Generic placeholder image

Current Nutrition & Food Science

Editor-in-Chief

ISSN (Print): 1573-4013
ISSN (Online): 2212-3881

Research Article

Therapeutic Effects of Modified Tempeh on Glycemic Control and Gut Microbiota Diversity in Diabetic Rats

Author(s): Rio Jati Kusuma*, Jaka Widada, Emy Huriyati and Madarina Julia

Volume 18, Issue 8, 2022

Published on: 27 May, 2022

Page: [765 - 774] Pages: 10

DOI: 10.2174/1573401318666220329101437

Price: $65

Abstract

Background: The role of the gut microbiota in improving glycemic control in diabetic patients is gaining attention. Tempeh is a fermented soy food from Indonesia that has antidiabetic and antidysbiotic effects. Interestingly, modification of tempeh processing by adding lactic acid bacteria has been reported to enhance the antidiabetic effect of tempeh.

Aims: This study aimed to evaluate the effects of modified tempeh on serum glucose, insulin, and gut microbiota diversity of diabetic rats.

Methods: Modified tempeh was developed by adding lactic acid bacteria from fermented cassava during tempeh processing. Diabetes was induced by injection of streptozotocin nicotinamide. Normal tempeh or modified tempeh was added to the diet and replaced 15% or 30% of casein. Serum glucose and insulin were analyzed before and after 30 days of intervention. At the end of the experiment, the appendix was sampled for gut microbiota analysis.

Result: Modified tempeh has a significantly higher number of lactic acid bacteria (9.99 ± 0.09 versus 7.74 ± 0.07 log CFU, p < 0.001) compared to normal tempeh. There was a significant difference (p < 0.01) in serum glucose and insulin after treatment. Both tempeh supplements increased the diversity of the gut microbiota. Gut microbiota diversity has a strong negative correlation with delta glucose (r = -0.63, p < 0.001) and delta insulin resistance index (r = -0.54, p = 0.003).

Conclusion: Modified tempeh has potential therapeutic antidiabetic activity, possibly through increased diversity of the gut microbiota.

Keywords: Diabetes mellitus, gut microbiota, lactic acid bacteria, tempeh, fermented cassava, co-fermentation.

« Previous
Graphical Abstract

[1]
Saeedi P, Petersohn I, Salpea P, et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th edition. Diabetes Res Clin Pract. 2019. 157: 107843
[2]
Gérard C, Vidal H. Impact of gut microbiota on host glycemic control. Front Endocrinol 2019; 10: 29.
[3]
Pedersen HK, Gudmundsdottir V, Nielsen HB, et al. Human gut microbes impact host serum metabolome and insulin sensitivity. Nature 2016; 535(7612): 376-81.
[http://dx.doi.org/10.1038/nature18646] [PMID: 27409811]
[4]
Dao MC, Sokolovska N, Brazeilles R, et al. A data integration multi-omics approach to study calorie restriction-induced changes in insulin sensitivity. Front Physiol 2019; 9: 1958.
[http://dx.doi.org/10.3389/fphys.2018.01958] [PMID: 30804813]
[5]
Zhang Y, Zhang H. Microbiota associated with type 2 diabetes and its related complications. Food Sci Hum Wellness 2013; 2(3-4): 167-72.
[http://dx.doi.org/10.1016/j.fshw.2013.09.002]
[6]
Pushpanathan P, Srikanth P, Seshadri KG, et al. Gut microbiota in type 2 diabetes individuals and correlation with monocyte chemoattractant protein1 and interferon gamma from patients attending a Tertiary Care Centre in Chennai, India. Indian J Endocrinol Metab 2016; 20(4): 523-30.
[http://dx.doi.org/10.4103/2230-8210.183474] [PMID: 27366720]
[7]
Bintari SH, Putriningtyas ND, Nugraheni K, Widyastiti NS, Dharmana E, Johan A. Comparative effect of tempe and soymilk on fasting blood glucose, insulin level and pancreatic beta cell expression (study on streptozotocin-induced diabetic rats). Pak J Nutr 2015; 14(4): 239-46.
[http://dx.doi.org/10.3923/pjn.2015.239.246]
[8]
Borges CWC, Carrão-Panizzi MC, Mandarino JMG, et al. Contents and bioconversion of β-glycoside isoflavones to aglycones in the processing conditions of soybean tempeh. Pesqui Agropecu Bras 2016; 51(3): 271-9.
[http://dx.doi.org/10.1590/S0100-204X2016000300009]
[9]
Kuligowski M. Jasińska-Kuligowska I, Nowak J. Evaluation of bean and soy tempeh influence on intestinal bacteria and estimation of antibacterial properties of bean tempeh. Pol J Microbiol 2013; 62(2): 189-94.
[http://dx.doi.org/10.33073/pjm-2013-024] [PMID: 24053022]
[10]
Soka S, Suwanto A, Sajuthi D, Rusmana I. Impact of tempeh supplementation on gut microbiota composition in sprague-dawley rats. Res J Microbiol 2014; 9(4): 189-98.
[http://dx.doi.org/10.3923/jm.2014.189.198]
[11]
Stephanie S, Kartawidjajaputra F, Silo W, Yogiara Y, Suwanto A. Tempeh consumption enhanced beneficial bacteria in the human gut. Food Res 2018; 3(1): 57-63.
[http://dx.doi.org/10.26656/fr.2017.3(1).230]
[12]
Huang Y-C, Wu B-H, Chu Y-L, Chang W-C, Wu M-C. Effects of tempeh fermentation with Lactobacillus plantarum and Rhizopus oligosporus on streptozotocin-induced type II diabetes mellitus in rats. Nutrients 2018; 10(9): E1143.
[http://dx.doi.org/10.3390/nu10091143] [PMID: 30135362]
[13]
Kuligowski M. Pawłowska K, Jasińska-Kuligowska I, Nowak J. Isoflavone composition, polyphenols content and antioxidative activity of soybean seeds during tempeh fermentation. CYTA J Food 2017; 15: 27-33.
[14]
Nuraida L. A review: Health-promoting lactic acid bacteria in traditional Indonesian fermented foods. Food Sci Hum Wellness 2015; 4(2): 47-55.
[http://dx.doi.org/10.1016/j.fshw.2015.06.001]
[15]
Astriani A, Diniyah N, Jayus J, Nurhayati N. Phenotypic identification of indigenous fungi and lactic acid bacteria isolated from ‘gatot’ an Indonesian fermented food. Biodiversitas (Surak) 2018; 19(3): 947-54.
[http://dx.doi.org/10.13057/biodiv/d190325]
[16]
Hou Q, Bai X, Li W, et al. Design of primers for evaluation of lactic acid bacteria populations in complex biological samples. Front Microbiol 2018; 9: 2045.
[http://dx.doi.org/10.3389/fmicb.2018.02045] [PMID: 30233530]
[17]
Kusuma RJ, Ermamilia A. Fortification of tempeh with encapsulated iron improves iron status and gut microbiota composition in iron deficiency anemia condition. Nutr Food Sci 2018; 48(6): 962-72.
[http://dx.doi.org/10.1108/NFS-01-2018-0027]
[18]
Ghasemi A, Khalifi S, Jedi S. Streptozotocin-nicotinamide-induced rat model of type 2 diabetes. (review). Acta Physiol Hung 2014; 101(4): 408-20.
[http://dx.doi.org/10.1556/APhysiol.101.2014.4.2] [PMID: 25532953]
[19]
Jami E, Shterzer N, Mizrahi I. Evaluation of automated ribosomal intergenic spacer analysis for bacterial fingerprinting of rumen microbiome compared to pyrosequencing technology. Pathogens 2014; 3(1): 109-20.
[http://dx.doi.org/10.3390/pathogens3010109] [PMID: 25437610]
[20]
Smith CJ, Danilowicz BS, Clear AK, Costello FJ, Wilson B, Meijer WG. T-Align, a web-based tool for comparison of multiple terminal restriction fragment length polymorphism profiles. FEMS Microbiol Ecol 2005; 54(3): 375-80.
[http://dx.doi.org/10.1016/j.femsec.2005.05.002] [PMID: 16332335]
[21]
Shyu C, Soule T, Bent SJ, Foster JA, Forney LJ. MiCA: A web-based tool for the analysis of microbial communities based on terminal-restriction fragment length polymorphisms of 16S and 18S rRNA genes. Microb Ecol 2007; 53(4): 562-70.
[http://dx.doi.org/10.1007/s00248-006-9106-0] [PMID: 17406775]
[22]
Dimidi E, Cox SR, Rossi M, Whelan K. Fermented foods: Definitions and characteristics, impact on the gut microbiota and effects on gastrointestinal health and disease. Nutrients 2019; 11(8): 1806.
[http://dx.doi.org/10.3390/nu11081806] [PMID: 31387262]
[23]
Pessione E, Cirrincione S. Bioactive molecules released in food by lactic acid bacteria: Encrypted peptides and biogenic amines. Front Microbiol 2016; 7: 876.
[http://dx.doi.org/10.3389/fmicb.2016.00876] [PMID: 27375596]
[24]
Cui Y, Miao K, Niyaphorn S, Qu X. Production of gamma-aminobutyric acid from lactic acid bacteria: A systematic review. Int J Mol Sci 2020; 21(3): 21.
[http://dx.doi.org/10.3390/ijms21030995] [PMID: 32028587]
[25]
Masuda M, Ide M, Utsumi H, Niiro T, Shimamura Y, Murata M. Production potency of folate, vitamin B(12), and thiamine by lactic acid bacteria isolated from Japanese pickles. Biosci Biotechnol Biochem 2012; 76(11): 2061-7.
[http://dx.doi.org/10.1271/bbb.120414] [PMID: 23132566]
[26]
Michlmayr H, Kneifel W. β-Glucosidase activities of lactic acid bacteria: Mechanisms, impact on fermented food and human health FEMS Microbiol Lett 2014; 352(1): 1-10.
[http://dx.doi.org/10.1111/1574-6968.12348] [PMID: 24330034]
[27]
Yuksekdag Z, Acar BC, Aslim B, Tukenmez U. β-Glucosidase activity and bioconversion of isoflavone glycosides to aglycones by potential probiotic bacteria Int J Food Prop 2017; 20(sup3): S2878-86.
[http://dx.doi.org/10.1080/10942912.2017.1382506]
[28]
Fessard A, Remize F. Why are weissella spp. not used as commercial starter cultures for food fermentation? Fermentation (Basel) 2017; 3(3): 38.
[http://dx.doi.org/10.3390/fermentation3030038]
[29]
Lee KW, Han NS, Kim JH. Purification and characterization of beta-glucosidase from Weissella cibaria 37. J Microbiol Biotechnol 2012; 22(12): 1705-13.
[http://dx.doi.org/10.4014/jmb.1206.06007] [PMID: 23221534]
[30]
Hsiao Y-H, Ho C-T, Pan M-H. Bioavailability and health benefits of major isoflavone aglycones and their metabolites. J Funct Foods 2020; 74: 104164.
[http://dx.doi.org/10.1016/j.jff.2020.104164]
[31]
Chun J, Kim GM, Lee KW, et al. Conversion of isoflavone glucosides to aglycones in soymilk by fermentation with lactic acid bacteria. J Food Sci 2007; 72(2): M39-44.
[http://dx.doi.org/10.1111/j.1750-3841.2007.00276.x] [PMID: 17995840]
[32]
Chun J, Kim JS, Kim JH. Enrichment of isoflavone aglycones in soymilk by fermentation with single and mixed cultures of Streptococcus infantarius 12 and Weissella sp. 4. Food Chem 2008; 109(2): 278-84.
[http://dx.doi.org/10.1016/j.foodchem.2007.12.024] [PMID: 26003348]
[33]
Gilbert ER, Liu D. Anti-diabetic functions of soy isoflavone genistein: Mechanisms underlying its effects on pancreatic β-cell function. Food Funct 2013; 4(2): 200-12.
[http://dx.doi.org/10.1039/C2FO30199G] [PMID: 23160185]
[34]
Lee D-S, Lee S-H. Genistein, a soy isoflavone, is a potent α-glucosidase inhibitor. FEBS Lett 2001; 501(1): 84-6.
[http://dx.doi.org/10.1016/S0014-5793(01)02631-X] [PMID: 11457461]
[35]
El-Kordy EA, Alshahrani AM. Effect of genistein, a natural soy isoflavone, on pancreatic β-cells of streptozotocin-induced diabetic rats: Histological and immunohistochemical study. J Microsc Ultrastruct 2015; 3(3): 108-19.
[http://dx.doi.org/10.1016/j.jmau.2015.03.005] [PMID: 30023190]
[36]
Fu Z, Zhang W, Zhen W, et al. Genistein induces pancreatic beta-cell proliferation through activation of multiple signaling pathways and prevents insulin-deficient diabetes in mice. Endocrinology 2010; 151(7): 3026-37.
[http://dx.doi.org/10.1210/en.2009-1294] [PMID: 20484465]
[37]
Ortega-Santos CP, Al-Nakkash L, Whisner CM. Exercise and/or genistein treatment impact gut microbiota and inflammation after 12 weeks on a high-fat, high-sugar diet in C57BL/6 mice. Nutrients 2020; 12(11): 3410.
[http://dx.doi.org/10.3390/nu12113410] [PMID: 33172007]
[38]
Guevara-Cruz M, Godinez-Salas ET, Sanchez-Tapia M, et al. Genistein stimulates insulin sensitivity through gut microbiota reshaping and skeletal muscle AMPK activation in obese subjects. BMJ Open Diabetes Res Care 2020; 8(1): e000948.
[http://dx.doi.org/10.1136/bmjdrc-2019-000948] [PMID: 32152146]
[39]
Cotillard A, Kennedy SP, Kong LC, et al. Dietary intervention impact on gut microbial gene richness. Nature 2013; 500(7464): 585-8.
[http://dx.doi.org/10.1038/nature12480] [PMID: 23985875]
[40]
Le Chatelier E, Nielsen T, Qin J, et al. Richness of human gut microbiome correlates with metabolic markers. Nature 2013; 500(7464): 541-6.
[http://dx.doi.org/10.1038/nature12506] [PMID: 23985870]
[41]
Chen Z, Radjabzadeh D, Chen L, et al. Association of insulin resistance and type 2 diabetes with gut microbial diversity: A microbiome-wide analysis from population studies. JAMA Netw Open 2021; 4(7): e2118811.
[http://dx.doi.org/10.1001/jamanetworkopen.2021.18811] [PMID: 34323983]
[42]
Kovacs A, Yacoby K, Gophna U. A systematic assessment of Automated Ribosomal Intergenic Spacer Analysis (ARISA) as a tool for estimating bacterial richness. Res Microbiol 2010; 161(3): 192-7.
[http://dx.doi.org/10.1016/j.resmic.2010.01.006] [PMID: 20138144]
[43]
Fisher MM, Triplett EW. Automated approach for ribosomal intergenic spacer analysis of microbial diversity and its application to freshwater bacterial communities. Appl Environ Microbiol 1999; 65(10): 4630-6.
[http://dx.doi.org/10.1128/AEM.65.10.4630-4636.1999] [PMID: 10508099]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy