Generic placeholder image

Current Organic Synthesis

Editor-in-Chief

ISSN (Print): 1570-1794
ISSN (Online): 1875-6271

Mini-Review Article

Recent Advances in Copper-Catalyzed Carbon Chalcogenides Cross- Coupling Reactions

Author(s): Totan Roy, Atanu Mahata and Debasish Kundu*

Volume 20, Issue 3, 2023

Published on: 08 September, 2022

Page: [267 - 277] Pages: 11

DOI: 10.2174/1570179419666220324122735

Price: $65

Abstract

Cu-catalyzed carbon-heteroatom bond formation is a powerful tool in the field of organic synthesis. In the past two decades, numerous Cu-based catalytic systems are developed in both homogeneous and heterogeneous forms. Important developmentshave been reported on Cubased catalytic systems in the field of C-Chalcogenide cross-coupling in the last few decades. Where homogeneous Cu/L-based catalytic systems are found to perform reactions with high selectivity, heterogeneous supported-Cu and Cu-based nanoparticles are found to perform the reactions under sustainable conditions and high recyclability of catalytic systems. This present overview mainly focuses on the recent advances and applications in this fast-growing research field with an emphasis on copper-catalyzed cross-coupling generations of carbon-chalcogenide (S/Se/Te) bonds.

Keywords: Copper, Selenium, Sulfur, Tellurium, Cross-Coupling, Organochalcogenides

Next »
Graphical Abstract

[1]
(a) Besev, M.; Engman, L. Diastereocontrol by a hydroxyl auxiliary in the synthesis of pyrrolidines via radical cyclization. Org. Lett., 2002, 4(18), 3023-3025.
[http://dx.doi.org/10.1021/ol026038t] [PMID: 12201707];
(b) Berlin, S.; Ericsson, C.; Engman, L. Radical carbonylation/reductive cyclization for the construction of tetrahydrofuran-3-ones and pyrrolidin-3-ones. J. Org. Chem., 2003, 68(22), 8386-8396.
[http://dx.doi.org/10.1021/jo030153f] [PMID: 14575462];
(c) Freudendahl, D.M.; Santoro, S.; Shahzad, S.A.; Santi, C.; Wirth, T. Green chemistry with selenium reagents: Development of efficient catalytic reactions. Angew. Chem. Int. Ed. Engl., 2009, 48(45), 8409-8411.
[http://dx.doi.org/10.1002/anie.200903893] [PMID: 19802863];
(d) Srivastava, P.; Engman, L. A radical cyclization route to cyclic imines. Tetrahedron Lett., 2010, 51(8), 1149-1151.
[http://dx.doi.org/10.1016/j.tetlet.2009.12.104]
[2]
(a) Patai, S.; Rappoport, Z. The chemistry of organic selenium and tellurium compounds; John Wiley and Sons: New York, 1987, Vol. 2, . ;
(b) Hellberg, J.; Remonen, T.; Johansson, M.; Inganas, O.; Theander, M.; Engman, L.; Eriksson, P. New monomers for polythiophenes. Synth. Met., 1997, 84(1-3), 251-252.
[http://dx.doi.org/10.1016/S0379-6779(97)80737-0];
(c) Evano, G.; Blanchard, N.; Toumi, M. Copper-mediated coupling reactions and their applications in natural products and designed biomolecules synthesis. Chem. Rev., 2008, 108(8), 3054-3131.
[http://dx.doi.org/10.1021/cr8002505] [PMID: 18698737];
(d)) Wirth, T. Organoselenium Chemistry: Synthesis and Reactions; Wiley-VCH: Weinheim, Germany, 2012, pp. 1-65.;
(e) Manjare, S.T.; Kim, Y.; Churchill, D.G. Selenium- and tellurium-containing fluorescent molecular probes for the detection of biologically important analytes. Acc. Chem. Res., 2014, 47(10), 2985-2998.
[http://dx.doi.org/10.1021/ar500187v] [PMID: 25248146];
(f) Rampon, D.S.; Rodembusch, F.S.; Schneider, J.M.F.M.; Bechto, L.H.; Gonçalves, P.F.B.; Merlo, A.A.; Schneider, P.H. Novel selenoesters fluorescent liquid crystalline exhibiting a rich phase polymorphism. J. Mater. Chem., 2010, 20(4), 715-722.
[http://dx.doi.org/10.1039/B917366H]
[3]
(a) Devillanova, F.A.; du Mont, W.W. Handbook of Chalcogen Chemistry: New Perspectives in Sulfur, Selenium and Tellurium, 2nd ed; RSC Publishing: Cambridge, 2013. ;
(b) Rappoport, Z. PATAI’s Chemistry of Functional Groups: The Chemistry of Organic Selenium and Tellurium Compounds, 1st ed; Wiley: Hoboken, New Jersey, 2014.
[4]
Ruiz-Castillo, P.; Buchwald, S.L. Applications of palladium-catalyzed C-N cross-coupling reactions. Chem. Rev., 2016, 116(19), 12564-12649.
[http://dx.doi.org/10.1021/acs.chemrev.6b00512] [PMID: 27689804]
[5]
Beletskaya, I.P.; Ananikov, V.P. Transition-metal-catalyzed C-S, C-Se, and C-Te bond formation via cross-coupling and atom-economic addition reactions. Chem. Rev., 2011, 111(3), 1596-1636.
[http://dx.doi.org/10.1021/cr100347k] [PMID: 21391564]
[6]
Lee, C-F.; Liu, Y-C.; Badsara, S.S. Transition-metal-catalyzed C-S bond coupling reaction. Chem. Asian J., 2014, 9(3), 706-722.
[http://dx.doi.org/10.1002/asia.201301500] [PMID: 24443103]
[7]
Abdoli, M.; Mirjafary, Z.; Saeidian, H.; Kakanejadifard, A. New developments in direct functionalization of C–H and N–H bonds of purine bases via metal catalyzed cross-coupling reactions. RSC Adv, 2015, 5(55), 44371-44389.
[http://dx.doi.org/10.1039/C5RA04406E]
[8]
Kundu, D. Synthetic strategies for aryl/heterocyclic selenides and tellurides under transition-metal-catalyst free conditions. RSC Adv, 2021, 11(12), 6682-6698.
[http://dx.doi.org/10.1039/D0RA10629A]
[9]
Giri, R.; Brusoe, A.; Troshin, K.; Wang, J.Y.; Font, M.; Hartwig, J.F. Mechanism of the ullmann biaryl ether synthesis catalyzed by complexes of anionic ligands: Evidence for the reaction of iodoarenes with ligated anionic CuI intermediates. J. Am. Chem. Soc., 2018, 140(2), 793-806.
[http://dx.doi.org/10.1021/jacs.7b11853] [PMID: 29224350]
[10]
Didehban, K.; Vessally, E.; Hosseinian, A.; Edjlali, L.; Khosroshahic, E.S. Nanocatalysts for C-Se cross-coupling reactions. RSC Adv, 2018, 8(1), 291-301.
[http://dx.doi.org/10.1039/C7RA12663H]
[11]
Mukherjee, N.; Kundu, D.; Ranu, B.C. Copper-Silver dual catalyzed decyanative C-Se cross-coupling. Adv. Synth. Catal., 2017, 359(2), 329-338.
[http://dx.doi.org/10.1002/adsc.201600933]
[12]
Chatterjee, T.; Ranu, B.C. Solvent-controlled halo-selective selenylation of aryl halides catalyzed by Cu(II) supported on Al2O3. A general protocol for the synthesis of unsymmetrical organo mono- and bis-selenides. J. Org. Chem., 2013, 78(14), 7145-7153.
[http://dx.doi.org/10.1021/jo401062k] [PMID: 23786642]
[13]
Kundu, D.; Ahammed, S.; Ranu, B.C. Microwave-assisted reaction of aryl diazonium fluoroborate and diaryl dichalcogenides in dimethyl carbonate: A general procedure for the synthesis of unsymmetrical diaryl chalcogenides. Green Chem., 2012, 14(7), 2024-2030.
[http://dx.doi.org/10.1039/c2gc35328h]
[14]
Wang, L.; Wang, M.; Huang, F. A simple copper salt-catalyzed synthesis of unsymmetrical diaryl selenides and tellurides from arylboronic acids with diphenyl diselenide and ditelluride. Synlett, 2005, 13(13), 2007-2010.
[http://dx.doi.org/10.1055/s-2005-871936]
[15]
(a) Kondo, T.; Mitsudo Ta, T.A. Metal-catalyzed carbon-sulfur bond formation. Chem. Rev., 2000, 100(8), 3205-3220.
[http://dx.doi.org/10.1021/cr9902749] [PMID: 11749318];
Hegedus, L.L.; McCabe, R.W. Catalyst Poisoning; Marcel Dekker: New York, 1984, 128.
[http://dx.doi.org/10.1039/a701293d];
J. Chem. Soc., Faraday Trans., 1997, 93(14), 2445-2450.
[http://dx.doi.org/10.1006/jcat.1997.1709];
deactivation. J. Catal.,, 1997, 169(1), 338-346.
[16]
Zhang, Y.; Ngeow, K.C.; Ying, J.Y. The first N-heterocyclic carbene-based nickel catalyst for C-S coupling. Org. Lett., 2007, 9(18), 3495-3498.
[http://dx.doi.org/10.1021/ol071248x] [PMID: 17676857]
[17]
Wong, Y-C.; Jayanth, T.T.; Cheng, C.H. Cobalt-catalyzed aryl-sulfur bond formation. Org. Lett., 2006, 8(24), 5613-5616.
[http://dx.doi.org/10.1021/ol062344l] [PMID: 17107085]
[18]
Correa, A.; Carril, M.; Bolm, C. Iron-catalyzed S-arylation of thiols with aryl iodides. Angew. Chem. Int. Ed. Engl., 2008, 47(15), 2880-2883.
[http://dx.doi.org/10.1002/anie.200705668] [PMID: 18318033]
[19]
(a) Bird, T.G.C.; Crawley, G.C.; Large, M.S.; Ple, P. 4-Aryl-4-hydroxy-tetrahydropyrans and 3-aryl-3-hydroxy-tetrahydrofurans as 5-lipoxygenase inhibitors. E.P. Patent No. 0623614 A1, 1998.
[http://dx.doi.org/10.1021/op0500483];
(b) D.; Zakariya, M. P.; Perkins, J.; Rowan, P; Sadler, P.; Singleton, J. T.; Tornos, J.; Watts, A. J.; Woodland, I. A. Efficient synthesis of AZD4407 via thioether formation by nucleophilic attack of organometallic species on sulphur. Org. Process Res. Dev., 2005, 9, 555-569.
[http://dx.doi.org/10.1021/op0500483];
(c) Discovery of 1-[2-(2,4-dimethylphenylsulfanyl)phenyl]piperazine (Lu AA21004): a novel multimodal compound for the treatment of major depressive disorder. J. Med. Chem., 2011, 54(9), 3206-3221.
[http://dx.doi.org/10.1021/jm101459g] [PMID: 21486038];
(d) Basta-Kaim, A.; Budziszewska, B.; Jaworska-Feil, L.; Tetich, M.; Kubera, M.; Leśkiewicz, M.; Otczyk, M.; Lasoń, W. Antipsychotic drugs inhibit the human corticotropin-releasing-hormone gene promoter activity in neuro-2A cells-an involvement of protein kinases. Neuropsychopharmacology, 2006, 31(4), 853-865.
[http://dx.doi.org/10.1038/sj.npp.1300911] [PMID: 16205782]
[20]
Perin, G.; Alves, D.; Jacob, R.G.; Barcellos, A.; Soares, L.K.; Lenardão, E.J. Synthesis of organochalcogen compounds using non-conventional reaction media. ChemistrySelect, 2016, 2(2), 205-258.
[http://dx.doi.org/10.1002/slct.201500031]
[21]
Saba, S.; Botteselle, G.V.; Godoi, M.; Frizon, T.E.A.; Galetto, F.Z.; Rafique, J.; Braga, A.L. Copper-catalyzed synthesis of unsymmetrical diorganyl chalcogenides (Te/Se/S) from boronic acids under solvent-free conditions. Molecules, 2017, 22(8), 1367-1379.
[http://dx.doi.org/10.3390/molecules22081367] [PMID: 28820487]
[22]
(a) Chan, D.M.T.; Monaco, K.L.; Wang, R.; Winters, M.P. New N- and O-arylations with phenylboronic acids and cupric acetate. Tetrahedron Lett., 1998, 39(19), 2933-2936.
[http://dx.doi.org/10.1016/S0040-4039(98)00503-6];
(b) Evans, D.A.; Katz, J.L.; West, T.R. Synthesis of diaryl ethers through the copper-promoted arylation of phenols with arylboronic acids. An expedient synthesis of thyroxine. Tetrahedron Lett., 1998, 39(19), 2937-2940.
[http://dx.doi.org/10.1016/S0040-4039(98)00502-4];
(c) Lam, P.Y.S.; Clark, C.G.; Saubern, S.; Adams, J.; Winters, M.P.; Chan, D.M.T.; Combs, A. New aryl/heteroaryl C-N bond cross-coupling reactions via aryl-boronic acid/cupric acetate arylation. Tetrahedron Lett., 1998, 39(19), 2941-2944.
[http://dx.doi.org/10.1016/S0040-4039(98)00504-8];
(d) Combs, A.P.; Saubern, S.; Rafalski, M.; Lam, P.Y.S. Solid supported arylheteroaryl C-N cross-coupling reactions. Tetrahedron Lett., 1999, 40(9), 1623-1626.
[http://dx.doi.org/10.1016/S0040-4039(99)00026-X];
(e) Lam, P.Y.S.; Vincent, G.; Bonne, D.; Clark, C.G. Copper-promoted C-N bond cross-coupling with phenyl stannane. Tetrahedron Lett., 2002, 43(16), 3091-3094.
[http://dx.doi.org/10.1016/S0040-4039(02)00356-8];
(f) Combs, A.P.; Tadesse, S.; Rafalski, M.; Haque, T.S.; Lam, P.Y.S. N-arylation of primary and secondary aliphatic amines on solid supports. J. Comb. Chem., 2002, 4(2), 179-182.
[http://dx.doi.org/10.1021/cc0100767] [PMID: 11886294];
(g) Lam, P.Y.S.; Bonne, D.; Vincent, G.; Clark, C.G.; Combs, A.P. N-Arylation of ∝-aminoesters with p-tolylboronic acid promoted by copper (II) acetate. Tetrahedron Lett., 2003, 44(8), 1691-1694.
[http://dx.doi.org/10.1016/S0040-4039(02)02882-4];
(h) Chan, D.M.T.; Monaco, K.L.; Li, R.; Bonne, D.; Clark, C.G.; Lam, P.Y.S. Copper promoted C-N and C-O bond cross-coupling with phenyl and pyridylboronates. Tetrahedron Lett., 2003, 44(19), 3863-3865.
[http://dx.doi.org/10.1016/S0040-4039(03)00739-1];
(i) Lam, P.Y.S.; Vincent, G.; Bonne, D.; Clark, C.G. Copper-promoted/catalyzed C-N and C-O bond cross-coupling with vinylboronic acid and its utilities. Tetrahedron Lett., 2003, 44(26), 4927-4931.
[http://dx.doi.org/10.1016/S0040-4039(03)01037-2]
[23]
Kalinin, A.V.; Bower, J.F.; Riebel, P.; Snieckus, V.J. The directed ortho metalation-ullmann connection. A new Cu(I)-catalyzed variant for the synthesis of substituted diaryl ethers. Org. Chem., 1999, 64, 2986-2987.
[24]
Ke, F.; Qu, Y.; Jiang, Z.; Li, Z.; Wu, D.; Zhou, X. An efficient copper-catalyzed carbon-sulfur bond formation protocol in water. Org. Lett., 2011, 13(3), 454-457.
[http://dx.doi.org/10.1021/ol102784c] [PMID: 21174396]
[25]
Gujadhur, R.K.; Venkataraman, D. A general method for the formation of diaryl selenides using copper(I) catalysts. Tetrahedron Lett., 2003, 44(1), 81-84.
[http://dx.doi.org/10.1016/S0040-4039(02)02480-2]
[26]
(a) Gates, B.C. Supported metal clusters: Synthesis, structure, and catalysis. Chem. Rev., 1995, 95(3), 511-522.
[http://dx.doi.org/10.1021/cr00035a003];
(b) Bergbreiter, D.E. Alternative polymer supports for organic chemistry. Med. Res. Rev., 1999, 19(5), 439-450.
[http://dx.doi.org/10.1002/(SICI)1098-1128(199909)19:5<439:AID-MED9>3.0.CO;2-7] [PMID: 10502745]
[27]
Ahammed, S.; Kundu, D.; Mukherjee, N.; Ranu, B.C. Microwave assisted synthesis of chalcogenides. Curr. Microw. Chem., 2017, 4, 25-35.
[28]
Kappe, C.O.; Pieber, B.; Dallinger, D. Microwave effects in organic synthesis: Myth or reality? Angew. Chem. Int. Ed. Engl., 2013, 52(4), 1088-1094.
[http://dx.doi.org/10.1002/anie.201204103] [PMID: 23225754]
[29]
Rathi, A.K.; Gawandea, M.B.; Zboril, R.; Varma, R.S. Microwave-assisted synthesis-catalytic applications in aqueous media. Coord. Chem. Rev., 2015, 291, 68-94.
[http://dx.doi.org/10.1016/j.ccr.2015.01.011]
[30]
Gawande, M.B.; Shelke, S.N.; Zboril, R.; Varma, R.S. Microwave-assisted chemistry: Synthetic applications for rapid assembly of nanomaterials and organics. Acc. Chem. Res., 2014, 47(4), 1338-1348.
[http://dx.doi.org/10.1021/ar400309b] [PMID: 24666323]
[31]
Bagley, M.C.; Dix, M.C.; Fusillo, V. Rapid Ullmann-type synthesis of aryl sulfides using a copper(I) catalyst and ligand under microwave irradiation. Tetrahedron Lett., 2009, 50(26), 3661-3664.
[http://dx.doi.org/10.1016/j.tetlet.2009.03.115]
[32]
Beletskaya, I.P.; Sigeev, A.S.; Peregudov, A.; Petrovskii, P.V.; Khrustalev, V.N. Microwave-assisted synthesis of diaryl selenides. Elucidation of Cu(I)-catalyzed reaction mechanism. Chem. Lett., 2010, 39(7), 720-722.
[http://dx.doi.org/10.1246/cl.2010.720]
[33]
Ricordi, V.G.; Freitas, C.S.; Perin, G.; Lenarda˜o, E.J.; Jacob, R.G.; Savegnago, L.; Alves, D. Glycerol as a recyclable solvent for copper-catalyzed cross-coupling reactions of diaryl diselenides with aryl boronic acids. Green Chem., 2012, 14(4), 1030-1034.
[http://dx.doi.org/10.1039/c2gc16427b]
[34]
(a) Wasserscheid, P.; Welton, P. Ionic liquids in synthesis. Org. Process Res. Dev., 2003, 7, 223-224.
[http://dx.doi.org/10.1021/op0340210];
(b) Welton, T. Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chem. Rev., 1999, 99(8), 2071-2084.
[http://dx.doi.org/10.1021/cr980032t] [PMID: 11849019];
(c) Dupont, J.; de Souza, R.F.; Suarez, P.A.Z. Ionic liquid (molten salt) phase organometallic catalysis. Chem. Rev., 2002, 102(10), 3667-3692.
[http://dx.doi.org/10.1021/cr010338r] [PMID: 12371898];
(d) van Rantwijk, F.; Sheldon, R.A. Biocatalysis in ionic liquids. Chem. Rev., 2007, 107(6), 2757-2785.
[http://dx.doi.org/10.1021/cr050946x] [PMID: 17564484];
(e) Martins, M.A.P.; Frizzo, C.P.; Moreira, D.N.; Zanatta, N.; Bonacorso, H.G. Ionic liquids in heterocyclic synthesis. Chem. Rev., 2008, 108(6), 2015-2050.
[http://dx.doi.org/10.1021/cr078399y] [PMID: 18543878];
(f) Olivier-Bourbigou, H.; Magna, L.; Morvan, D. Ionic liquids and catalysis: Recent progress from knowledge to applications. Appl. Catal. A Gen., 2010, 373(1-2), 1-56.
[http://dx.doi.org/10.1016/j.apcata.2009.10.008];
(g) Ranu, B.C.; Banerjee, S. Ionic liquid as catalyst and reaction medium. The dramatic influence of a task-specific ionic liquid, [bmIm]OH, in Michael addition of active methylene compounds to conjugated ketones, carboxylic esters, and nitriles. Org. Lett., 2005, 7(14), 3049-3052.
[http://dx.doi.org/10.1021/ol051004h] [PMID: 15987202]
[35]
Chaugule, A.A.; Pawar, A.A.; Tamboli, A.H.; Bandal, H.A.; Chung, W.J.; Kim, H. Ionic liquid based Cu2S@C catalyst for effective coupling of diaryldiselenide with aryl halides under ligand-free conditions. Chem. Eng. J., 2018, 351, 490-497.
[http://dx.doi.org/10.1016/j.cej.2018.06.081]
[36]
Soria-Castro, S.M.; Peñéñory, A.B. Efficient Cu-catalyzed base-free C-S coupling under conventional and microwave heating. A simple access to S-heterocycles and sulfides. Beilstein J. Org. Chem., 2013, 9, 467-475.
[http://dx.doi.org/10.3762/bjoc.9.50] [PMID: 23503063]
[37]
Vyhivskyi, O.; Dlin, E.A.; Finko, A.V.; Stepanova, S.P.; Ivanenkov, Y.A.; Skvortsov, D.A.; Mironov, A.V.; Zyk, N.V.; Majouga, A.G.; Beloglazkina, E.K. Copper-promoted C-Se cross-coupling of 2-selenohydantoins with arylboronic acids in an open flask. ACS Comb. Sci., 2019, 21(6), 456-464.
[http://dx.doi.org/10.1021/acscombsci.9b00021] [PMID: 31009196]
[38]
Sperotto, E.; van Klink, G.P.M.; de Vries, J.G.; van Koten, G. Ligand-free copper-catalyzed C-S coupling of aryl iodides and thiols. J. Org. Chem., 2008, 73(14), 5625-5628.
[http://dx.doi.org/10.1021/jo800491k] [PMID: 18570479]
[39]
Li, Z.; Ke, F.; Deng, H.; Xu, H.; Xiang, H.; Zhou, X. Synthesis of disulfides and diselenides by copper-catalyzed coupling reactions in water. Org. Biomol. Chem., 2013, 11(18), 2943-2946.
[http://dx.doi.org/10.1039/c3ob40464a] [PMID: 23538860]
[40]
Kundu, D.; Mukherjee, N.; Ranu, B.C. A general and green procedure for the synthesis of organochalcogenides by CuFe2O4 nanoparticle catalysed coupling of organoboronic acids and dichalcogenides in PEG-400. RSC Adv, 2013, 3(1), 117-125.
[http://dx.doi.org/10.1039/C2RA22415A]
[41]
Alves, D.; Santos, C.G.; Paixão, M.W.; Soares, L.C.; Souza, D.; Rodrigues, O.E.D.; Braga, A.L. CuO nanoparticles: An efficient and recyclable catalyst for cross-coupling reactions of organic diselenides with aryl boronic acids. Tetrahedron Lett., 2009, 50(48), 6635-6638.
[http://dx.doi.org/10.1016/j.tetlet.2009.09.052]
[42]
Mohammadi, S.; Musavi, M.; Abdollahzadeh, F.; Babadoust, S.; Hosseinian, A. Application of nanocatalysts in C-Te cross-coupling reactions: An overview. Chem. Rev. Lett., 2018, 1, 49-55.
[43]
Astruc, D. Nanoparticles and Catalysis; Wiley-VCH: Weinheim, 2008.
[44]
(a) Pacchioni, G. Quantum chemistry of oxide surfaces: From CO chemisorption to the identification of the structure and nature of point defects on MgO. Surf. Rev. Lett., 2000, 7, 277-306.
[http://dx.doi.org/10.1142/S0218625X00000336];
(b) Durán-Pachón, L.; van Maarseveen, J.H.; Rothenberg, G. Click chemistry: Copper clusters catalyse the cycloaddition of azides with terminal alkynes. Adv. Synth. Catal., 2005, 347(6), 811-815.
[http://dx.doi.org/10.1002/adsc.200404383];
(c) Vessally, E.; Babazadeh, M.; Hosseinian, A.; Arshadi, S.; Edjlali, L. Nanocatalysts for chemical transformation of carbon dioxide. J. CO2 Util., 2017, 21, 491-502.;
(d) Vessally, E. A new avenue to the synthesis of highly substituted pyrroles: Synthesis from N-propargylamines. RSC Adv, 2016, 6(22), 18619-18631.
[http://dx.doi.org/10.1039/C5RA20706A];
(e) Vessally, E.; Hosseinian, A.; Edjlali, L.; Bekhradnia, A.; Esrafili, M.D. New page to access pyridine derivatives: Synthesis from N-propargylamines. RSC Adv, 2016, 6(75), 71662-71675.
[http://dx.doi.org/10.1039/C6RA08720E]
[45]
Godoi, M.; Ricardo, E.W.; Frizon, T.E.; Rocha, M.S.T.; Singh, D.; Paixão, M.W.; Braga, A.L. An efficient synthesis of alkynyl selenides and tellurides from terminal acetylenes and diorganyldiselenides or ditellurides catalyzed by recyclable copper oxide nanopowder. Tetrahedron, 2012, 68(51), 10426-10430.
[http://dx.doi.org/10.1016/j.tet.2012.08.086]
[46]
Saha, A.; Saha, D.; Ranu, B.C. Copper nano-catalyst: Sustainable phenyl-selenylation of aryl iodides and vinyl bromides in water under ligand free conditions. Org. Biomol. Chem., 2009, 7(8), 1652-1657.
[http://dx.doi.org/10.1039/b819137a] [PMID: 19343253]
[47]
(a) Schätz, A.; Reiser, O.; Stark, W.J. Nanoparticles as semi-heterogeneous catalyst supports. Chemistry, 2010, 16(30), 8950-8967.
[http://dx.doi.org/10.1002/chem.200903462] [PMID: 20645330];
(b) Polshettiwar, V.; Luque, R.; Fihri, A.; Zhu, H.; Bouhrara, M.; Basset, J.M. Magnetically recoverable nanocatalysts. Chem. Rev., 2011, 111(5), 3036-3075.
[http://dx.doi.org/10.1021/cr100230z] [PMID: 21401074]
[48]
Singh, D.; Deobald, A.M.; Camargo, L.R.S.; Tabarelli, G.; Rodrigues, O.E.; Braga, A.L. An efficient one-pot synthesis of symmetrical diselenides or ditellurides from halides with CuO nanopowder/Se0 or Te0/base. Org. Lett., 2010, 12(15), 3288-3291.
[http://dx.doi.org/10.1021/ol100558b] [PMID: 20586442]
[49]
Reddy, K.H.V.; Satish, G.; Ramesh, K.; Karnakar, K.; Nageswar, Y.V.D. Magnetically separable CuFe2O4 Nanoparticle catalyzed C-Se cross coupling in reusable PEG medium. Chem. Lett., 2012, 41(6), 585-587.
[http://dx.doi.org/10.1246/cl.2012.585]
[50]
Jammi, S.; Sakthivel, S.; Rout, L.; Mukherjee, T.; Mandal, S.; Mitra, R.; Saha, P.; Punniyamurthy, T. CuO nanoparticles catalyzed C-N, C-O, and C-S cross-coupling reactions: scope and mechanism. J. Org. Chem., 2009, 74(5), 1971-1976.
[http://dx.doi.org/10.1021/jo8024253] [PMID: 19173559]
[51]
Rout, L.; Sen, T.K.; Punniyamurthy, T. Efficient CuO-nanoparticle-catalyzed CS cross-coupling of thiols with iodobenzene. Angew. Chem. Int. Ed., 2007, 46, 5583-5586.
[http://dx.doi.org/10.1002/anie.200701282]
[52]
Babu, S.G.; Karvembu, R. Room temperature Ullmann type C–O and C–S cross coupling of aryl halides with phenol/thiophenol catalyzed by CuO nanoparticles. Tetrahedron Lett., 2013, 54(13), 1677-1680.
[http://dx.doi.org/10.1016/j.tetlet.2013.01.063]
[53]
Schwab, R.S.; Singh, D.; Alberto, E.E.; Piquini, P.; Rodrigues, O.E.D.; Braga, A.L. C–S cross-coupling of thiols with aryl iodides under ligand-free conditions using nano copper oxide as a recyclable catalyst in ionic liquid. Catal. Sci. Technol., 2011, 1(4), 569-573.
[http://dx.doi.org/10.1039/c1cy00091h]
[54]
Sengupta, D.; Basu, B. An efficient heterogeneous catalyst (CuO@ARF) for on-water C-S coupling reaction: An application to the synthesis of phenothiazine structural scaffold. Org. Med. Chem. Lett., 2014, 4(1), 17.
[http://dx.doi.org/10.1186/s13588-014-0017-7] [PMID: 26548993]
[55]
Kamal, A.; Srinivasulu, V.; Murty, J.N.S.R.C.; Shankaraiah, N.; Nagesh, N.; Reddy, T.S.; Rao, A.V.S. Copper oxide nanoparticles supported on graphene oxide-catalyzed S-arylation: An efficient and ligand-free synthesis of aryl sulfides. Adv. Synth. Catal., 2013, 355(11-12), 2297-2307.
[http://dx.doi.org/10.1002/adsc.201300416]
[56]
Sheehan, J.C.; Henery-Logan, K.R. The total synthesis of penicillin V. J. Am. Chem. Soc., 1959, 81(12), 3089-3094.
[http://dx.doi.org/10.1021/ja01521a044]
[57]
Raghavan, S.; Krishnaiah, V.; Sridhar, B. Asymmetric synthesis of the potent HIV-protease inhibitor, nelfinavir. J. Org. Chem., 2010, 75(2), 498-501.
[http://dx.doi.org/10.1021/jo902048t] [PMID: 20000659]
[58]
Ahluwalia, G.K. Application of Chalcogenides: S, Se and Te; Springer: New York City, 2017.
[http://dx.doi.org/10.1007/978-3-319-41190-3]
[59]
Laitien, R.; Oilunkaniemi, R. Selenium and Tellurium Reagents: In: In Chemistry and Material Science; De Gruyter: Berlin, Germany; , 2019.
[60]
Jain, V.K.; Priyadarsini, K.I. Organoselenium Compounds in Biology and Medicine: Synthesis, Biological and Therapeutic Treatments; RSC Publishing: Cambridge, 2017.
[http://dx.doi.org/10.1039/9781788011907]
[61]
(a) Sarma, B.K.; Mugesh, G. Thiol cofactors for selenoenzymes and their synthetic mimics. Org. Biomol. Chem., 2008, 6(6), 965-974.
[http://dx.doi.org/10.1039/b716239a] [PMID: 18327317];
(b) Mugesh, G.; Singh, H.B. Synthetic organoselenium compounds as antioxidants: Glutathione peroxidase activity. Chem. Soc. Rev., 2000, 29(5), 347-357.
[http://dx.doi.org/10.1039/a908114c];
(c) Woods, J.A.; Hadfield, J.A.; McGown, A.T.; Fox, B.W. Bioactivity and molecular modelling of diphenylsulfides and diphenylselenides. Bioorg. Med. Chem., 1993, 1(5), 333-340.
[http://dx.doi.org/10.1016/S0968-0896(00)82139-2] [PMID: 8081863]
[62]
(a) Pang, Y.; An, B.; Lou, L.; Zhang, J.; Yan, J.; Huang, L.; Li, X; Yin, S. Design, synthesis, and biological evaluation of novel selenium-containing isocombretastatins and phenstatins as antitumor agents. J. Med. Chem., 2017, 60, 7300-7314.;
(b) Sancineto, L.; Mariotti, A.; Bagnoli, L.; Marini, F.; Desantis, J.; Iraci, N.; Santi, C.; Pannecouque, C.; Tabarrini, O. Design and synthesis of diselenobisbenzamides (DISeBAs) as nucleocapsid protein 7 (NCp7) inhibitors with anti-HIV activity. J. Med. Chem., 2015, 58(24), 9601-9614.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01183] [PMID: 26613134];
(c) de Souza, D.; Mariano, D. O. C.; Nedel, F.; Schultze, E.; Campos, V. F.; Seixas, F.; daSilva, R. S.; Munchen, T. S.; llha, V.; Dornelles, L.; Braga, A. L.; Rocha, J. B. T.; Collares, T.; Rodrigues, O.E.D. New organochalcogen multitarget drug: Synthesis and antioxidant and antitumoral activities of chalcogenozidovudine derivatives. J. Med. Chem.,, 2015, 58(8), 3329-3339.
[http://dx.doi.org/10.1021/jm5015296] [PMID: 25811955]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy