Generic placeholder image

Current Chinese Science

Editor-in-Chief

ISSN (Print): 2210-2981
ISSN (Online): 2210-2914

Mini-Review Article Section: Bioinformatics

A Review of Nitro-Hydroxylation Transformation on Aromatic Ring

Author(s): Jian Hang Bu, Qian-Hui Ding, Hui Zhong, Xu-Dong Zhou, Bin Li, Wei Wang* and Wen-Bing Sheng*

Volume 2, Issue 3, 2022

Published on: 27 April, 2022

Page: [189 - 197] Pages: 9

DOI: 10.2174/2210298102666220308155039

Price: $65

Abstract

Aromatic nitro compounds are widely used to synthesize medicine, dyes, spices, and other organic synthesis reagents for their wide sources and low cost. One of the most important uses is the synthesis of phenolic compounds. Moreover, the nitro group on the aromatic ring can be converted to hydroxyl after reduction, diazotization, and hydrolysis, which is a traditional method to get hydroxyl. This mini-review describes the methodologies and mechanisms of nitro- hydroxylation on aromatic rings and other unique transformation methods.

Keywords: Aromatic nitro compounds, phenolic compounds, nucleophilic substitution, diazotization, hydrolysis, hydroxyl group.

Graphical Abstract

[1]
(a) Qu, S.; Greenhalgh, M.D.; Smith, A.D. Isothiourea-catalysed regioselective acylative kinetic resolution of axially chiral biaryl diols. Chemistry, 2019, 25(11), 2816-2823.
[http://dx.doi.org/10.1002/chem.201805631] [PMID: 30548466]
(b) Ranta, J.; Kumpulainen, T.; Lemmetyinen, H.; Efimov, A. Synthesis and characterization of monoisomeric 1,8,15,22-substituted (A3B and A2B2) phthalocyanines and phthalocyanine-fullerene dyads. J. Org. Chem., 2010, 75(15), 5178-5194.
[http://dx.doi.org/10.1021/jo100766h] [PMID: 20593884]
(c) Corma, A.; Concepción, P.; Serna, P. A different reaction pathway for the reduction of aromatic nitro compounds on gold catalysts. Angew. Chem. Int. Ed., 2007, 46(38), 7266-7269.
[http://dx.doi.org/10.1002/anie.200700823] [PMID: 17579907]
(d) Nishiwaki, N. A walk through recent nitro chemistry advances. Molecules, 2020, 25(16), 3680.
[http://dx.doi.org/10.3390/molecules25163680] [PMID: 32806751]
(e) Zhao, L.; Hu, C.; Cong, X.; Deng, G.; Liu, L.L.; Luo, M.; Zeng, X. Cyclic (alkyl)(amino) carbene ligand-promoted nitro deoxygenative hydroboration with chromium catalysis: Scope, mechanism, and applications. J. Am. Chem. Soc., 2021, 143(3), 1618-1629.
[http://dx.doi.org/10.1021/jacs.0c12318] [PMID: 33412858]
[2]
(a) Zhou, Y.L.; Zhu, J.; Zhao, C.S.; Huang, Z.Y.; Zhang, M.J.; Xu, K.; Li, T.X. Progress in preparation of aromatic amines by reduction. Appl. Chem. Ind., 2017, 46, 784-793.
(b) Orlandi, M.; Tosi, F.; Bonsignore, M.; Benaglia, M. Metal-free reduction of aromatic and aliphatic nitro compounds to amines: A HSiCl3-mediated reaction of wide general applicability. Org. Lett., 2015, 17(16), 3941-3943.
[http://dx.doi.org/10.1021/acs.orglett.5b01698] [PMID: 26262554]
(c) Chen, D.; Zhou, Y.; Zhou, H.; Zhou, S.; Zhou, Q.; Liu, K.; Zhang, Y. Uozumi, metal-free reduction of nitro aromatics to amines with B2(OH)4/H2O. Synthesis, 2018, 29(13), 1765-1768.
(d) Hosoya, H.; Misal Castro, L.C.; Sultan, I.; Nakajima, Y.; Ohmura, T.; Sato, K.; Tsurugi, H.; Suginome, M.; Mashima, K. 4,4′-bipyridyl-catalyzed reduction of nitroarenes by bis(neopentylglycolato)diboron. Org. Lett., 2019, 21(24), 9812-9817.
[http://dx.doi.org/10.1021/acs.orglett.9b03419] [PMID: 31663767]
(e) Mase, N.; Nishina, Y.; Isomura, S.; Sato, K.; Narumi, T.; Watanabe, N. Fine-bubble-based strategy for the palladiumcatalyzed hydrogenation of nitro groups: Measurement of ultrafine bubbles in organic solvents. Synlett, 2017, 28(16), 2184-2188.
[http://dx.doi.org/10.1055/s-0036-1588869]
(f) Kallitsakis, M.G.; Ioannou, D.I.; Terzidis, M.A.; Kostakis, G.E.; Lykakis, I.N. Selective photoinduced reduction of nitroarenes to n-arylhydroxylamines. Org. Lett., 2020, 22(11), 4339-4343.
[http://dx.doi.org/10.1021/acs.orglett.0c01367] [PMID: 32453579]
[3]
Liu, S.H.; Tang, M.; Shi, H.; Wang, J.J.; Guo, Y.Y.; Wang, J.H. Research summary in the reduction of substitute nitrobenzene to arylhy-droxylamines. Shandong Chem. Ind., 2015, 44, 57-59.
[4]
Liang, R.N.; Ye, Q.G. Study on process of synthesizing m-cresol by m-Diazotization and hydrolysis of m-toluidine. Chem. Int., 2008, 3, 14-16.
[5]
Yan, S.J.; Li, F.G. Advances in research of synthesizing phenols from aromatic amines by direct hydrolyzation. Dyestuffs Color., 2013, 50, 30-59.
[6]
Pradhan, N.; Pal, A.; Pal, T. Silver nanoparticle catalyzed reduction of aromatic nitro compounds. Colloids Surf. A Physicochem. Eng. Asp., 2002, 196, 247-257.
[http://dx.doi.org/10.1016/S0927-7757(01)01040-8]
[7]
Saha, A.; Ranu, B. Highly chemoselective reduction of aromatic nitro compounds by copper nanoparticles/ammonium formate. J. Org. Chem., 2008, 73(17), 6867-6870.
[http://dx.doi.org/10.1021/jo800863m] [PMID: 18656983]
[8]
(a) Ming, W.Y.; Zhang, Q.; Duan, Q.; Yang, J.M.; Lu, J. Research progress of hydrogenation catalysts for reduction of aromatic nitro com-pounds to aromatic amines. Ener. Chem. Industr., 2016, 37, 46-51.
(b) Chen, B.; Dingerdissen, U.; Krauter, G.J.E.; Rotgerink, H.G.J.L.; Möbus, K.; Ostgard, D.J.; Panster, P.; Riermeier, T.H.; Seebald, S.; Tacke, T.; Trauthwein, H. New developments in hydrogenation catalysis particularly in synthesis of fine and intermediate chemicals. Appl. Catal. A, 2005, 280(1), 17-46.
[http://dx.doi.org/10.1016/j.apcata.2004.08.025]
(c) Sharma, S.; Kumar, M.; Kumar, V.; Kumar, N. Metal-free transfer hydrogenation of nitroarenes in water with vasicine: Revelation of organocatalytic facet of an abundant alkaloid. J. Org. Chem., 2014, 79(19), 9433-9439.
[http://dx.doi.org/10.1021/jo5019415] [PMID: 25215900]
(d) Lu, H.; Geng, Z.; Li, J.; Zou, D.; Wu, Y.; Wu, Y. Metal-free reduction of aromatic nitro compounds to aromatic amines with B2pin2 in isopropanol. Org. Lett., 2016, 18(11), 2774-2776.
[http://dx.doi.org/10.1021/acs.orglett.6b01274] [PMID: 27214590]
(e) Lee, N.R.; Bikovtseva, A.A.; Cortes-Clerget, M.; Gallou, F.; Lipshutz, B.H. Carbonyl iron powder: A reagent for nitro group reductions under aqueous micellar catalysis conditions. Org. Lett., 2017, 19(24), 6518-6521.
[http://dx.doi.org/10.1021/acs.orglett.7b03216] [PMID: 29206473]
(f) Kelly, S.M.; Lipshutz, B.H. Chemoselective reductions of nitroaromatics in water at room temperature. Org. Lett., 2014, 16(1), 98-101.
[http://dx.doi.org/10.1021/ol403079x] [PMID: 24341483]
[9]
Zhao, F.; Deng, G.J. Aromatic nitrogenous compounds are selectively reduced to aromatic amines without transition metal.The 9th CCS National Organic Chemistry Conference; Changchun, Jilin, China, 2015.
[10]
Yan, X.H.; Sun, J.Q.; Li, B.; Lu, X.; Sun, M.F. Liquid-phase hydrogenation of chloronitrobenzene to chloroaniline over Ni-Ce-P amor-phous alloy catalyst. Chin. J. Catal., 2006, 27, 178-182.
[http://dx.doi.org/10.1016/S1872-2067(06)60010-7]
[11]
Shevelev, S.A.; Shakhnes, A.K.; Ugrak, B.I.; Vorob’ev, S.S. Highly selective one-step synthesis of 2-amino-4,6-dinitrotoluene and 2,6-diamino-4-nitrotoluene from 2,4,6-trinitrotoluene. Synth. Commun., 2001, 31(17), 2557-2561.
[http://dx.doi.org/10.1081/SCC-100105379]
[12]
Huang, P.; Wang, P.P.; Huang, L.P. Development of the preparation methods for aromatic amine by reduction of aromatic nitro com-pounds. J. Nanjing Univ. Technol., 2007, 29, 101-106.
[13]
Mo, F.; Dong, G.; Zhang, Y.; Wang, J. Recent applications of arene diazonium salts in organic synthesis. Org. Biomol. Chem., 2013, 11(10), 1582-1593.
[http://dx.doi.org/10.1039/c3ob27366k] [PMID: 23358692]
[14]
Sheng, M.; Frurip, D.; Gorman, D. Reactive chemical hazards of diazonium salts. J. Loss Prev. Process Ind., 2015, 38, 114-118.
[http://dx.doi.org/10.1016/j.jlp.2015.09.004]
[15]
Qin, Y. Research in theory of reoxidation and coincidence reaction. J. Baoshan Teachers’. Coll., 2003, 22, 10-13.
[16]
Wang, X.Y.; Dai, W.; Feng, L.L.; Chen, H.Q.; Cheng, L.; Wang, K.Q. Theoretical study on thermal hazards of Balz-Schiemann reaction of aniline. China Safety Sci. J., 2013, 23, 101-106.
[17]
Wang, P. Study on preparation and stability of solid diazonium salt of weakly basic aromatic amine. Dyestuffs Color., 2016, 53, 34-37.
[18]
Ma, J.; Liu, Y.; Zhang, Q. Analysis of reactors about phenol produced by hydrolyzation of diazonium salts. Chem. Int., 2010, 6, 57-61.
[19]
Li, S.Y.; Liu, Y.Z.; Zhang, Q.L.; Ma, J.L.; Qiu, S.H. Study on the hydrolysis kinetics of preparation of m-cresol from diazonium salt. Yingyong Huagong, 2011, 40, 1786-1788.
[20]
Li, G.; Liu, Y.; Zhang, Q.; Zhou, L.; Ma, J. Study on preparation guaiacol by hydrolyzation of diazonium salts. Chem. Int., 2010, 6, 46-50.
[21]
Shen, S.; He, L.; Chen, G. Research on hydroxyl substitution of aromatic diazosalt. Chem. World, 2012, 53, 497-500.
[22]
Cohen, T.; Dietz, A.G.J.; Miser, J.R. A simple preparation of phenols from diazonium ions via the generation and oxidation of aryl radi-cals by copper salts. J. Org. Chem., 1977, 42, 2053-2058.
[http://dx.doi.org/10.1021/jo00432a003]
[23]
Wang, S.; Dai, G.Y. Special reaction conditions of diazotization of aromatic amines. J. Jiangsu Normal Univ., 1994, 12(4), 33-35.
[24]
Xu, W.; Fu, W.; Chen, H.; Xu, B.; Zhou, N. Study on the preparation technology of aromatic primary amine diazonium salt based on au-tomatic and continuous device. Adv. Textile Technol., 2017, 25(3), 49-52.
[25]
Taniguchi, T.; Imoto, M.; Takeda, M.; Nakai, T.; Mihara, M.; Iwai, T.; Ito, T.; Mizuno, T.; Nomoto, A.; Ogawa, A. Hydrolysis of diazoni-um salts using a two-phase system (CPME and water). Heteroatom Chem., 2016, 26, 411-416.
[http://dx.doi.org/10.1002/hc.21275]
[26]
Kristianslund, R.; Vik, A.; Hansen, T.V. A convenient synthesis of phenols. Synth. Commun., 2018, 48(21), 2809-2814.
[http://dx.doi.org/10.1080/00397911.2018.1496263]
[27]
Zarei, A.; Khazdooz, L.; Aghaei, H.; Gheisari, M.M.; Alizadeh, S.; Golestanifar, L. Synthesis of phenols by using aryldiazonium silica sulfate nanocomposites. Tetrahedron, 2017, 73, 6954-6961.
[http://dx.doi.org/10.1016/j.tet.2017.10.057]
[28]
Cantillo, D.; Damm, M.; Dallinger, D.; Bauser, M.; Berger, M.; Kappe, C.O. Sequential nitration/hydrogenation protocol for the synthesis of triaminophloroglucinol: Safe generation and use of an explosive intermediate under continuous-flow conditions. Org. Process Res. Dev., 2014, 18(11), 1360-1366.
[http://dx.doi.org/10.1021/op5001435]
[29]
Talsi, V.P.; Belskaya, O.B.; Yurpalov, V.L. The composition of transformation products of 2,4,6-trinitrobenzoic acid in the aqueous-phase hydrogenation over Pd/C catalysts. Magn. Reson. Chem., 2020, 58(1), 84-96.
[http://dx.doi.org/10.1002/mrc.4931] [PMID: 31361050]
[30]
Shi, L.; Feng, X.E.; Cui, J.R.; Fang, L.H.; Du, G.H.; Li, Q.S. Synthesis and biological activity of flavanone derivatives. Bioorg. Med. Chem. Lett., 2010, 20(18), 5466-5468.
[http://dx.doi.org/10.1016/j.bmcl.2010.07.090] [PMID: 20708932]
[31]
Cui, X.G. Study on the preparation of m-cresol form direct hydrolysis of m-toluidine; Nanjing University of Science and Technology: Nanjing, 2008.
[32]
Brack, B.; Gammon, D.W.; Steen, E. Synthesis of resorcinol from meta-phenylenediamine in the presence of zeolites. J. Mol. Catal. Chem., 2000, 154, 73-83.
[http://dx.doi.org/10.1016/S1381-1169(99)00379-9]
[33]
Kune, C.; Delvaux, C.; Haler, J.R.N.; Quinton, L.; Eppe, G.; De Pauw, E.; Far, J. A mechanistic study of protonated aniline to protonated phenol substitution considering tautomerization by ion mobility mass spectrometry and tandem mass spectrometry. J. Am. Soc. Mass Spectrom., 2019, 30(11), 2238-2249.
[http://dx.doi.org/10.1007/s13361-019-02321-4] [PMID: 31520338]
[34]
Lamberth, C.; Kessabi, F.M.; Beaudegnies, R.; Quaranta, L.; Trah, S.; Berthon, G.; Cederbaum, F.; Knauf-Beiter, G.; Grasso, V.; Bieri, S.; Corran, A.; Thacker, U. Synthesis and fungicidal activity of quinolin-6-yloxyacetamides, a novel class of tubulin polymerization inhibi-tors. Bioorg. Med. Chem., 2014, 22(15), 3922-3930.
[http://dx.doi.org/10.1016/j.bmc.2014.06.015] [PMID: 25002231]
[35]
Wu, X.; Zhang, W.; Lu, X. Preparation of resorcinol using waste sulfuric acid. Chem. Industr. Eng. Prog., 2009, 28, 346-348.
[36]
Mukhopadhyay, M.; Sohani, M.S. Studies on solvent extraction of resorcinol. J. Chem. Eng. Data, 1989, 34(1), 31-35.
[http://dx.doi.org/10.1021/je00055a011]
[37]
Chen, Y.Y. Study on the synthesis process of 1,3,5-trihydroxybenzene; Dalian University of Technology: Dalian, 2001.
[38]
Ushkarov, V.I.; Kobrakov, K.I.; Alafinov, A.I.; Shevelev, S.A.; Shakhnes, A.K. Methylphloroglucinol as an available semiproduct for azo dye synthesis. Theor. Found. Chem. Eng., 2007, 41(5), 671-674.
[http://dx.doi.org/10.1134/S0040579507050375]
[39]
Lee, W.H.; Kim, J.S.; Kim, S.C. Synthesis of phloroglucinol using microwave-assisted reaction from TNT. Bull. Korean Chem. Soc., 2009, 30(12), 3105-3106.
[http://dx.doi.org/10.5012/bkcs.2009.30.12.3105]
[40]
Imoto, M.; Matsui, Y.; Takeda, M.; Tamaki, A.; Taniguchi, H.; Mizuno, K.; Ikeda, H. A probable hydrogen-bonded Meisenheimer com-plex: An unusually high S(N)Ar reactivity of nitroaniline derivatives with hydroxide ion in aqueous media. J. Org. Chem., 2011, 76(15), 6356-6361.
[http://dx.doi.org/10.1021/jo2007219] [PMID: 21755919]
[41]
Zhang, F.; Zhang, S.; Duan, X.F. Study on nitrate activation and related reactions.The 17th National Symposium on Metal Organic Chemistry; Beijing China, 2012.
[42]
Blaskó, A.; Bunton, C.A.; Gillitt, N.D.; Bacaloglu, R.; Yunes, S.F.; Zucco, C. The reaction of 1,2-dichloro-4,5-dinitrobenzene with hydrox-ide ion: Roles of meisenheimer complexes and radical pairs. J. Braz. Chem. Soc., 2013, 24(7), 1146-1159.
[http://dx.doi.org/10.5935/0103-5053.20130148]
[43]
Wöhrle, D.; Knothe, G. Reaction of 4-nitrophthalonitrile with carbonate, nitrite, and fluoride. Synth. Commun., 1989, 19(18), 3231-3239.
[http://dx.doi.org/10.1080/00397918908052723]
[44]
Alvarez-Micó, X.; Calvete, M.J.; Hanack, M.; Ziegler, T. A new glycosidation method through nitrite displacement on substituted nitroben-zenes. Carbohydr. Res., 2007, 342(3-4), 440-447.
[http://dx.doi.org/10.1016/j.carres.2006.11.017] [PMID: 17182018]
[45]
Liu, X.; Tian, H.H.; Yang, L.; Su, Y.; Guo, M.; Song, X. An ESIPT-based fluorescent probe for sensitive and selective detection of Cys/Hcy over GSH with a red emission and a large stokes shift. Tetrahedron Lett., 2017, 58(33), 3209-3213.
[http://dx.doi.org/10.1016/j.tetlet.2017.06.082]
[46]
Seeboth, H. Bucherer reaction and the preparative use of its intermediate products. Angew. Chem. Int. Ed. Engl., 1967, 6(4), 307-317.
[http://dx.doi.org/10.1002/anie.196703071]
[47]
Giampietro, L.; Ammazzalorso, A.; Bruno, I.; Carradori, S.; De Filippis, B.; Fantacuzzi, M.; Giancristofaro, A.; Maccallini, C.; Amoroso, R. Synthesis of naphthyl-, quinolin- and anthracenyl analogues of clofibric acidas PPARα agonists. Chem. Biol. Drug Des., 2016, 87(3), 467-471.
[http://dx.doi.org/10.1111/cbdd.12677] [PMID: 26502898]
[48]
Canete, A.; Melendrez, M.X.; Saitz, C.; Zanocco, A.L. Synthesis of aminonaphthalene derivatives using the Bucherer reaction under mi-crowave irradiation. Synth. Commun., 2001, 31(14), 2143-2148.
[http://dx.doi.org/10.1081/SCC-100104465]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy