Generic placeholder image

Current Chinese Science

Editor-in-Chief

ISSN (Print): 2210-2981
ISSN (Online): 2210-2914

Research Article Section: Marine Sciences

Ice Coverage of the Laptev Sea and Air Temperature Variation during Recent Centuries: Observed Data and Reconstructions Using a Geochemical Proxy

Author(s): Anatolii S. Astakhov*, Kirill I. Aksentov, Valeriy V. Babich, Andrey V. Darin, Ivan A. Kalugin, Mikhail M. Melgunov, Limin Hu, Xuefa Shi and Valentina V. Sattarova

Volume 2, Issue 3, 2022

Published on: 14 April, 2022

Page: [198 - 212] Pages: 15

DOI: 10.2174/2210298102666220317102007

Price: $65

Abstract

Objective: The aim was to reconstruct the climatic parameters and ice of the Laptev Sea over the last centuries and identify the causes of their variability.

Background: The ice-free water area of the Arctic Ocean has increased considerably during the summer-autumn period in recent decades, which may be attributed to several climatic and oceanographic factors.

Methods: The ice-free period duration and mean annual surface air temperature were reconstructed using the transfer function technique to compare hydrometeorological data and the chemical composition of bottom sediments accumulated during the observation period. This approach was based on sub-millimeter scanning of sediments using synchrotron radiation X-ray fluorescence.

Results: The results revealed a specific feature of the variations in the mean annual air temperature over the last 400 years in the Laptev Sea region, whereby higher (up to positive) temperature anomalies were observed during the Little Ice Age. Some discrepancies in the ice coverage and climate fluctuations were observed during the period from the end of the Little Ice Age to the beginning of the period of accelerated ice-cover degradation in the Arctic (1850–1980). These discrepancies can be caused by the beginning of global warming, which have disturbed the natural cyclicality of atmospheric processes, whereas natural variations in ice coverage were more stable.

Conclusion: A joint analysis of the reconstructed variations in air temperature and the duration of the ice-free period revealed the influence of atmospheric processes on the ice conditions of the Laptev Sea.

Keywords: Paleoclimatology, Laptev sea, ice cover, bottom sediments, geochemistry, little ice age, global warming.

Graphical Abstract

[1]
Stroeve, J.; Holland, M.M.; Meier, W.; Scambos, T.; Serreze, M. Arctic sea ice decline: Faster than forecast. Geophys. Res. Lett., 2007, 34(9), L09501.
[http://dx.doi.org/10.1029/2007GL029703]
[2]
Haigh, J.D.; Lockwood, M.; Giampapa, M.S. The Sun, Solar Analogs and the Climate, Saas-Fee Advanced Courses; Springer-Verlag: Berlin/Heidelberg, 2005.
[3]
Crane, K. Russian-American long-term census of the Arctic; initial expedition to the Bering and Chukchi seas. Arct. Res. U.S., 2005, 19, 73-76.
[4]
Wood, K.R.; Wang, J.; Salo, S.A.; Stabeno, P.J. The climate of the Pacific Arctic: During the first RUSALCA Decade 2004–2013. Oceanography (Wash. D.C.), 2015, 28(3), 24-35.
[http://dx.doi.org/10.5670/oceanog.2015.55]
[5]
Cohen, J.; Screen, J.A.; Furtado, J.C.; Barlow, M.; Whittleston, D.; Coumou, D.; Francis, J.; Dethloff, K.; Entekhabi, D.; Overland, J.; Jones, J. Recent arctic amplification and extreme mid-latitude weather. Nat. Geosci., 2014, 7(9), 627-637.
[6]
Nicolle, M.; Debret, M.; Massei, N.; Colin, C.; deVernal, A.; Divine, D.; Johannes, P.W.; Hormes, A.; Korhola, A.; Hans, W.; Linderholm, H.W. Climate variability in the subarctic area for the last 2 millennia. Clim. Past, 2018, 14(1), 101-116.
[http://dx.doi.org/10.5194/cp-14-101-2018]
[7]
Keigwin, L.D.; Donnelly, J.P.; Cook, M.S.; Driscoll, N.W.; Brigham-Grette, J. Rapid sea-level rise and Holocene climate in the Chukchi Sea. Geology, 2006, 34(10), 861-864.
[http://dx.doi.org/10.1130/G22712.1]
[8]
de Vernal, A.; Hillaire-Marcel, C.; Darby, D.A. Variability of sea ice cover in the Chukchi Sea (western Arctic Ocean) during the Holocene. Paleoceanography, 2005, 20(4), PA4018.
[http://dx.doi.org/10.1029/2005PA001157]
[9]
Farmer, J.R.; Cronin, T.M.; de Vernal, A.; Dwyer, G.S.; Keigwin, L.D.; Thunell, R.C. Western Arctic Ocean temperature variability during the last 8000 years. Geophys. Res. Lett., 2011, 38(24), L24602.
[http://dx.doi.org/10.1029/2011GL049714]
[10]
de Vernal, A. Variability of Arctic sea-ice cover at decadal to millennial scales: The proxy records. Past Glob. Changes Mag., 2017, 25(3), 144-145.
[http://dx.doi.org/10.22498/pages.25.3.144]
[11]
Polyak, L.; Belt, S.T.; Cabedo-Sanz, P.; Yamamoto, M.; Park, Y-H. Holocene sea-ice conditions and circulation at the Chukchi-Alaskan margin, Arctic Ocean, inferred from biomarker proxies. Holocene, 2016, 26(11), 1810-1821.
[http://dx.doi.org/10.1177/0959683616645939]
[12]
Horner, T.; Stein, R.; Fahl, K.; Birgel, D. Post-glacial variability of sea ice cover, river run-off and biologicalproduction in the western Laptev Sea (Arctic Ocean) - A high-resolution biomarker study. Quat. Sci. Rev., 2016, 143, 133-149.
[http://dx.doi.org/10.1016/j.quascirev.2016.04.011]
[13]
Stein, R.; Matthiessen, J.; Niessen, F.; Krylov, A.; Nam, S.; Bazhenova, E. Towards a better (litho-) stratigraphy and reconstruction of Quaternary paleoenvironment in the Amerasian Basin (Arctic Ocean). Polarforschung, 2010, 79, 97-121.
[14]
Kinnard, C.; Zdanowicz, C.M.; Fisher, D.A.; Isaksson, E.; de Vernal, A.; Thompson, L.G. Reconstructed changes in Arctic sea ice over the past 1,450 years. Nature, 2011, 479(7374), 509-512.
[http://dx.doi.org/10.1038/nature10581] [PMID: 22113692]
[15]
Kalugin, I.; Daryin, A.; Smolyaninova, L.; Andreev, A.A.; Diekmann, B.; Khlystov, O. 800-yr-long records of annual air temperature and precipitation over southern Siberia inferred from Teletskoye Lake sediments. Quat. Res., 2007, 67(3), 400-410.
[http://dx.doi.org/10.1016/j.yqres.2007.01.007]
[16]
Kalugin, I.A.; Darin, A.V.; Babich, V.V. Reconstruction of annual air temperatures for three thousand years in Altai region by lithological and geochemical indicators in Teletskoe Lake sediments. Dokl. Earth Sci., 2009, 426(1), 681-684.
[http://dx.doi.org/10.1134/S1028334X09040382]
[17]
von Gunten, L.; Grosjean, M.; Kamenik, C.; Fujak, M.; Urrutia, R. Calibrating biogeochemical and physical climate proxies from non-varved lake sediments with meteorological data: Methods and case studies. J. Paleolimnol., 2012, 47(4), 583-600.
[http://dx.doi.org/10.1007/s10933-012-9582-9]
[18]
Darin, A.V.; Kalugin, I.A.; Rakshun, Y.V. Scanning X-ray microanalysis of bottom sediments using synchrotron radiation from the BINP VEPP-3 storage ring. Bull. Russ. Acad. Sci., Physics, 2013, 77(2), 182-184.
[http://dx.doi.org/10.3103/S106287381302010X]
[19]
Astakhov, A.S.; Bosin, A.A.; Liu, Y.G.; Darin, A.V.; Kalugin, I.A.; Artemova, A.V.; Babich, V.V.; Melgunov, M.S.; Vasilenko, Yu.P.; Vologina, E.G. Reconstruction of ice conditions in the northern Chukchi Sea during recent centuries: Geochemical proxy compared with observed data. Quat. Int., 2019, 522, 23-37.
[http://dx.doi.org/10.1016/j.quaint.2019.05.009]
[20]
Astakhov, A.S.; Kalugin, I.A.; Shi, X.; Aksentov, K.I.; Darin, A.V.; Hu, L.; Babich, V.V.; Melgunov, M.S.; Plotnikov, V.V. The role of ice cover in the formation of bottom sediment chemical composition on the east siberian shelf. Geochem. Int., 2021, 59(6), 585-598.
[http://dx.doi.org/10.1134/S0016702921050025]
[21]
Astakhov, A.S.; Sattarova, V.V.; Shi, X.; Hu, L.; Aksentov, K.I.; Alatortsev, A.V.; Kolesnik, O.N.; Mariash, A.A. Distribution and sources of rare earth elements in sediments of the Chukchi and East Siberian seas. Polar Sci., 2019, 20, 148-159.
[http://dx.doi.org/10.1016/j.polar.2019.05.005]
[22]
Astakhov, A.S.; Shi, S.; Darin, A.V.; Kalugin, I.A.; Hu, L.; Tsoy, I.B.; Kolesnik, A.N.; Obrezkova, M.A.; Alatorcev, A.V.; Babich, V.V. Reconstructing ice conditions in the southern Chukchi Sea during the last millenniums based on chemical composition of sediments and diatom assemblages. Mar. Geol., 2020, 427, 106220.
[http://dx.doi.org/10.1016/j.margeo.2020.106220]
[23]
Sattarova, V.; Aksentov, K.; Astakhov, A.; Shi, X.; Hu, L.; Alatortsev, A.; Mariash, A.; Yaroshchuk, E. Trace metals in surface sediments from the Laptev and East Siberian Seas: Levels, enrichment, contamination assessment, and sources. Marine Pollution Bulletin, 2021, 173 Part A, 112997.
[24]
Gavshin, V.M.; Melgunov, M.S.; Sukhorukov, F.V.; Bobrov, V.A.; Kalugin, I.A.; Klerkx, J. Disequilibrium between uranium and its prog-eny in the Lake Issyk-Kul system (Kyrgyzstan) under a combined effect of natural and manmade processes. J. Environ. Radioact., 2005, 83(1), 61-74.
[http://dx.doi.org/10.1016/j.jenvrad.2005.02.012] [PMID: 15935909]
[25]
Environmental Working Group. Oceanography Atlas for the Winter Period. In: Tanis, F.; Timokhov, L., Eds.;Joint US-Russian Atlas of the Arctic Ocean; University of Colorado, Boulder, 1997.
[http://dx.doi.org/10.7265/N5H12ZX4.]
[26]
Environmental Working Group. Oceanography Atlas for the Summer Period. In: Tanis, F.; Timokhov, L., Eds.; Joint US-Russian Atlas of the Arctic Ocean; University of Colorado: Boulder, 1998.
[27]
U.S. National Ice Center. 2018. Available from: http://www.natice.noaa.gov Accessed on 12.5.2018.
[28]
Plotnikov, V.V.; Pustoshnova, V.I. Variability and conjugacy of ice conditions in the system of east arctic seas (the Laptev, East Siberian, and Chukchi Seas). Russ. Meteorol. Hydrol., 2012, 37(7), 461-467.
