Abstract
Introduction: Alumina-supported nickel-iron-ruthenium-based catalyst with a high surface area (200 m2 g-1) was synthesized via an impregnation method and tested for dry reforming of methane.
Methods: The prepared catalyst was characterized by different analytical techniques, such as Xray diffraction, X-ray fluorescence, N2 sorption, environmental scanning electron microscopy, and X-ray photoelectron spectroscopy (XPS).
Result: The results revealed that the catalyst contains 2.5 wt.% Ni, 2 wt.% Fe and 1.8 wt.% Ru.
Conclusion: The catalytic tests showed that the prepared sample exhibits remarkable catalytic activity towards methane dry reforming, with high conversion of methane and carbon dioxide reaching up to 92% and 89%, respectively, at 800°C.
Keywords: Catalyst, nickel-iron ruthenium, alumina, nanoparticles, hydrogen, methane dry reforming.
Graphical Abstract
[http://dx.doi.org/10.1016/j.fuproc.2016.12.015]
[http://dx.doi.org/10.1016/j.egypro.2012.09.023]
[http://dx.doi.org/10.3390/catal9121066]
[http://dx.doi.org/10.3762/bjnano.9.108] [PMID: 29719767]
[http://dx.doi.org/10.1016/j.apcatb.2017.03.047]
[http://dx.doi.org/10.1016/j.jcat.2006.09.008]
[http://dx.doi.org/10.1016/j.cattod.2006.02.051]
[http://dx.doi.org/10.1002/cctc.201000358]
[http://dx.doi.org/10.1016/j.fuproc.2012.08.004]
[http://dx.doi.org/10.1021/ie0496333]
[http://dx.doi.org/10.1007/s10562-006-0026-x]
[http://dx.doi.org/10.3390/catal9060540]
[http://dx.doi.org/10.1002/cphc.201700529] [PMID: 28710875]
[http://dx.doi.org/10.1016/S0926-860X(97)00216-0]
[http://dx.doi.org/10.1016/j.apcatb.2015.12.006]
[http://dx.doi.org/10.1021/jacs.6b11487] [PMID: 28068106]
[http://dx.doi.org/10.1021/acscatal.7b02091]
[http://dx.doi.org/10.1021/acscatal.5b00357]
[http://dx.doi.org/10.1016/j.ijhydene.2014.12.106]
[http://dx.doi.org/10.1016/j.apcatb.2017.03.025]
[http://dx.doi.org/10.1016/j.rser.2017.09.076]
[http://dx.doi.org/10.3390/catal9020183]
[http://dx.doi.org/10.1016/j.cep.2018.03.024]
[http://dx.doi.org/10.1016/j.apcatb.2018.03.103]
[http://dx.doi.org/10.1016/j.ijhydene.2014.03.040]
[http://dx.doi.org/10.1016/j.gene.2010.09.009]
[http://dx.doi.org/10.1016/j.apcata.2007.02.017]
[http://dx.doi.org/10.1039/c2cy20054f]
[http://dx.doi.org/10.3390/ma12060910]
[http://dx.doi.org/10.1016/j.powtec.2016.05.003]
[http://dx.doi.org/10.1016/j.jece.2016.07.001]
[http://dx.doi.org/10.1016/j.apcata.2016.10.011]
[http://dx.doi.org/10.1039/C5TA00160A]
[http://dx.doi.org/10.1039/C7TA03355A]
[http://dx.doi.org/10.1016/j.cattod.2015.05.003]
[http://dx.doi.org/10.1021/acscatal.8b05162] [PMID: 31799023]
[http://dx.doi.org/10.1007/s13762-015-0907-x]
[http://dx.doi.org/10.3389/fchem.2021.694976] [PMID: 34307298]