Abstract
Ultrasound is one of the most widely utilized imaging tools in clinical practice with the advantages of noninvasive nature and ease of use. However, ultrasound examinations have low reproducibility and considerable heterogeneity due to the variability of operators, scanners, and patients. Artificial Intelligence (AI)-assisted ultrasound has advanced in recent years, bringing it closer to routine clinical use. The combination of AI with ultrasound has opened up a world of possibilities for increasing work productivity and precision diagnostics. In this article, we describe AI strategies in ultrasound, from current opportunities, constraints to potential options for AI-assisted ultrasound.
Keywords: Artificial intelligence, ultrasound, deep learning, standardization, data security, interdisciplinary.
Graphical Abstract
[http://dx.doi.org/10.1001/jama.2016.17438] [PMID: 27898975]
[http://dx.doi.org/10.1038/s41551-018-0305-z] [PMID: 31015651]
[http://dx.doi.org/10.1007/s11886-013-0441-8] [PMID: 24338557]
[http://dx.doi.org/10.1038/nature21056] [PMID: 28117445]
[http://dx.doi.org/10.1016/j.fertnstert.2020.06.006]
[http://dx.doi.org/10.1001/jama.2016.17216] [PMID: 27898976]
[http://dx.doi.org/10.3390/diagnostics11020292] [PMID: 33673229]
[http://dx.doi.org/10.1590/0100-3984.2019.0049] [PMID: 32047333]
[http://dx.doi.org/10.1177/1062860619878515] [PMID: 31581790]
[http://dx.doi.org/10.2174/1573405615666191219100824] [PMID: 33081657]
[http://dx.doi.org/10.1016/j.artmed.2008.07.017] [PMID: 18790621]
[http://dx.doi.org/10.15212/bioi-2020-0014]
[http://dx.doi.org/10.3389/fonc.2021.631813] [PMID: 34178622]
[http://dx.doi.org/10.3390/biomedicines9070720] [PMID: 34201827]
[http://dx.doi.org/10.21037/qims-20-1151] [PMID: 34341753]
[http://dx.doi.org/10.1146/annurev-bioeng-071516-044442] [PMID: 28301734]
[http://dx.doi.org/10.1016/j.media.2017.07.005] [PMID: 28778026]
[http://dx.doi.org/10.1016/j.jacr.2019.06.004] [PMID: 31492410]
[http://dx.doi.org/10.3390/children8060431] [PMID: 34063945]
[http://dx.doi.org/10.21037/qims-20-919] [PMID: 33936986]
[http://dx.doi.org/10.1609/aimag.v39i2.2803]
[http://dx.doi.org/10.1016/j.ultras.2016.09.011] [PMID: 27668999]
[http://dx.doi.org/10.1002/mp.13361] [PMID: 30589947]
[http://dx.doi.org/10.1016/j.ultras.2016.08.004] [PMID: 27529139]
[http://dx.doi.org/10.1109/ACCESS.2017.2689058]
[http://dx.doi.org/10.1159/000492428] [PMID: 30815459]
[http://dx.doi.org/10.1016/j.jacr.2017.12.037] [PMID: 29398492]
[http://dx.doi.org/10.1056/NEJMra1814259] [PMID: 30943338]
[http://dx.doi.org/10.1093/nsr/nwt032] [PMID: 25419469]
[http://dx.doi.org/10.1109/ACCESS.2018.2851311]
[http://dx.doi.org/10.1016/j.ejrad.2018.06.020] [PMID: 30017288]
[http://dx.doi.org/10.1038/s41591-018-0272-7] [PMID: 30617331]
[http://dx.doi.org/10.1038/s41591-018-0300-7] [PMID: 30617339]
[http://dx.doi.org/10.1056/NEJMp1702071] [PMID: 28657867]
[http://dx.doi.org/10.1109/MRA.2017.2670225]
[http://dx.doi.org/10.1136/bmj.k4563] [PMID: 30404897]
[http://dx.doi.org/10.1136/bmj.k4669] [PMID: 30404859]