[http://dx.doi.org/10.3103/S1068373912070060]
[29]
Hansen, J.; Ruedy, R.; Sato, M.; Lo, K. Global surface temperature change. Rev. Geophys., 2010, 48(4), RG4004.
[http://dx.doi.org/10.1029/2010RG000345]
[30]
Trouet, V.; Oldenborgh, G.J. KNMI climate explorer: A web-based research tool for high-resolution paleoclimatology. Tree-Ring Res., 2013, 69(1), 3-13.
[http://dx.doi.org/10.3959/1536-1098-69.1.3]
[31]
Tsoy, I.B.; Obrezkova, M.S. Atlas of diatom algae and silicoflagellates from Holocene sediments of the Russian East Arctic seas; POI FEB RAS: Vladivostok, 2017.
[32]
Appleby, P.G.; Oldfield, F.; Thomson, R.; Huttunen, P. 210Pb dating of annually laminated lake sediments from Finland. Nature, 1979, 280(5717), 53-55.
[http://dx.doi.org/10.1038/280053a0]
[33]
McCall, P.L.; Robbins, J.A.; Matisoff, G. 137Cs and 210Pb transport and geochronologies in urbanized reservoirs with rapidly increasing sedimentation rates. Chem. Geol., 1984, 44(1-3), 33-65.
[http://dx.doi.org/10.1016/0009-2541(84)90066-4]
[34]
Gavshin, V.M.; Scherbov, B.L.; Melgunov, M.S.; Strahovenko, V.D.; Bobrov, V.A.; Tsibulkyk, V.M. 137Cs and 210Pb in the lake sedi-ments of the steppe Altai as indicators of the dynamics anthropogenic changes in geochemical background during the 20th century. Russ. Geol. Geophys., 1999, 40(9), 1331-1341.
[35]
Gharibreza, M.; Raj, J.K.; Yusoff, I.; Othman, Z.; Tahir, W.Z.W.M.; Ashraf, M.A. Historical variations of Bera Lake (Malaysia) sediments geochemistry using radioisotopes and sediment quality indices. J. Radioanal. Nucl. Chem., 2012, 295(3), 1715-1730.
[http://dx.doi.org/10.1007/s10967-012-2270-4]
[36]
Babich, V.V. Iterative method of target classification and ordering of objects. In: Recognition of Images in Problems of Qualitative Fore-casting of Ore Deposits; Nauka: Novosibirsk, 1980; pp. 59-67.
[37]
Rudaya, N.; Nazarova, L.; Andreev, A.; Novenko, E.; Shilov, P.; Kalugin, I.; Daryin, A.; Babich, V.; Li, H-C. Quantitative reconstructions of mid- to Late Holocene climate and vegetation in the north-eastern Altai Mountains recorded in Lake Teletskoye. Global Planet. Change, 2016, 14191, 12-24.
[http://dx.doi.org/10.1016/j.gloplacha.2016.04.002]
[38]
Babich, V.V.; Rudaya, N.A.; Kalugin, I.A.; Darin, A.V. Complex use of the geochemical features of bottom deposits and pollen records for paleoclimate reconstructions (with Lake Teletskoe, Altai Republic, as an example). Contemp. Probl. Ecol., 2015, 89(4), 405-413.
[http://dx.doi.org/10.1134/S1995425515040022]
[39]
McKay, J.L.; Pedersen, T.F. The accumulation of silver in marine sediments: A link to biogenic Ba and marine productivity. Global Biogeochem. Cycles, 2008, 22(4), 22.
[http://dx.doi.org/10.1029/2007GB003136]
[40]
Marz, C.; Schnetger, B.; Brumsack, H-J. Paleoenvironmental implications of Cenozoic sediments from the central Arctic Ocean (IODP Expedition 302) using inorganic geochemistry. Paleoceanography, 2010, 25(3), A3206.
[http://dx.doi.org/10.1029/2009PA001860]
[41]
Astakhov, A.S.; Wang, R.J.; Gao, A.J.; Ivanov, M.V. Lithochemical evidence of recent geological activity in the Chukchi Sea. Dokl. Earth Sci., 2008, 423(1), 268-1272.
[http://dx.doi.org/10.1134/S1028334X08080199]
[42]
Astakhov, A.S.; Gusev, E.A.; Kolesnik, A.N.; Shakirov, R.B. Conditions of the accumulation of organic matter and metals in the bottom sediments of the Chukchi Sea. Russ. Geol. Geophys., 2013, 54(9), 1056-1070.
[http://dx.doi.org/10.1016/j.rgg.2013.07.019]
[43]
Astakhov, A.S.; Bosin, A.A.; Kolesnik, A.N.; Obrezkova, M.S. Sediment geochemistry and diatom distribution in the chukchi sea: Appli-cation for Bioproductivity and Paleoceanography. Oceanography (Wash. D.C.), 2015, 28(3), 190-201.
[http://dx.doi.org/10.5670/oceanog.2015.65]
[44]
Nwaodua, E.C.; Ortiz, J.D.; Griffith, E.M. Diffuse spectral reflectance of surficial sediments indicates sedimentary environments on the shelves of the Bering Sea and western Arctic. Mar. Geol., 2014, 355, 218-233.
[http://dx.doi.org/10.1016/j.margeo.2014.05.023]
[45]
Dudarev, O.V.; Charkin, A.N.; Shakhova, N.E.; Mazurov, A.K.; Semiletov, I.P. Modern Lithomorphogenesis on the Eastern Arctic Shelf of Russia; Tomsk Polytechnic University: Tomsk, 2016.
[46]
Gribble, G.W. Naturally occurring organohalogen compounds. Acc. Chem. Res., 1998, 31(3), 141-152.
[http://dx.doi.org/10.1021/ar9701777]
[47]
Mayer, L.M.; Schick, L.L.; Allison, M.A.; Ruttenberg, K.C.; Bentley, S.J. Marine vs. terrigenous organic matter in Louisiana coastal sedi-ments: The uses of bromine: Organic carbon ratios. Mar. Chem., 2007, 107(2), 244-254.
[http://dx.doi.org/10.1016/j.marchem.2007.07.007]
[48]
Astakhov, A.S.; Kalugin, I.A.; Darin, A.V.; Aksentov, K.I. Geochemical indicators of paleo-typhoons in shelf sediments. Geochem. Int., 2015, 53(4), 383-388.
[http://dx.doi.org/10.1134/S0016702915040023]
[49]
Grebmeier, J.M.; Cooper, L.W.; Feder, H.M.; Sirenko, B.I. Ecosystem dynamics of the Pacific-influenced Northern Bering and Chukchi Seas in the Amerasian Arctic. Prog. Oceanogr., 2006, 71(2-4), 331-361.
[http://dx.doi.org/10.1016/j.pocean.2006.10.001]
[50]
Vetrov, A.A.; Semiletov, I.P.; Dudarev, O.V.; Peresypkin, V.I.; Charkin, A.N. Composition and genesis of the organic matter in the bottom sediments of the East Siberian Sea. Geochem. Int., 2008, 46(2), 156-167.
[http://dx.doi.org/10.1134/S0016702908020055]
[51]
Charkin, A.N.; Dudarev, O.V.; Semiletov, I.P.; Kruhmalev, A.V.; Vonk, J.E.; Sánchez-García, L.; Karlsson, E.; Gustafsson, Ö. Seasonal and interannual variability of sedimentation and organic matter distribution in the Buor Khaya gulf - the primary recipient of input from Lena river and coastal erosion in the Laptev sea. Biogeosciences, 2011, 8(1), 1917-1946.
[http://dx.doi.org/10.5194/bg-8-2581-2011]
[52]
Lalande, C.; Grebmeier, J.M.; Wassmann, P.; Cooper, L.W.; Flint, M.V.; Sergeeva, V.M. Export fluxes of biogenic matter in the presence and absence of seasonal sea ice cover in the Chukchi Sea. Cont. Shelf Res., 2007, 27(15), 2051-2065.
[http://dx.doi.org/10.1016/j.csr.2007.05.005]
[53]
Ulyantsev, A.S.; Bratskaya, S.Y.; Polyakova, N.V.; Trukhin, I.S.; Parotkina, Y.A. Dataset on pore water composition and grain size prop-erties of bottom sediments and subsea permafrost from the Buor-Khaya Bay (Laptev Sea). Data Brief, 2021, 39, 107580.
[http://dx.doi.org/10.1016/j.dib.2021.107580] [PMID: 34841022]
[54]
Stein, R.; Fahl, K.; Schade, I.; Manerung, A.; Wassmuth, S.; Niessen, F.; Nam, S-I. Holocene variability in sea ice cover, primary produc-tion, and Pacific-Water inflow and climate change in the Chukchi and East Siberian Seas (Arctic Ocean). J. Quaternary Sci., 2017, 32(3), 362-379.
[http://dx.doi.org/10.1002/jqs.2929]
[55]
Gardner, J.V.; Dean, W.E.; Klise, D.H.; Baldauf, J.G. A climaterelated oxidizing events in deep-sea sediments from Bering Sea. Quat. Res, 1982, 18(1), 91-10-7.
[http://dx.doi.org/10.1016/0033-5894(82)90023-0]
[56]
Frolov, I.E., Ed.; Review of Hydrometeorological Processes in the Arctic Ocean; AANII: St. Peterburg, 2008.
[57]
Li, L.; Liu, Y.; Wang, X.; Hu, L.; Yang, G.; Wang, H.; Bosin, A.A.; Astakhov, A.S.; Shi, X. Early diagenesis and accumulation of redox-sensitive elements in East Siberian Arctic Shelves. Mar. Geol., 2020, 429, 106309.
[http://dx.doi.org/10.1016/j.margeo.2020.106309]
[58]
Ellwood, M.J.; Hunter, K.A. The incorporation of zinc and iron into the frustule of the marine diatom Thalassiosira pseudonana. Limnol. Oceanogr., 2000, 45(7), 1517-1524.
[http://dx.doi.org/10.4319/lo.2000.45.7.1517]
[59]
Rachold, V. Major, trace and rare earth element geochemistry of suspended particulate material of east siberian rivers draining to the arctic ocean. Land-Ocean Systems in the Siberian Arctic: Dynamics and History; Kassens, H.; Bauch, H.A.; Dmitrenko, I.; Eicken, H.; Hubberten, H-W.; Melles, M.; Tiede, J; Timokhov, L., Ed.; Springer-Verlag: Berlin, 1999, pp. 199-222.
[http://dx.doi.org/10.1007/978-3-642-60134-7_20]
[60]
Pickart, R.S. Shelfbreak circulation in the Alaskan Beaufort Sea: Mean structure and variability. J. Geophys. Res., 2004, 109(C4), C04024.
[http://dx.doi.org/10.1029/2003JC001912]
[61]
Löwemark, L.; März, C.; O’Regan, M.; Gyllencreutz, R. Arctic Ocean Mn-stratigraphy: Genesis, synthesis and inter-basin correlation. Quat. Sci. Rev., 2014, 92, 97-111.
[http://dx.doi.org/10.1016/j.quascirev.2013.11.018]
[62]
Neukom, R.; Barboza, L.A.; Erb, M.P.; Shi, F.; Emile-Geay, J.; Evans, M.N.; Franke, J.; Kaufman, D.S.; Lücke, L.; Rehfeld, K.; Schurer, A.; Zhu, F.; Brönnimann, S.; Hakim, G.J.; Henley, B.J.; Ljungqvist, F.C.; McKay, N.; Valler, V.; von Gunten, L. Consistent multi-decadal variability in global temperature reconstructions and simulations over the Common Era. Nat. Geosci., 2019, 12(8), 643-649.
[http://dx.doi.org/10.1038/s41561-019-0400-0] [PMID: 31372180]
[63]
Morison, J.; Kwok, R.; Peralta-Ferriz, C.; Alkire, M.; Rigor, I.; Andersen, R.; Steele, M. Changing Arctic Ocean freshwater pathways. Nature, 2012, 481(7379), 66-70.
[http://dx.doi.org/10.1038/nature10705] [PMID: 22222749]
[64]
Ye, L.; März, C.; Polyak, L.; Yu, X.; Zhang, W. dynamics of manganese and cerium enrichments in arctic ocean sediments: a case study from the alpha ridge. Front. Earth Sci. (Lausanne), 2019, 6, 236.
[http://dx.doi.org/10.3389/feart.2018.00236]
[65]
Shimada, K.; Kamoshida, T.; Itoh, M.; Nishino, S.; Carmack, E.; McLaughlin, F.; Zimmermann, S.; Proshutinsky, A. Pacific Ocean inflow: Influence on catastrophic reduction of sea ice cover in the Arctic Ocean. Geophys. Res. Lett., 2006, 33(8), L08605.
[http://dx.doi.org/10.1029/2005GL025624]
[66]
Comiso, J.C.; Parkinson, C.L.; Gersten, R.; Stock, L. Accelerated decline in the Arctic sea ice cover. Geophys. Res. Lett., 2008, 35(1), L01703.
[http://dx.doi.org/10.1029/2007GL031972]
[67]
Marland, G.; Boden, T.A.; Andres, R.J. Global, regional, and national CO2 emissions. Trends: A Compendium of Data on Global Change; Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, United States Department of Energy: Oak Ridge, Tenn., USA, 2007.
[68]
Serreze, M.C.; Crawford, A.D.; Stroeve, J.C.; Barrett, A.P.; Woodgate, R.A. Variability, trends, and predictability of seasonal sea ice retreat and advance in the Chukchi Sea. J. Geoph. Res.-Oceans, 2016, 121(10), 7,308-7,325.
[69]
Ljungqvist, F.C. A new reconstruction of temperature variability in the extra-tropical northern hemisphere during the last two millennia. Geograf. Annal., 2010, 92, 339-351.
[70]
McKay, N.P.; Kaufman, D.S. An extended Arctic proxy temperature database for the past 2,000 years. Sci. Data, 2014, 1(1), 140026.
[http://dx.doi.org/10.1038/sdata.2014.26] [PMID: 25977783]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy