[1]
M. Jabarulla, and H.N. Lee, "Speckle reduction on ultrasound liver images based on a sparse representation over a learned dictionary", Appl. Sci., vol. 8, no. 6, p. 903, 2018.
[http://dx.doi.org/10.3390/app8060903]
[http://dx.doi.org/10.3390/app8060903]
[2]
Ognjen Magud, Eva Tuba, and N. Bacanin, "Medical ultrasound image speckle noise reduction by adaptive median filter", Wseas Trans. Biol. Biomed., vol. 14, pp. 38-46, 2017.
[3]
M. Mafi, S. Tabarestani, M. Cabrerizo, A. Barreto, and M. Adjouadi, "Denoising of ultrasound images affected by combined speckle and Gaussian noise", IET Image Process., vol. 12, no. 12, pp. 2346-2351, 2018.
[http://dx.doi.org/10.1049/iet-ipr.2018.5292]
[http://dx.doi.org/10.1049/iet-ipr.2018.5292]
[4]
S. Sudharson, T. Pratap, and P. Kokil, "Noise level estimation for effective blind despeckling of medical ultrasound images", Biomed. Signal Process. Control, vol. 68, p. 102744, 2021.
[http://dx.doi.org/10.1016/j.bspc.2021.102744]
[http://dx.doi.org/10.1016/j.bspc.2021.102744]
[5]
P. Afshari, C. Zakian, and V. Ntziachristos, "Improving ultrasound images with elevational angular compounding based on acoustic refraction", Sci. Rep., vol. 10, no. 1, p. 18173, 2020.
[http://dx.doi.org/10.1038/s41598-020-75092-8] [PMID: 33097780]
[http://dx.doi.org/10.1038/s41598-020-75092-8] [PMID: 33097780]
[6]
J. Zhang, X. Xiu, J. Zhou, K. Zhao, Z. Tian, and Y. Cheng, "A novel despeckling method for medical ultrasound images based on the nonsubsampled shearlet and guided filter", Circuits Syst. Signal Process., vol. 39, no. 3, pp. 1449-1470, 2020.
[http://dx.doi.org/10.1007/s00034-019-01201-2]
[http://dx.doi.org/10.1007/s00034-019-01201-2]
[7]
D.M. Alex, and D.A. Chandy, Evaluation of inpainting in speckled and despeckled 2D ultrasound medical images.In: 2020 Advanced Computing and Communication Technologies for High Performance Applications., ACCTHPA, 2020, pp. 221-225.
[http://dx.doi.org/10.1109/ACCTHPA49271.2020.9213203]
[http://dx.doi.org/10.1109/ACCTHPA49271.2020.9213203]
[8]
S.K. Jain, and R.K. Ray, "Non-linear diffusion models for despeckling of images: Achievements and future challenges", IETE Tech. Rev., vol. 37, no. 1, pp. 66-82, 2020.
[http://dx.doi.org/10.1080/02564602.2019.1565960]
[http://dx.doi.org/10.1080/02564602.2019.1565960]
[9]
P.T. Akkasaligar, and S. Biradar, "Automatic segmentation and analysis of renal calculi in medical ultrasound images", Pattern Recognit. Image Anal., vol. 30, no. 4, pp. 748-756, 2020.
[http://dx.doi.org/10.1134/S1054661820040021]
[http://dx.doi.org/10.1134/S1054661820040021]
[10]
H. Aghababaei, and G. Ferraioli, "Statistical indices for despeckling evaluation in multichannel SAR images", IEEE Geosci. Remote Sens. Lett., vol. 18, no. 2, pp. 316-320, 2020.
[http://dx.doi.org/10.1109/LGRS.2020.2973462]
[http://dx.doi.org/10.1109/LGRS.2020.2973462]
[11]
L. Basavarajappa, J. Baek, S. Reddy, J. Song, H. Tai, G. Rijal, K.J. Parker, and K. Hoyt, "Multiparametric ultrasound imaging for the assessment of normal versus steatotic livers", Sci. Rep., vol. 11, no. 1, p. 2655, 2021.
[http://dx.doi.org/10.1038/s41598-021-82153-z] [PMID: 33514796]
[http://dx.doi.org/10.1038/s41598-021-82153-z] [PMID: 33514796]
[12]
P. Kokil, and S. Sudharson, "Despeckling of clinical ultrasound images using deep residual learning", Comput. Methods Programs Biomed., vol. 194, p. 105477, 2020.
[http://dx.doi.org/10.1016/j.cmpb.2020.105477] [PMID: 32454323]
[http://dx.doi.org/10.1016/j.cmpb.2020.105477] [PMID: 32454323]
[13]
H. Li, J. Weng, Y. Shi, W. Gu, Y. Mao, Y. Wang, W. Liu, and J. Zhang, "An improved deep learning approach for detection of thyroid papillary cancer in ultrasound images", Sci. Rep., vol. 8, no. 1, p. 6600, 2018.
[http://dx.doi.org/10.1038/s41598-018-25005-7] [PMID: 29700427]
[http://dx.doi.org/10.1038/s41598-018-25005-7] [PMID: 29700427]
3