Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Perspective

From Elusive Monomeric Metaphosphates to Oligomeric Metaphosphate Reagents: New Avenue to Halogen-free Phosphorylation of Biomolecules

Author(s): Vadim D. Romanenko*

Volume 26, Issue 5, 2022

Published on: 10 May, 2022

Page: [432 - 437] Pages: 6

DOI: 10.2174/1385272826666220330111824

Abstract

This perspective highlights a new environmentally benign strategy for the introduction of phosphate functionality into organic substrates via activated cyclic oligometaphosphates. The use of these novel phosphorylating reagents greatly simplify the synthesis of nucleoside mono- and polyphosphates and provides a platform to access diverse phosphorylated amino acids, peptides, sugars, and other phosphorus-containing fine chemicals. The new phosphorylation protocol represents an advance in terms of atom-efficiency, regioselectivity, functional tolerance and safety for the environment.

Keywords: Metaphosphates, oligometaphosphates, phosphate transfer, halogen-free phosphorylation, phosphorylating reagents, nucleoside polyphosphates.

Graphical Abstract

[1]
Glonek, T. Did cyclic metaphosphates have a role in the origin of Life? Orig. Life Evol. Biosph., 2021, 51(1), 1-60.
[http://dx.doi.org/10.1007/s11084-021-09604-5] [PMID: 33721178]
[2]
Cleland, W.W.; Hengge, A.C. Enzymatic mechanisms of phosphate and sulfate transfer. Chem. Rev., 2006, 106(8), 3252-3278.
[http://dx.doi.org/10.1021/cr050287o] [PMID: 16895327]
[3]
Lassila, J.K.; Zalatan, J.G.; Herschlag, D. Biological phosphoryl-transfer reactions: Understanding mechanism and catalysis. Annu. Rev. Biochem., 2011, 80(1), 669-702.
[http://dx.doi.org/10.1146/annurev-biochem-060409-092741] [PMID: 21513457]
[4]
Kamerlin, S.C.L.; Sharma, P.K.; Prasad, R.B.; Warshel, A. Why nature really chose phosphate. Q. Rev. Biophys., 2013, 46(1), 1-132.
[http://dx.doi.org/10.1017/S0033583512000157] [PMID: 23318152]
[5]
Kirby, A.J.; Nome, F. Fundamentals of phosphate transfer. Acc. Chem. Res., 2015, 48(7), 1806-1814.
[http://dx.doi.org/10.1021/acs.accounts.5b00072] [PMID: 26075464]
[6]
Bezold, D.; Dürr, T.; Singh, J.; Jessen, H.J. Cyclotriphosphate: A brief history, recent developments, and perspectives in synthesis. Chemistry, 2020, 26(11), 2298-2308.
[http://dx.doi.org/10.1002/chem.201904433] [PMID: 31637774]
[7]
Protasiewicz, J.D. From rock-stable to reactive phosphorus. Science, 2018, 359(6382), 1333-1333.
[http://dx.doi.org/10.1126/science.aat1206] [PMID: 29567694]
[8]
Singh, J.; Ripp, A.; Haas, T.M.; Qiu, D.; Keller, M.; Wender, P.A.; Siegel, J.S.; Baldridge, K.K.; Jessen, H.J. Synthesis of modified nucleoside oligophosphates simplified: Fast, pure, and protecting group free. J. Am. Chem. Soc., 2019, 141(38), 15013-15017.
[http://dx.doi.org/10.1021/jacs.9b08273] [PMID: 31512870]
[9]
Singh, J.; Steck, N.; De, D.; Hofer, A.; Ripp, A.; Captain, I.; Keller, M.; Wender, P.A.; Bhandari, R.; Jessen, H.J. A Phosphoramidite analogue of cyclotriphosphate enables iterative polyphosphorylations. Angew. Chem. Int. Ed. Engl., 2019, 58(12), 3928-3933.
[http://dx.doi.org/10.1002/anie.201814366] [PMID: 30681761]
[10]
Jessen, H.J.; Ahmed, N.; Hofer, A. Phosphate esters and anhydrides--recent strategies targeting nature’s favoured modifications. Org. Biomol. Chem., 2014, 12(22), 3526-3530.
[http://dx.doi.org/10.1039/C4OB00478G] [PMID: 24781815]
[11]
Butcher, W.W.; Westheimer, F.H. The lanthanum hydroxide gel promoted hydrolysis of phosphate esters. J. Am. Chem. Soc., 1955, 77(9), 2420-2424.
[http://dx.doi.org/10.1021/ja01614a018]
[12]
Meisel, M. Dioxo- and dithioxophosphoranes including the metaphosphate anion. Multiple Bonds and Low Coordination in Phosphorus Chemistry; Regitz, M.; Scherer, O., Eds.; Georg Thieme Verlag: Stuttgart, N.Y., 1990, pp. 415-442.
[13]
Romanenko, V.D.; Sanchez, M. Recent developments in the chemistry of three-coordinate pentavalent phosphorus compounds. Coord. Chem. Rev., 1997, 158, 275-324.
[http://dx.doi.org/10.1016/S0010-8545(97)90061-8]
[14]
Romanenko, V.D.; Markovsky, L.N.; Ruban, A.V. Chemistry of Low-Coordinated Pentavalent Phosphorus Compounds; NaukovaDumka: Kiev, 1992.
[15]
Westheimer, F.H. Why nature chose phosphates. Science, 1987, 235(4793), 1173-1178.
[http://dx.doi.org/10.1126/science.2434996] [PMID: 2434996]
[16]
Westheimer, F.H. Monomeric metaphosphates. Chem. Rev., 1981, 81(4), 313-326.
[http://dx.doi.org/10.1021/cr00044a001]
[17]
Regitz, M.; Maas, G. Short-lived phosphorus(V) compounds having coordination number 3. Top. Curr. Chem., 1981, 97, 72-120.
[http://dx.doi.org/10.1007/BFb0037041]
[18]
Quin, L.D. Practical aspects of the chemistry of metaphosphates and other transient dioxophosphoranes. Coord. Chem. Rev., 1994, 137, 525-559.
[http://dx.doi.org/10.1016/0010-8545(94)03011-E]
[19]
Kashemirov, B.A.; Ju, J-Y.; Bau, R.; McKenna, C.E. “Troika acids”: Synthesis, structure, and fragmentation pathways of novel α-(hydroxyimino)phosphonoacetic acids. J. Am. Chem. Soc., 1995, 117(27), 7285-7286.
[http://dx.doi.org/10.1021/ja00132a045]
[20]
Mitchell, M.C.; Kee, T.P. Recent developments in phosphono-transfer chemistry. Coord. Chem. Rev., 1997, 158, 359-383.
[http://dx.doi.org/10.1016/S0010-8545(97)90065-5]
[21]
Markovski, L.N.; Romanenko, V.D.; Ruban, A.V.; Drapailo, A.B. Synthesis of stable monomeric metaphosphonimidates, aryl(oxo, thioxo-, or selenoxo-)iminophosphoranes. J. Chem. Soc. Chem. Commun., 1984, (24), 1692-1693.
[http://dx.doi.org/10.1039/c39840001692]
[22]
Meisel, M.; Bock, H.; Solouki, B.; Kremer, M. Generation and ionization pattern of the iso(valence)electronic compounds CIP(=O)2 and CIP(=S)2. Angew. Chem. Int. Ed. Engl., 1989, 28(10), 1373-1376.
[http://dx.doi.org/10.1002/anie.198913731]
[23]
Quin, L.D.; Wu, X-P.; Quin, G.S.; Jankowski, S. An Application of low-coordination phosphorus species: Phosphorylation of OH groups on various solids. Phosphorus Sulfur Silicon Relat. Elem., 1993, 76(1–4), 91-94.
[http://dx.doi.org/10.1080/10426509308032366]
[24]
Herschlag, D.; Jencks, W.P. The Effects of Mg2+, hydrogen bonding, and steric factors on rate and equilibrium constants for phosphoryl transfer between carboxylate ions and pyridines. J. Am. Chem. Soc., 1990, 112(5), 1942-1950.
[http://dx.doi.org/10.1021/ja00161a046]
[25]
Shepard, S.M.; Cummins, C.C. N-donor base adducts of P2O5 as diphosphorylation reagents. ChemRxiv, 2021.
[http://dx.doi.org/10.26434/chemrxiv-2021-8v8nx]
[26]
Mohamady, S.; Taylor, S.D. Synthesis of nucleoside tetraphosphates and dinucleoside pentaphosphates via activation of cyclic trimetaphosphate. Org. Lett., 2013, 15(11), 2612-2615.
[http://dx.doi.org/10.1021/ol4007822] [PMID: 23668391]
[27]
Mohamady, S.; Taylor, S.D. Synthesis of nucleoside triphosphates from 2′,3′-protected nucleosides using trimetaphosphate. Org. Lett., 2016, 18(3), 580-583.
[http://dx.doi.org/10.1021/acs.orglett.5b03624] [PMID: 26759914]
[28]
Mohamady, S.; Taylor, S.D. Synthesis of nucleoside 5′-tetraphosphates containing terminal fluorescent labels via activated cyclic trimetaphosphate. J. Org. Chem., 2014, 79(5), 2308-2313.
[http://dx.doi.org/10.1021/jo500051y] [PMID: 24552623]
[29]
Azevedo, C.; Singh, J.; Steck, N.; Hofer, A.; Ruiz, F.A.; Singh, T.; Jessen, H.J.; Saiardi, A. Screening a protein array with synthetic biotinylated inorganic polyphosphate to define the human polyP-ome. ACS Chem. Biol., 2018, 13(8), 1958-1963.
[http://dx.doi.org/10.1021/acschembio.8b00357] [PMID: 29924597]
[30]
Shepard, S.M.; Cummins, C.C. Functionalization of intact trimetaphosphate: A triphosphorylating reagent for C, N, and O nucleophiles. J. Am. Chem. Soc., 2019, 141(5), 1852-1856.
[http://dx.doi.org/10.1021/jacs.8b12204] [PMID: 30646689]
[31]
Jiang, Y.; Chakarawet, K.; Kohout, A.L.; Nava, M.; Marino, N.; Cummins, C.C. Dihydrogen tetrametaphosphate, [P4O12H2]2-: Synthesis, solubilization in organic media, preparation of its anhydride [P4O11]2- and acidic methyl ester, and conversion to tetrametaphosphate metal complexes via protonolysis. J. Am. Chem. Soc., 2014, 136(34), 11894-11897.
[http://dx.doi.org/10.1021/ja5058339] [PMID: 25102033]
[32]
Shepard, S.M.; Windsor, I.W.; Raines, R.T.; Cummins, C.C. Nucleoside tetra- and pentaphosphates prepared using a tetraphosphorylation reagent are potent inhibitors of Ribonuclease A. J. Am. Chem. Soc., 2019, 141(46), 18400-18404.
[http://dx.doi.org/10.1021/jacs.9b09760] [PMID: 31651164]
[33]
Shepard, S.M.; Kim, H.; Bang, Q.X.; Alhokbany, N.; Cummins, C.C. Synthesis of α,δ-disubstituted tetraphosphates and terminally-functionalized nucleoside pentaphos-phates. J. Am. Chem. Soc., 2021, 143(1), 463-470.
[http://dx.doi.org/10.1021/jacs.0c11884] [PMID: 33375782]
[34]
Geeson, M.B.; Cummins, C.C. Phosphoric acid as a precursor to chemicals traditionally synthesized from white phosphorus. Science, 2018, 359(6382), 1383-1385.
[http://dx.doi.org/10.1126/science.aar6620] [PMID: 29439027]
[35]
Geeson, M.B.; Ríos, P.; Transue, W.J.; Cummins, C.C. Orthophosphate and sulfate utilization for C–E (E = P, S) bond formation via trichlorosilyl phosphide and sulfide anions. J. Am. Chem. Soc., 2019, 141(15), 6375-6384.
[http://dx.doi.org/10.1021/jacs.9b01475] [PMID: 30901207]
[36]
Geeson, M.B.; Cummins, C.C. Let’s Make white phosphorus obsolete. ACS Cent. Sci., 2020, 6(6), 848-860.
[http://dx.doi.org/10.1021/acscentsci.0c00332] [PMID: 32607432]
[37]
Slootweg, J.C. Sustainable phosphorus chemistry: A Silylphosphide synthon for the generation of value-added phosphorus chemicals. Angew. Chem. Int. Ed. Engl., 2018, 57(22), 6386-6388.
[http://dx.doi.org/10.1002/anie.201803692] [PMID: 29737049]
[38]
Swager, T.M.; Peeks, M.D. Trichlorosilane paves the way from phosphoric acid to phosphorous molecules. Synfacts, 2018, 14(06), 0592.
[http://dx.doi.org/10.1055/s-0037-1609978]

© 2024 Bentham Science Publishers | Privacy Policy