Kishan, N.; Amrutha, P. Effects of viscous dissipation on MHD flow with heat and mass transfer over a stretching surface with heat source, thermal stratification and chemical reaction. J. Nav. Archit. Mar. Eng., 2010, 7(1), 11-18.
[http://dx.doi.org/10.3329/jname.v7i1.3254]
[15]
Mukhopadhyay, S.; Bhattacharyya, K.; Layek, G.C. Steady boundary layer flow and heat transfer over a porous moving plate in presence of thermal radiation. Int. J. Heat Mass Transf., 2011, 54(13-14), 2751-2757.
[http://dx.doi.org/10.1016/j.ijheatmasstransfer.2011.03.017]
[16]
Subhashini, S.V.; Samuel, N.; Pop, I. Double-diffusive convection from a permeable vertical surface under convective boundary condi-tion. Int. Commun. Heat Mass Transf., 2011, 38(9), 1183-1188.
[http://dx.doi.org/10.1016/j.icheatmasstransfer.2011.06.006]
[17]
Lee, J.; Kandaswamy, P.; Bhuvaneswari, M.; Sivasankaran, S. Lie group analysis of radiation natural convection heat transfer past an inclined porous surface. J. Mech. Sci. Technol., 2008, 22(9), 1779-1784.
[18]
Parveen, N.; Alim, M.A. Joule heating effect on magnetohydrodynamic natural convection flow along a vertical wavy surface with viscosi-ty dependent on temperature. J. Nav. Archit. Mar. Eng., 2012, 9(1), 11-24.
[http://dx.doi.org/10.3329/jname.v9i1.5954]
[19]
Khan, W.A.; Pop, I. Boundary-layer flow of a nanofluid past a stretching sheet. Int. J. Heat Mass Transf., 2010, 53(11-12), 2477-2483.
[http://dx.doi.org/10.1016/j.ijheatmasstransfer.2010.01.032]
[20]
Reddy, G.; Ibrahim, S.M.; Bhagavan, V.S. Similarity transformations of heat and mass transfer effects on steady mhd free convection dissipative fluid flow past an inclined porous surface. J. Nav. Archit. Mar. Eng., 2014, 11(2), 157-166.
[http://dx.doi.org/10.3329/jname.v11i2.18313]
[21]
Hiba, B.; Redouane, F.; Jamshed, W.; Saleel, C.A.; Devi, S.S.U.; Prakash, M.; Nisar, K.S.; Vijayakumar, V.; Eid, M.R. A novel case study of thermal and streamline analysis in a grooved enclosure filled with (Ag–MgO/Water) hybrid nanofluid: Galerkin FEM. Case Stud. Therm. Eng., 2021, 28, 101372.
[http://dx.doi.org/10.1016/j.csite.2021.101372]
[22]
Jamshed, W.; Eid, M.R.; Nisar, K.S.; Nasir, N.A.A.M.; Edacherian, A.; Saleel, C.A.; Vijayakumar, V. A numerical frame work of magneti-cally driven Powell-Eyring nanofluid using single phase model. Sci. Rep., 2021, 11(1), 16500.
[http://dx.doi.org/10.1038/s41598-021-96040-0] [PMID: 34389786]
[23]
Amine, B.M.; Redouane, F.; Mourad, L.; Jamshed, W.; Eid, M.R.; Al-Kouz, W. Magnetohydrodynamics natural convection of a triangular cavity involving Ag-MgO/Water hybrid nanofluid and provided with rotating circular barrier and a quarter circular porous medium at its right-angled corner. Arab. J. Sci. Eng., 2021, 46(12), 1-25.
[http://dx.doi.org/10.1007/s13369-021-06015-6]
[24]
Lahmar, S.; Kezzar, M.; Eid, M.R.; Sari, M.R. Heat transfer of squeezing unsteady nanofluid flow under the effects of an inclined magnetic field and variable thermal conductivity. Physica A, 2020, 540, 123138.
[http://dx.doi.org/10.1016/j.physa.2019.123138]
[25]
Haroun, N.A.H.; Sibanda, P.; Mondal, S.; Motsa, S.S.; Rashidi, M.M. Heat and mass transfer of nanofluid through an impulsively vertical stretching surface using the spectral relaxation method. Bound. Value Probl., 2015, 2015(1), 161.
[http://dx.doi.org/10.1186/s13661-015-0424-3]
[26]
Motsa, S.S.; Dlamini, P.G.; Khumalo, M. Spectral relaxation method and spectral quasilinearization method for solving unsteady boundary layer flow problems. Adv. Math. Phys., 2014, 2014, 341964.
[http://dx.doi.org/10.1155/2014/341964]
[27]
Mohebbi, R.; Rashidi, M.M.; Izadi, M.; Sidik, N.A.C.; Xian, H.W. Forced convection of nanofluids in an extended surfaces channel using lattice Boltzmann method. Int. J. Heat Mass Transf., 2018, 117, 1291-1303.
[http://dx.doi.org/10.1016/j.ijheatmasstransfer.2017.10.063]
[28]
Oyelakin, I.S.; Lalramneihmawii, P.C.; Mondal, S.; Nandy, S.K.; Sibanda, P. Thermophysical analysis of three-dimensional Magnetohy-drodynamic flow of a tangent hyperbolic nanofluid. Eng. Rep., 2020, 2(4), e12144.
[http://dx.doi.org/10.1002/eng2.12144]
[29]
Mburu, Z.M.; Mondal, S.; Sibanda, P. Numerical study on combined thermal radiation and magnetic field effects on entropy generation in unsteady fluid flow past an inclined cylinder. J. Comput. Des. Eng., 2021, 8(1), 149-169.
[30]
Sithole, H.; Mondal, H.; Goqo, S.P.; Sibanda, P.; Motsa, S.S. Numerical simulation of couple stress nanofluid flow in magneto-porous medium with thermal radiation and a chemical reaction. Appl. Math. Comput., 2018, 339, 820-836.
[http://dx.doi.org/10.1016/j.amc.2018.07.042]
[31]
Einstein, A.; Podolsky, B.; Rosen, N. Can quantum-mechanical description of physical reality be considered complete. Phys. Rev., 1935, 47(10), 777-780.
[http://dx.doi.org/10.1103/PhysRev.47.777]
[32]
Nouar, A.; Dib, A.; Kezzar, M.; Sari, M.R.; Eid, M.R. Numerical treatment of squeezing unsteady nanofluid flow using optimized stochastic algorithm. Zeitschrift für Naturforschung A, 2021, 76(10), 933-946.
[33]
Sajid, T.; Jamshed, W.; Shahzad, F.; Eid, M.R.; Alshehri, H.M.; Goodarzi, M.; Akgül, E.K.; Nisar, K.S. Micropolar fluid past a convec-tively heated surface embedded with nth order chemical reaction and heat source/sink. Physica. Scripta., 2021, 96(10), 104010.
[34]
Sajid, T.; Jamshed, W.; Shahzad, F.; El Boukili, A.; Ez-Zahraouy, H.; Nisar, K.S.; Eid, M.R. Study on heat transfer aspects of solar aircraft wings for the case of Reiner-Philipp off hybrid nanofluid past a parabolic trough: Keller box method. Physica. Scripta., 2021, 96(9), 10.
[35]
Wakif, A.; Boulahia, Z.; Ali, F.; Eid, M.R.; Sehaqui, R. Numerical analysis of the unsteady natural convection MHD Couette nanofluid flow in the presence of thermal radiation using single and two-phase nanofluid models for Cu–water nanofluids. Int. J. Appl. Comput. Math., 2018, 4(3), 1-27.
[http://dx.doi.org/10.1007/s40819-018-0513-y]
[36]
Al-Hossainy, A.F.; Eid, M.R.; Zoromba, M.S. SQLM for external yield stress effect on 3 dimensional MHD nanofluid flow in a porous medium. Phys. Scr., 2019, 94(10), 105208.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy