Generic placeholder image

Current Catalysis

Editor-in-Chief

ISSN (Print): 2211-5447
ISSN (Online): 2211-5455

Research Article

Alumina Supported Nickel-iron-ruthenium based Catalyst for Dry Reforming of Methane

Author(s): Nawal Alhajri* and Mohammed Albuali

Volume 11, Issue 1, 2022

Published on: 24 June, 2022

Page: [57 - 64] Pages: 8

DOI: 10.2174/2211544711666220328130026

Price: $65

Abstract

Introduction: Alumina-supported nickel-iron-ruthenium-based catalyst with a high surface area (200 m2 g-1) was synthesized via an impregnation method and tested for dry reforming of methane.

Methods: The prepared catalyst was characterized by different analytical techniques, such as Xray diffraction, X-ray fluorescence, N2 sorption, environmental scanning electron microscopy, and X-ray photoelectron spectroscopy (XPS).

Result: The results revealed that the catalyst contains 2.5 wt.% Ni, 2 wt.% Fe and 1.8 wt.% Ru.

Conclusion: The catalytic tests showed that the prepared sample exhibits remarkable catalytic activity towards methane dry reforming, with high conversion of methane and carbon dioxide reaching up to 92% and 89%, respectively, at 800°C.

Keywords: Catalyst, nickel-iron ruthenium, alumina, nanoparticles, hydrogen, methane dry reforming.

Graphical Abstract

[1]
Luisetto, I.; Sarno, C.; Felicis, D.D.; Basoli, F.; Battocchio, C.; Tuti, S.; Licoccia, S.; Bartolomeo, E.D. Ni supported on γ-Al2O3 promoted by Ru for the dry reforming of methane in packed and monolithic reactors. Fuel Process. Technol., 2017, 158, 130-140.
[http://dx.doi.org/10.1016/j.fuproc.2016.12.015]
[2]
Fuertes, A.; Da Costa-Serra, J.F.; Chica, A. New Catalysts based on Ni-Birnessite and Ni-Todorokite for the efficient production of hydrogen by bioethanol steam reforming. Energy Procedia, 2012, 29, 181-191.
[http://dx.doi.org/10.1016/j.egypro.2012.09.023]
[3]
Samojeden, B.; Kamienowska, M.; Colorado, A.I.; Galvez, M.E.; Kolebuk, I.; Motak, M.; Da Costa, P. Novel nickel- and magnesium-modified cenospheres as catalysts for dry reforming of methane at moderate temperatures. Catalysts, 2019, 9(12), 618.
[http://dx.doi.org/10.3390/catal9121066]
[4]
Khairudin, N.F.; Sukri, M.F.F.; Khavarian, M.; Mohamed, A.R. Understanding the performance and mechanism of Mg-containing oxides as support catalysts in the thermal dry reforming of methane. Beilstein J. Nanotechnol., 2018, 9, 1162-1183.
[http://dx.doi.org/10.3762/bjnano.9.108] [PMID: 29719767]
[5]
Zubenko, D.; Singh, S.; Rosen, B.A. Exsolution of Re-alloy catalysts with enhanced stability for methane dry reforming. Appl. Catal. B, 2017, 209, 711-719.
[http://dx.doi.org/10.1016/j.apcatb.2017.03.047]
[6]
Múnera, J.F.; Irusta, S.; Cornaglia, L.M.; Lombardo, E.A.; Cesar, D.V.; Schmal, M. Kinetics and reaction pathway of the CO2 reforming of methane on Rh supported on lanthanum-based solid. J. Catal., 2007, 245(1), 25-34.
[http://dx.doi.org/10.1016/j.jcat.2006.09.008]
[7]
Connor, A.M.O.; Schuurman, Y.; Ross, J.R.H.; Mirodatos, C. Transient studies of carbon dioxide reforming of methane over Pt/ZrO2 and Pt/Al2O3. Catal. Today, 2006, 115(1-4), 191-198.
[http://dx.doi.org/10.1016/j.cattod.2006.02.051]
[8]
Liu, C.; Ye, J.; Jiang, J.; Pan, Y. Progresses in the preparation of coke resistant Ni-based catalyst for steam and CO2 reforming of methane. ChemCatChem, 2011, 3(3), 529-541.
[http://dx.doi.org/10.1002/cctc.201000358]
[9]
Asencios, Y.J.O.; Assaf, E.M. Combination of dry reforming and partial oxidation of methane on NiO-MgO-ZrO2 catalyst: Effect of nickel content. Fuel Process. Technol., 2013, 106, 247-252.
[http://dx.doi.org/10.1016/j.fuproc.2012.08.004]
[10]
Ginsburg, J.M.; Piña, J.; Solh, T.E.; de Lasa, H.I. Coke formation over a Nickel catalyst under methane dry reforming conditions: Thermodynamic and kinetic models. Ind. Eng. Chem. Res., 2005, 44(14), 4846-4854.
[http://dx.doi.org/10.1021/ie0496333]
[11]
de Lima, S.M.; Assaf, J.M. Ni–Fe catalysts based on perovskite-type oxides for dry reforming of methane to syngas. Catal. Lett., 2006, 108(1-2), 63-70.
[http://dx.doi.org/10.1007/s10562-006-0026-x]
[12]
Wysocka, I.; Hupka, J.; Rogala, A. Catalytic activity of Nickel and Ruthenium–Nickel catalysts supported on SiO2, ZrO2, Al2O3,and MgAl2O4 in a dry reforming process. Catalysts, 2019, 9(6), 540.
[http://dx.doi.org/10.3390/catal9060540]
[13]
Bian, Z.; Das, S.; Wai, M.H.; Hongmanorom, P.; Kawi, S. A review on bimetallic Nickel-based catalysts for CO2 reforming of methane. ChemPhysChem, 2017, 18(22), 3117-3134.
[http://dx.doi.org/10.1002/cphc.201700529] [PMID: 28710875]
[14]
Chen, Y.; Tomishige, K.; Yokoyama, K.; Fujimoto, K. Promoting effect of Pt, Pd and Rh noble metals to the Ni0.03Mg0.97O solid solution catalysts for the reforming of CH4 with CO2. Appl. Catal. A Gen., 1997, 165(1-2), 335-347.
[http://dx.doi.org/10.1016/S0926-860X(97)00216-0]
[15]
Theofanidis, S.A.; Batchu, R.; Galvita, V.V.; Poelman, H.; Marin, G.B. Carbon gasification from Fe-Ni catalysts after methane dry reforming. Appl. Catal. B, 2016, 185, 42-55.
[http://dx.doi.org/10.1016/j.apcatb.2015.12.006]
[16]
Kim, S.M.; Abdala, P.M.; Margossian, T.; Hosseini, D.; Foppa, L.; Armutlulu, A.; van Beek, W.; Comas-Vives, A.; Copéret, C.; Müller, C. Cooperativity and dynamics increase the performance of NiFe dry reforming catalysts. J. Am. Chem. Soc., 2017, 139(5), 1937-1949.
[http://dx.doi.org/10.1021/jacs.6b11487] [PMID: 28068106]
[17]
Margossian, T.; Larmier, K.; Kim, S.M.; Krumeich, K.; Müller, C.; Copéret, C. Supported bimetallic NiFe nanoparticles through colloid synthesis for improved dry reforming performance. ACS Catal., 2017, 7(10), 6942-6948.
[http://dx.doi.org/10.1021/acscatal.7b02091]
[18]
Theofanidis, S.A.; Galvita, V.V.; Poelman, H.; Marin, G.B. Enhanced carbon-resistant dry reforming Fe-Ni catalyst. Role of Fe. ACS Catal., 2015, 5(5), 3028-3039.
[http://dx.doi.org/10.1021/acscatal.5b00357]
[19]
Djaidja, A.; Messaoudi, H.; Kaddeche, D.; Barama, A. Study of Ni–M/MgO and Ni–M–Mg/Al (M=Fe or Cu) catalysts in the CH4–CO2 and CH4–H2O reforming. Int. J. Hydrogen Energy, 2015, 40(14), 4989-4995.
[http://dx.doi.org/10.1016/j.ijhydene.2014.12.106]
[20]
Theofanidis, S.A.; Galvita, V.V.; Sabbe, M.; Poelman, H.; Detavernier, C.; Marin, G.B. Controlling the stability of a Fe–Ni reforming catalyst: Structural organization of the active components. Appl. Catal. B, 2017, 209, 405-416.
[http://dx.doi.org/10.1016/j.apcatb.2017.03.025]
[21]
Aramouni, N.A.K.; Touma, J.G.; Tarboush, B.A.; Zeaiter, J.; Ahmad, M.N. Catalyst design for dry reforming of methane: Analysis review. Renew. Sustain. Energy Rev., 2018, 82, 2570-2585.
[http://dx.doi.org/10.1016/j.rser.2017.09.076]
[22]
Xu, Y.; Lin, Q.; Liu, B.; Jiang, F.; Xu, Y.; Liu, X. A facile fabrication of supported Ni/SiO2 catalysts for dry reforming of methane with remarkably enhanced catalytic performance. Catalysts, 2019, 9(2), 183.
[http://dx.doi.org/10.3390/catal9020183]
[23]
Gangurde, L.S.; Sturm, G.S.J.; Valero-Romero, M.J.; Mallada, R.; Santamaria, J.; Stankiewicz, A.I.; Stefanidis, G.D. Synthesis, characterization, and application of ruthenium-doped SrTiO3 perovskite catalysts for microwave-assisted methane dry reforming. Chem. Eng. Process., 2018, 127, 178-190.
[http://dx.doi.org/10.1016/j.cep.2018.03.024]
[24]
Zhou, H.; Zhang, T.; Sui, Z.; Zhu, Y.A.; Han, C.; Zhu, K.; Zhou, X. A single source method to generate Ru-Ni-MgO catalysts for methane dry reforming and the kinetic effect of Ru on carbon deposition and gasification. Appl. Catal. B, 2018, 233, 143-159.
[http://dx.doi.org/10.1016/j.apcatb.2018.03.103]
[25]
Jabbour, K.; Hassan, N.E.I.; Casale, S.; Estephane, J.; Zakhem, H.E.I. Promotional effect of Ru on the activity and stability of Co/SBA-15 catalysts in dry reforming of methane. Int. J. Hydrogen Energy, 2014, 39(15), 7780-7787.
[http://dx.doi.org/10.1016/j.ijhydene.2014.03.040]
[26]
Li, D.; Nakagawa, Y.; Tomishige, K. Methane reforming to synthesis gas over Ni catalysts modified with noble metalsAppl. Catal. Gen, 2011, 408, 1-24.
[http://dx.doi.org/10.1016/j.gene.2010.09.009]
[27]
Pawelec, B.; Damyanova, S.; Arishtirova, K.; Fierro, J.L.G.; Petrov, L. Structural and surface features of PtNi catalysts for reforming of methane with CO2. Appl. Catal. A Gen., 2007, 323, 188-201.
[http://dx.doi.org/10.1016/j.apcata.2007.02.017]
[28]
Pavlova, S.; Kapokova, L.; Bunina, R.; Alikina, G.; Sazonova, N.; Krieger, T.; Ishchenko, A.; Rogov, V.; Gulyaev, R.; Sadykov, V.; Mirodatos, C. Syngas production by CO2 reforming of methane using LnFeNi(Ru)O3 perovskites as precursors of robust catalysts. Catal. Sci. Technol., 2012, 2(10), 2099-2108.
[http://dx.doi.org/10.1039/c2cy20054f]
[29]
Frikha, K.; Limousy, L.; Bouaziz, J.; Chaari, K.; Josien, L.; Nouali, H.; Michelin, L.; Vidal, L.; Hajjar-Garreau, S.; Bennici, S. Binary oxides prepared by microwave-assisted solution combustion: Synthesis, characterization and catalytic activity. Materials (Basel), 2019, 12(6), 910.
[http://dx.doi.org/10.3390/ma12060910]
[30]
Hafshejani, L.D.; Tangsir, S.; Koponen, H.; Riikonen, J.; Karhunen, T.; Tapper, U.; Lehto, V.; Moazed, H.; Naseri, A.A.; Hooshmand, A.; Jokiniemi, J.; Bhatnagar, A.; Lähde, A. Synthesis and characterization of Al2O3 nanoparticles by Flame Spray Pyrolysis (FSP): Role of Fe ions in the precursor. Powder Technol., 2016, 298, 42-49.
[http://dx.doi.org/10.1016/j.powtec.2016.05.003]
[31]
Schwengber, C.A.; da Silva, F.A.; Schaffner, R.A.; Fernandes-Machado, N.R.C.; Ferracin, R.J.; Bach, V.R.; Alves, H.J. Methane dry reforming using Ni/Al2O3 catalysts: Evaluation of the effects of temperature, space velocity and reaction time. J. Environ. Chem. Eng., 2016, 4(3), 3688-3695.
[http://dx.doi.org/10.1016/j.jece.2016.07.001]
[32]
Fang, H.; Zheng, J.; Luo, X.; Du, J.; Roldan, A.; Leoni, S.; Yuan, Y. Product tunable behavior of carbon nanotubes-supported Ni–Fe catalysts for guaiacol hydrodeoxygenation. Appl. Catal. A Gen., 2017, 529, 20-31.
[http://dx.doi.org/10.1016/j.apcata.2016.10.011]
[33]
Zhao, Z.; Wu, H.; He, H.; Xu, X.; Jin, Y. Self-standing non-noble metal (Ni–Fe) oxide nanotube array anode catalysts with synergistic reactivity for high-performance water oxidation. J. Mater. Chem. A Mater. Energy Sustain., 2015, 3(13), 7179-7186.
[http://dx.doi.org/10.1039/C5TA00160A]
[34]
Han, Z.J.; Pineda, S.; Murdock, A.T.; Seo, D.H.; Ostrikov, K.; Bendavid, A. RuO2-coated vertical graphene hybrid electrodes for high-performance solid-state supercapacitors. J. Mater. Chem. A Mater. Energy Sustain., 2017, 5(33), 17293-17301.
[http://dx.doi.org/10.1039/C7TA03355A]
[35]
Lee, H.C.; Kim, B.M.; Jeong, C.K.; Toyoshima, R.; Kondoh, H.; Shimada, T.; Mase, K.; Mao, B.; Liu, Z.; Lee, H.; Huang, C.; Li, W.X.; Ross, P.N.; Mun, B.S. Surface segregation and oxidation of Pt3Ni(1 1 1) alloys under oxygen environment. Catal. Today, 2016, 260, 3-7.
[http://dx.doi.org/10.1016/j.cattod.2015.05.003]
[36]
Liu, Z.; Zhang, F.; Rui, N.; Li, X.; Lin, L.; Betancourt, L.; Dong, S.; Xu, W.; Cen, J.; Attenkofer, K.; Idriss, H.; Rodriguez, J.A.; Senanayake, S.D. Highly active ceria-supported Ru catalyst for the dry reforming of methane: In situ identification of Ruδ+ Ce3+ interactions for enhanced conversion. ACS Catal., 2019, 9(4), 3349-3359.
[http://dx.doi.org/10.1021/acscatal.8b05162] [PMID: 31799023]
[37]
Shariatinia, Z.; Khani, Y.; Bahadoran, F. Synthesis of a novel 3%Ru/CeZr0.5GdO4 nanocatalyst and its application in the dry and steam reforming of methane. Int. J. Environ. Sci. Technol., 2016, 13(2), 423-434.
[http://dx.doi.org/10.1007/s13762-015-0907-x]
[38]
Moreno, A.A.; Ramirez-Reina, T.; Ivanova, S.; Roger, A.C.; Centeno, M.A.; Odriozola, J.A. Bimetallic Ni–Ru and Ni–Re catalysts for dry reforming of methane: Understanding the synergies of the selected promoters. Front Chem., 2021, 9, 694976.
[http://dx.doi.org/10.3389/fchem.2021.694976] [PMID: 34307298]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy