Generic placeholder image

Current Molecular Pharmacology

Editor-in-Chief

ISSN (Print): 1874-4672
ISSN (Online): 1874-4702

Research Article

Hesperidin Exerts Anxiolytic-like Effects in Rats with Streptozotocin‐ Induced Diabetes via PKA/CREB Signaling

Author(s): Xia Zhu, Haiyan Liu, Zongli Deng, Chuanzhi Yan, Yaowu Liu and Xiaoxing Yin*

Volume 16, Issue 1, 2023

Published on: 21 June, 2022

Article ID: e140322202155 Pages: 10

DOI: 10.2174/1573413718666220314140848

Price: $65

Abstract

Background: The mechanisms underlying synaptic injury and anxiety-like behavioral changes caused by diabetes and the strategies to reverse these changes are not well understood.

Objectives: This study examined the neuroprotective effects of hesperidin on anxiety-like behaviors in diabetic rats and investigated the underlying mechanisms from the perspective of the PKA/CREB pathway.

Methods: Rats with streptozotocin-induced diabetes were treated orally with hesperidin (50 and 150 mg/kg) for 10 weeks. The elevated plus maze (EPM), hole board test (HBT), and marbleburying test (MBT) were used to assess anxiety-like behaviors. We further examined the effects of hesperidin on the PKA/CREB pathway in vivo and in vitro.

Results: The results show that supplementation with hesperidin exerted anxiolytic effects on the diabetic rats, as evidenced by increased percentages of open arm entries and time spent in the open arms in the EPM; decreased numbers of hole visits in the HBT; decreased numbers of marbles buried; and increased expression of PKA, CREB, BDNF, and synaptic proteins in the amygdala and hippocampus of diabetic rats. Hesperidin was found to reverse the imbalance in the PKA/CREB/BDNF pathway. In vitro, we found that the PKA inhibitor H89 reversed the protective effects of hesperidin against cell injury and reversed the HG-induced expression of PKA, pCREB/CREB, and BDNF.

Conclusion: Our results demonstrated that hesperidin could ameliorate the anxiety-like behaviors of diabetic rats and that activating the PKA/CREB/BDNF pathway contributed to the beneficial effects. This study may provide important insights into the mechanisms underlying anxiety-like behaviors in diabetes and identify new therapeutic targets for clinical treatment.

Keywords: Diabetes, anxiety, hesperidin, PKA, CREB, neuroprotective effects.

Graphical Abstract

[1]
Wild, S.; Roglic, G.; Green, A.; Sicree, R.; King, H. Global prevalence of diabetes: estimates for the year 2000 and projec-tions for 2030. Diabetes Care, 2004, 27(5), 1047-1053.
[http://dx.doi.org/10.2337/diacare.27.5.1047 ] [PMID: 15111519]
[2]
Smith, K.J.; Schmitz, N. Association of depression and anxiety symptoms with functional disability and disability days in a community sample with type 2 diabetes. Psychosomatics, 2014, 55(6), 659-667.
[http://dx.doi.org/10.1016/j.psym.2014.05.015 ] [PMID: 25497504]
[3]
Scott, K.M.; Bruffaerts, R.; Tsang, A.; Ormel, J.; Alonso, J.; Angermeyer, M.C.; Benjet, C.; Bromet, E.; de Girolamo, G.; de Graaf, R.; Gasquet, I.; Gureje, O.; Haro, J.M.; He, Y.; Kessler, R.C.; Levinson, D.; Mneimneh, Z.N.; Oakley Browne, M.A.; Posada-Villa, J.; Stein, D.J.; Takeshima, T.; Korff, M.V. De-pression-anxiety relationships with chronic physical condi-tions: Results from the World Mental Health Surveys. J. Affect. Disord., 2007, 103(1-3), 113-120.
[http://dx.doi.org/10.1016/j.jad.2007.01.015 ] [PMID: 17292480]
[4]
Lee, J.H.; Konarska, M.; McCarty, R. Physiological responses to acute stress in alloxan and streptozotocin diabetic rats. Physiol. Behav., 1989, 45(3), 483-489.
[http://dx.doi.org/10.1016/0031-9384(89)90062-0 ] [PMID: 2526954]
[5]
Cameron, O.G.; Kronfol, Z.; Greden, J.F.; Carroll, B.J. Hypo-thalamic-pituitary-adrenocortical activity in patients with diabe-tes mellitus. Arch. Gen. Psychiatry, 1984, 41(11), 1090-1095.
[http://dx.doi.org/10.1001/archpsyc.1983.01790220080013 ] [PMID: 6497572]
[6]
Ho, N.; Sommers, M.S.; Lucki, I. Effects of diabetes on hippo-campal neurogenesis: Links to cognition and depression. Neurosci. Biobehav. Rev., 2013, 37(8), 1346-1362.
[http://dx.doi.org/10.1016/j.neubiorev.2013.03.010 ] [PMID: 23680701]
[7]
Nakagawa, S.; Kim, J.E.; Lee, R.; Malberg, J.E.; Chen, J.; Stef-fen, C.; Zhang, Y.J.; Nestler, E.J.; Duman, R.S. Regulation of neurogenesis in adult mouse hippocampus by cAMP and the cAMP response element-binding protein. J. Neurosci., 2002, 22(9), 3673-3682.
[http://dx.doi.org/10.1523/JNEUROSCI.22-09-03673.2002 ] [PMID: 11978843]
[8]
Merz, K.; Herold, S.; Lie, D.C. CREB in adult neurogenesis - master and partner in the development of adult-born neurons? Eur. J. Neurosci., 2011, 33(6), 1078-1086.
[http://dx.doi.org/10.1111/j.1460-9568.2011.07606.x ] [PMID: 21395851]
[9]
Dagda, R.K.; Banerjee, T.D. Role of protein kinase A in regulat-ing mitochondrial function and neuronal development: Implica-tions to neurodegenerative diseases. Rev. Neurosci., 2015, 26(3), 359-370.
[http://dx.doi.org/10.1515/revneuro-2014-0085] [PMID: 25741943]
[10]
O’Donnell, J.M.; Zhang, H.T. Antidepressant effects of inhibi-tors of cAMP phosphodiesterase (PDE4). Trends Pharmacol. Sci., 2004, 25(3), 158-163.
[http://dx.doi.org/10.1016/j.tips.2004.01.003 ] [PMID: 15019272]
[11]
Akiyama, S.; Katsumata, S.; Suzuki, K.; Ishimi, Y.; Wu, J.; Uehara, M. Dietary hesperidin exerts hypoglycemic and hypo-lipidemic effects in streptozotocin-induced marginal type 1 di-abetic rats. J. Clin. Biochem. Nutr., 2010, 46(1), 87-92.
[http://dx.doi.org/10.3164/jcbn.09-82] [PMID: 20104270]
[12]
Alu’datt, M.H.; Rababah, T.; Alhamad, M.N.; Al-Mahasneh, M.A.; Ereifej, K.; Al-Karaki, G.; Al-Duais, M.; Andrade, J.E.; Tranchant, C.C.; Kubow, S.; Ghozlan, K.A. Profiles of free and bound phenolics extracted from citrus fruits and their roles in biological systems: content, and antioxidant, anti-diabetic and anti-hypertensive properties. Food Funct., 2017, 8(9), 3187-3197.
[http://dx.doi.org/10.1039/C7FO00212B ] [PMID: 28805834]
[13]
Parhiz, H.; Roohbakhsh, A.; Soltani, F.; Rezaee, R.; Iranshahi, M. Antioxidant and anti-inflammatory properties of the citrus flavonoids hesperidin and hesperetin: an updated review of their molecular mechanisms and experimental models. Phytother. Res., 2015, 29(3), 323-331.
[http://dx.doi.org/10.1002/ptr.5256] [PMID: 25394264]
[14]
Visnagri, A.; Kandhare, A.D.; Chakravarty, S.; Ghosh, P.; Bo-dhankar, S.L. Hesperidin, a flavanoglycone attenuates experi-mental diabetic neuropathy via modulation of cellular and bio-chemical marker to improve nerve functions. Pharm. Biol., 2014, 52(7), 814-828.
[http://dx.doi.org/10.3109/13880209.2013.870584 ] [PMID: 24559476]
[15]
Zhang, Y.; Wang, B.; Guo, F.; Li, Z.; Qin, G. Involvement of the TGFβ1- ILK-Akt signaling pathway in the effects of hes-peridin in type 2 diabetic nephropathy. Biomed. Pharmacother., 2018, 105, 766-772.
[http://dx.doi.org/10.1016/j.biopha.2018.06.036 ] [PMID: 29909344]
[16]
Viswanatha, G.L.; Shylaja, H.; Rao, K.S.S.; Kumar, V.R.S.; Jagadeesh, M. Hesperidin ameliorates immobilization-stress-induced behavioral and biochemical alterations and mitochon-drial dysfunction in mice by modulating nitrergic pathway. ISRN Pharmacol., 2012, 2012, 479570.
[http://dx.doi.org/10.5402/2012/479570 ] [PMID: 22550596]
[17]
Hameed, A.; Ashraf, S.; Khan, M.I.; Hafizur, R.M.; Ul-Haq, Z. Protein kinase A-dependent insulinotropic effect of selected flavonoids. Int. J. Biol. Macromol., 2018, 119, 149-156.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.07.012 ] [PMID: 30003913]
[18]
Wu, M.; Li, Y.; Gu, Y. Hesperidin improves colonic motility in loeramide-induced constipation rat model via 5-hydroxytryptamine 4R/cAMP signaling pathway. Digestion, 2020, 101(6), 692-705.
[http://dx.doi.org/10.1159/000501959] [PMID: 31454820]
[19]
Zhu, X.; Liu, H.; Liu, Y.; Chen, Y.; Liu, Y.; Yin, X. The anti-depressant-like effects of hesperidin in streptozotocin-induced diabetic rats by activating Nrf2/ARE/Glyoxalase 1 pathway. Front. Pharmacol., 2020, 11, 1325.
[http://dx.doi.org/10.3389/fphar.2020.01325 ] [PMID: 32982741]
[20]
Masood, A.; Nadeem, A.; Mustafa, S.J.; O’Donnell, J.M. Re-versal of oxidative stress-induced anxiety by inhibition of phosphodiesterase-2 in mice. J. Pharmacol. Exp. Ther., 2008, 326(2), 369-379.
[http://dx.doi.org/10.1124/jpet.108.137208 ] [PMID: 18456873]
[21]
Njung’e, K.; Handley, S.L. Evaluation of marble-burying be-havior as a model of anxiety. Pharmacol. Biochem. Behav., 1991, 38(1), 63-67.
[http://dx.doi.org/10.1016/0091-3057(91)90590-X] [PMID: 2017455]
[22]
Wasowski, C.; Loscalzo, L.M.; Higgs, J.; Marder, M. Chronic intraperitoneal and oral treatments with hesperidin induce cen-tral nervous system effects in mice. Phytother. Res., 2012, 26(2), 308-312.
[http://dx.doi.org/10.1002/ptr.3560] [PMID: 21717517]
[23]
Huang, S.M.; Tsai, S.Y.; Lin, J.A.; Wu, C.H.; Yen, G.C. Cyto-protective effects of hesperetin and hesperidin against amyloid β-induced impairment of glucose transport through downregu-lation of neuronal autophagy. Mol. Nutr. Food Res., 2012, 56(4), 601-609.
[http://dx.doi.org/10.1002/mnfr.201100682 ] [PMID: 22383310]
[24]
Choi, E.J.; Ahn, W.S. Neuroprotective effects of chronic hes-peretin administration in mice. Arch. Pharm. Res., 2008, 31(11), 1457-1462.
[http://dx.doi.org/10.1007/s12272-001-2130-1] [PMID: 19023542]
[25]
Ni, Q.; Ganesan, A.; Aye-Han, N.N.; Gao, X.; Allen, M.D.; Levchenko, A.; Zhang, J. Signaling diversity of PKA achieved via a Ca2+-cAMP-PKA oscillatory circuit. Nat. Chem. Biol., 2011, 7(1), 34-40.
[http://dx.doi.org/10.1038/nchembio.478 ] [PMID: 21102470]
[26]
Enns, L.C.; Ladiges, W. Protein kinase A signaling as an anti-aging target. Ageing Res. Rev., 2010, 9(3), 269-272.
[http://dx.doi.org/10.1016/j.arr.2010.02.004 ] [PMID: 20188216]
[27]
Keil, M.F.; Briassoulis, G.; Gokarn, N.; Nesterova, M.; Wu, T.J.; Stratakis, C.A. Anxiety phenotype in mice that overex-press protein kinase A. Psychoneuroendocrinol., 2012, 37(6), 836-843.
[http://dx.doi.org/10.1016/j.psyneuen.2011.09.016 ] [PMID: 22024111]
[28]
Howe, A.K. Regulation of actin-based cell migration by cAMP/PKA. Biochim. Biophys. Acta, 2004, 1692(2-3), 159-174.
[http://dx.doi.org/10.1016/j.bbamcr.2004.03.005 ] [PMID: 15246685]
[29]
Reinhard, M.; Jarchau, T.; Walter, U. Actin-based motility: Stop and go with Ena/VASP proteins. Trends Biochem. Sci., 2001, 26(4), 243-249.
[http://dx.doi.org/10.1016/S0968-0004(00)01785-0 ] [PMID: 11295557]
[30]
Xu, Y.; Pan, J.; Sun, J.; Ding, L.; Ruan, L.; Reed, M.; Yu, X.; Klabnik, J.; Lin, D.; Li, J.; Chen, L.; Zhang, C.; Zhang, H.; O’Donnell, J.M. Inhibition of phosphodiesterase 2 reverses impaired cognition and neuronal remodeling caused by chronic stress. Neurobiol. Aging, 2015, 36(2), 955-970.
[http://dx.doi.org/10.1016/j.neurobiolaging.2014.08.028 ] [PMID: 25442113]
[31]
Huang, E.J.; Reichardt, L.F. Neurotrophins: Roles in neuronal development and function. Annu. Rev. Neurosci., 2001, 24, 677-736.
[http://dx.doi.org/10.1146/annurev.neuro.24.1.677 ] [PMID: 11520916]
[32]
Wang, Y.; Guo, L.; Jiang, H.F.; Zheng, L.T.; Zhang, A.; Zhen, X.C. Allosteric modulation of sigma-1 receptors elicits rapid antidepressant activity. CNS Neurosci. Ther., 2016, 22(5), 368-377.
[http://dx.doi.org/10.1111/cns.12502 ] [PMID: 26854125]
[33]
Bahi, A. Hippocampal BDNF overexpression or microR124a silencing reduces anxiety- and autism-like behaviors in rats. Behav. Brain Res., 2017, 326, 281-290.
[http://dx.doi.org/10.1016/j.bbr.2017.03.010] [PMID: 28284951]
[34]
Xu, Y.; Ku, B.; Tie, L.; Yao, H.; Jiang, W.; Ma, X.; Li, X. Cur-cumin reverses the effects of chronic stress on behavior, the HPA axis, BDNF expression and phosphorylation of CREB. Brain Res., 2006, 1122(1), 56-64.
[http://dx.doi.org/10.1016/j.brainres.2006.09.009 ] [PMID: 17022948]
[35]
Christoffel, D.J.; Golden, S.A.; Russo, S.J. Structural and syn-aptic plasticity in stress-related disorders. Rev. Neurosci., 2011, 22(5), 535-549.
[http://dx.doi.org/10.1515/RNS.2011.044] [PMID: 21967517]
[36]
Schmitt, U.; Tanimoto, N.; Seeliger, M.; Schaeffel, F.; Leube, R.E. Detection of behavioral alterations and learning deficits in mice lacking synaptophysin. Neuroscience, 2009, 162(2), 234-243.
[http://dx.doi.org/10.1016/j.neuroscience.2009.04.046] [PMID: 19393300]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy