Abstract
Benzimidazole (BI) and its derivatives are interesting molecules in medicinal chemistry because several of these compounds have a diversity of biological activities and some of them are even used in clinical applications. In view of the importance of these compounds, synthetic chemists are still interested in finding new procedures for the synthesis of these classes of compounds. Astemizole (antihistaminic), Omeprazole (antiulcerative), and Rabendazole (fungicide) are important examples of compounds used in medicinal chemistry containing BI nuclei. It is interesting to observe that several of these compounds contain 2-aminobenzimidazole (2ABI) as the base nucleus. The structures of 2ABI derivatives are interesting because they have a planar delocalized structure with a cyclic guanidine group, which have three nitrogen atoms with free lone pairs and labile hydrogen atoms. The 10-π electron system of the aromatic BI ring conjugated with the nitrogen lone pair of the hexocyclic amino group, making these heterocycles to have an amphoteric character. Synthetic chemists have used 2ABI as a building block to produce BI derivatives as medicinally important molecules. In view of the importance of the BIs, and because no review was found in the literature about this topic, we reviewed and summarized the procedures related to the recent methodologies used in the N-substitution reactions of 2ABIs by using aliphatic and aromatic halogenides, dihalogenides, acid chlorides, alkylsulfonic chlorides, carboxylic acids, esters, ethyl chloroformates, anhydrides, SMe-isothioureas, alcohols, alkyl cyanates, thiocyanates, carbon disulfide and aldehydes or ketones to form Schiff bases. The use of diazotized 2ABI as intermediate to obtain 2-diazoBIs was included to produce Nsubstituted 2ABIs of pharmacological interest. Some commentaries about their biological activity were included.
Keywords: 2-Aminobenzimidazoles, N-alkyl-2-aminobenzimidazoles, N-aryl-2-aminobenzimidazoles, N-acyl-2-aminobenzimidazoles, 2-aminobenzimidazol Schiff bases, astemizole.
Graphical Abstract
(b) Srestha, N.; Banerjee, J.; Srivastava, S. A review on chemistry and biological significance of benzimidazole nucleus. IOSR J. Pharm., 2014, 4(12), 28-41.
[http://dx.doi.org/10.9790/3013-0401201028041];
(c) Yerragunta, V.; Patil, P.; Srujana, S.; Devi, R.; Srujana, G.R.; Divya, A. Benzimidazole derivatives and its biological importance: A review. PharmaTutor, 2014, 2, 109-113.;
(d) Hamiduzzaman, M.; Mannan, S.J.; Dey, A.; Rahman, S.M.A. Evaluation of analgesic, antipyretic, hypoglycemic and CNS depressant activity of 2-bromopopylamine hydrobromide, 3-bromopopyl ammonium bromide, ortho-amino aniline and benzimidazole-2-thiol in animal model. Der. Pharm. Lett, 2014, 6, 47-53.;
(e) Arulmurugan, S.; Kavitha, H.P.; Sathishkumar, S.; Arulmozhi, R. Biologically active benzimidazole derivatives. Mini Rev. Org. Chem., 2015, 12, 178-195.
[http://dx.doi.org/10.2174/1570193X1202150225153403];
(f) Naga, P.K.; Kumar, K.R. Green synthesis of benzimidazole derivatives: An overview of bulk drug synthesis. Int. J. Pharm. Tech. Res., 2015, 8, 60-68.;
(g) Wang, Y-T.; Qin, Y-J.; Yang, N.; Zhang, Y-L.; Liu, C.H.; Zhu, H.L. Synthesis, biological evaluation, and molecular docking studies of novel 1-benzene acyl-2-(1-methylindol-3-yl)-benzimidazole derivatives as potential tubulin polymerization inhibitors. Eur. J. Med. Chem., 2015, 99, 125-137.
[http://dx.doi.org/10.1016/j.ejmech.2015.05.021] [PMID: 26070164];
(h) Alasmary, F.A.; Snelling, A.M.; Zain, M.E.; Alafeefy, A.M.; Awaad, A.S.; Karodia, N.; Karodia, N. Synthesis and evaluation of selected benzimidazole derivatives as potential antimicrobial agents. Molecules, 2015, 20(8), 15206-15223.
[http://dx.doi.org/10.3390/molecules200815206] [PMID: 26307956];
(i) Maiti, B.; Chanda, K. Diversity oriented synthesis of benzimidazole-based biheterocyclic molecules by combinatorial approach: A critical review. RSC Advances, 2016, 6(56), 50384-50413.
[http://dx.doi.org/10.1039/C6RA06930D];
(j) Keri, R.S.; Rajappa, C.K.; Patil, S.A.; Nagaraja, B.M. Benzimidazole-core as an antimycobacterial agent. Pharmacol. Rep., 2016, 68(6), 1254-1265.
[http://dx.doi.org/10.1016/j.pharep.2016.08.002] [PMID: 27686965];
(k) Aishwarya, M.N.L.; Rao, E.A.; Babu, M.N. A review on gastrointestinal drug esomeprazole. Pharm. Tutor, 2017, 5, 19-26.;
(l) Rajasekhar, S.; Maiti, B.; Balamurali, M.M.; Chanda, K. Synthesis and medicinal applications of benzimidazoles: An overview. Curr. Org. Synth., 2017, 14, 40-60.
[http://dx.doi.org/10.2174/1570179413666160818151932]
[http://dx.doi.org/10.1177/030006059702500401] [PMID: 9283989];
(b) Ramalingan, C.; Balasubramanian, S.; Kabilan, S. A convenient synthesis of novel 1‐[2‐(Benzimidazol‐2‐yl)ethoxy]‐2,6‐diarylpiperidin‐4‐ones. Synth. Commun., 2004, 34(6), 1105-1116.
[http://dx.doi.org/10.1081/SCC-120028643]
[http://dx.doi.org/10.1007/s00044-015-1495-5]
[http://dx.doi.org/10.3998/ark.5550190.0004.e16]
[http://dx.doi.org/10.1016/j.bmcl.2004.04.005]
[http://dx.doi.org/10.1021/jm00150a028] [PMID: 4068010];
(b) Mor, M.; Bordi, F.; Silva, C.; Rivara, S.; Zuliani, V.; Vacondio, F.; Rivara, M.; Barocelli, E.; Bertoni, S.; Ballabeni, V.; Magnanini, F.; Impicciatore, M.; Plazzi, P.V. Synthesis, biological activity, QSAR and QSPR study of 2-aminobenzimidazole derivatives as potent H3-antagonists. Bioorg. Med. Chem., 2004, 12(4), 663-674.
[http://dx.doi.org/10.1016/j.bmc.2003.11.030] [PMID: 14759727]
[http://dx.doi.org/10.1002/(SICI)1521-4184(199807)331:7/8<249::AID-ARDP249>3.0.CO;2-B] [PMID: 9747181]
[http://dx.doi.org/10.1007/s00044-017-2036-1]
[http://dx.doi.org/10.1021/jm800318d] [PMID: 18690678]
[http://dx.doi.org/10.1016/j.antiviral.2004.04.007] [PMID: 15451177];
(b) Dayam, R.; Deng, J.; Neamati, N. HIV-1 integrase inhibitors: 2003-2004 update. Med. Res. Rev., 2006, 26(3), 271-309.
[http://dx.doi.org/10.1002/med.20054] [PMID: 16496343]
[http://dx.doi.org/10.1016/S0968-0896(02)00616-8] [PMID: 12628659];
(b) Carpenter, R.D.; Andrei, M.; Lau, E.Y.; Lightstone, F.C.; Liu, R.; Lam, K.S.; Kurth, M.J. Highly potent, water soluble benzimidazole antagonist for activated α 4 β 1 integrin. J. Med. Chem., 2007, 50(23), 5863-5867.
[http://dx.doi.org/10.1021/jm070790o] [PMID: 17948981]
[http://dx.doi.org/10.1021/jm020113o] [PMID: 12139450];
(b) Zhong, M.; Bui, M.; Shen, W.; Baskaran, S.; Allen, D.A.; Elling, R.A.; Flanagan, W.M.; Fung, A.D.; Hanan, E.J.; Harris, S.O.; Heumann, S.A.; Hoch, U.; Ivy, S.N.; Jacobs, J.W.; Lam, S.; Lee, H.; McDowell, R.S.; Oslob, J.D.; Purkey, H.E.; Romanowski, M.J.; Silverman, J.A.; Tangonan, B.T.; Taverna, P.; Yang, W.; Yoburn, J.C.; Yu, C.H.; Zimmerman, K.M.; O’Brien, T.; Lew, W. 2-Aminobenzimidazoles as potent Aurora kinase inhibitors. Bioorg. Med. Chem. Lett., 2009, 19(17), 5158-5161.
[http://dx.doi.org/10.1016/j.bmcl.2009.07.016] [PMID: 19646866];
(c) Cee, V.J.; Cheng, A.C.; Romero, K.; Bellon, S.; Mohr, C.; Whittington, D.A.; Bak, A.; Bready, J.; Caenepeel, S.; Coxon, A.; Deak, H.L.; Fretland, J.; Gu, Y.; Hodous, B.L.; Huang, X.; Kim, J.L.; Lin, J.; Long, A.M.; Nguyen, H.; Olivieri, P.R.; Patel, V.F.; Wang, L.; Zhou, Y.; Hughes, P.; Geuns-Meyer, S. Pyridyl-pyrimidine benzimidazole derivatives as potent, selective, and orally bioavailable inhibitors of Tie-2 kinase. Bioorg. Med. Chem. Lett., 2009, 19(2), 424-427.
[http://dx.doi.org/10.1016/j.bmcl.2008.11.056] [PMID: 19062275]
[http://dx.doi.org/10.1021/ja038025w] [PMID: 14677933]
[http://dx.doi.org/10.1016/j.bmc.2012.09.013] [PMID: 23031649]
[http://dx.doi.org/10.1021/jm900414x] [PMID: 19527033];
(b) Bharti, N.; Shailendra, M.T.; Gonzalez Garza, M.T.; Cruz-Vega, D.E.; Castro-Garza, J.; Saleem, K.; Naqvi, F.; Maurya, M.R.; Azam, A. Synthesis, characterization and antiamoebic activity of benzimidazole derivatives and their vanadium and molybdenum complexes. Bioorg. Med. Chem. Lett., 2002, 12(6), 869-871.
[http://dx.doi.org/10.1016/S0960-894X(02)00034-3] [PMID: 11958982];
(c) Ravina, E.; Sanchez-Alonso, R.; Fueyo, J.; Baltar, M.P.; Bos, J.; Iglesias, R.; Sanmartin, M.L. Synthesis and potential anthelmintic activity of methyl-5-(4-salicyloyl-piperazin-1-yl)-benzimidazole-2-carbamates. Arzneimittelforschung, 1993, 43(6), 689-694.
[PMID: 8352825]
[http://dx.doi.org/10.1039/b700206h] [PMID: 17898890];
(b) Hassan, W.; Edrada, R.; Ebel, R.; Wray, V.; Berg, A.; van Soest, R.; Wiryowidagdo, S.; Proksch, P. New imidazole alkaloids from the Indonesian sponge Leucetta chagosensis. J. Nat. Prod., 2004, 67(5), 817-822.
[http://dx.doi.org/10.1021/np0305223] [PMID: 15165143];
(c) Kamal, A.; Reddy, K.L.; Devaiah, V.; Shankaraiah, N.; Rao, M.V. Recent advances in the solid-phase combinatorial synthetic strategies for the quinoxaline, quinazoline and benzimidazole based privileged structures. Mini Rev. Med. Chem., 2006, 6(1), 71-89.
[http://dx.doi.org/10.2174/138955706775197839] [PMID: 16457633];
(d) Cruz, A.; Padilla-Martínez, I.I.; Ramos-Organillo, A.A. Methods to access 2-aminobenzimidazoles of medicinal interest. Curr. Org. Chem., 2019, 23(23), 2573-2597.
[http://dx.doi.org/10.2174/1385272823666191023150201]
[http://dx.doi.org/10.1021/jm048978k] [PMID: 15801819]
[http://dx.doi.org/10.1021/acs.jmedchem.5b01586] [PMID: 26824742]
[http://dx.doi.org/10.1128/AAC.01418-09] [PMID: 20211901];
(b) Su, Z.; Rogers, S.A.; McCall, W.S.; Smith, A.C.; Ravishankar, S.; Mullikin, T.; Melander, C. A nitroenolate approach to the synthesis of 4,5-disubstituted-2-aminoimidazoles. Pilot library assembly and screening for antibiotic and antibiofilm activity. Org. Biomol. Chem., 2010, 8(12), 2814-2822.
[http://dx.doi.org/10.1039/c001479f] [PMID: 20428587];
(c) Huigens, R.W., III; Reyes, S.; Reed, C.S.; Bunders, C.; Rogers, S.A.; Steinhauer, A.T.; Melander, C. The chemical synthesis and antibiotic activity of a diverse library of 2-aminobenzimidazole small molecules against MRSA and multidrug-resistant A. baumannii. Bioorg. Med. Chem., 2010, 18(2), 663-674.
[http://dx.doi.org/10.1016/j.bmc.2009.12.003] [PMID: 20044260];
(d) Frei, R.; Breitbach, A.S.; Blackwell, H.E. 2-Aminobenzimidazole derivatives strongly inhibit and disperse Pseudomonas aeruginosa biofilms. Angew. Chem. Int. Ed. Engl., 2012, 51(21), 5226-5229.
[http://dx.doi.org/10.1002/anie.201109258] [PMID: 22488868]
[http://dx.doi.org/10.1021/bi801136q] [PMID: 19049291]
[http://dx.doi.org/10.1124/jpet.108.143537] [PMID: 19001156]
[http://dx.doi.org/10.1039/c003732j] [PMID: 20523944];
(b) Spagnuolo, P.A.; Hu, J.; Hurren, R.; Wang, X.; Gronda, M.; Sukhai, M.A.; Di Meo, A.; Boss, J.; Ashali, I.; Beheshti Zavareh, R.; Fine, N.; Simpson, C.D.; Sharmeen, S.; Rottapel, R.; Schimmer, A.D. The antihelmintic flubendazole inhibits microtubule function through a mechanism distinct from Vinca alkaloids and displays preclinical activity in leukemia and myeloma. Blood, 2010, 115(23), 4824-4833.
[http://dx.doi.org/10.1182/blood-2009-09-243055] [PMID: 20348394];
(c) Laryea, D.; Gullbo, J.; Isaksson, A.; Larsson, R.; Nygren, P. Characterization of the cytotoxic properties of the benzimidazole fungicides, benomyl and carbendazim, in human tumour cell lines and primary cultures of patient tumour cells. Anticancer Drugs, 2010, 21(1), 33-42.
[http://dx.doi.org/10.1097/CAD.0b013e328330e74e] [PMID: 19786863];
(d) Doudican, N.; Rodriguez, A.; Osman, I.; Orlow, S.J. Mebendazole induces apoptosis via Bcl-2 inactivation in chemoresistant melanoma cells. Mol. Cancer Res., 2008, 6(8), 1308-1315.
[http://dx.doi.org/10.1158/1541-7786.MCR-07-2159] [PMID: 18667591];
(e) Bai, R.Y.; Staedtke, V.; Aprhys, C.M.; Gallia, G.L.; Riggins, G.J. Antiparasitic mebendazole shows survival benefit in 2 preclinical models of glioblastoma multiforme. Neuro-oncol., 2011, 13(9), 974-982.
[http://dx.doi.org/10.1093/neuonc/nor077] [PMID: 21764822]
(b) Kukalenko, S.S.; Udovenko, V.A.; Borysova, V.P.; Kulugina, N.L.; Burmakin, N.M.; Andreeva, E.L.U.S.S.R. SU 1,636,414. Odkrytiya Izobret, 1991, 11, 75.;
(c) Esser, F.; Schonnenberg, G.; Dollinger, H.; Geida, W. Ger. Offen DE, 1999.
[PMID: 11642009]
[http://dx.doi.org/10.1021/jm050815o] [PMID: 16279767];
(b) Henriksen, N.M.; Hayatshahi, H.S.; Davis, D.R.; Cheatham, T.E. III Structural and energetic analysis of 2-aminobenzimidazole inhibitors in complex with the hepatitis C virus IRES RNA using molecular dynamics simulations. J. Chem. Inf. Model., 2014, 54(6), 1758-1772.
[http://dx.doi.org/10.1021/ci500132c] [PMID: 24835734]
[http://dx.doi.org/10.1021/jo9010552] [PMID: 19627118];
(b) Gómez-Torres, E.; Alonso, D.A.; Gómez-Bengoa, E.; Nájera, C. Conjugate addition of 1,3-dicarbonyl compounds to maleimides using a chiral C2-symmetric bis(2-aminobenzimidazole) as recyclable organocatalyst. Org. Lett., 2011, 13(22), 6106-6109.
[http://dx.doi.org/10.1021/ol202599h] [PMID: 22029403];
(c) Gómez-Torres, E.; Alonso, D.A.; Gómez-Bengoa, E.; Nájera, C. Enantioselective synthesis of succinimides by michael addition of1,3-dicarbonyl compounds to maleimides catalyzed by a chiral bis(2-aminobenzimidazole) organocatalyst. Eur. J. Org. Chem., 2013, 2013(8), 1434-1440.
[http://dx.doi.org/10.1002/ejoc.201201046];
(d) Nájera, C.; Yus, M. Chiral Benzimidazoles as Hydrogen Bonding Organocatalysts., Tetrahedron Lett. 2015, 56, 2623-2633. (f) Trillo, P.; Gómez-Martínez, M.; Alonso D. A.; Baeza, A. 2-Aminobenzimidazole Organocatalyzed Asymmetric Amination of Cyclic 1,3-Dicarbonyl Compounds., Synlett2015, 26, 95-100. (g) Serrano-Sánchez, D.; Baeza A. and Alonso, D. A. Organocatalytic Asymmetric α-Chlorination of 1,3-Dicarbonyl Compounds Catalyzed by 2-Aminobenzimidazole Derivatives. Symmetry (Basel), 2016, 8, 1-12.
[http://dx.doi.org/10.3390/molecules190913878] [PMID: 25255762]
[http://dx.doi.org/10.1021/cr60151a002] [PMID: 24541208];
(b) Yadav, G.; Ganguly, S. Structure activity relationship (SAR) study of benzimidazole scaffold for different biological activities: A mini-review. Eur. J. Med. Chem., 2015, 97, 419-443.
[http://dx.doi.org/10.1016/j.ejmech.2014.11.053] [PMID: 25479684];
(c) Alaqueel, Sh.I. Synthetic Approaches to Benzimidazoles from o-Phenylenediamine: A literature review. J. Saudi Chem. Soc., 2017, 21(2), 229-237.
[http://dx.doi.org/10.1016/j.jscs.2016.08.001];
(d) Akhtar, W.; Khan, M.F.; Verma, G.; Shaquiquzzaman, M.; Rizvi, M.A.; Mehdi, S.H.; Akhter, M.; Alam, M.M. Therapeutic evolution of benzimidazole derivatives in the last quinquennial period. Eur. J. Med. Chem., 2017, 126, 705-753.
[http://dx.doi.org/10.1016/j.ejmech.2016.12.010] [PMID: 27951484];
(e) Hadole, C.D.; Rajput, J.D.; Bendre, R.S. Concise on Some Biologically Important 2-Substituted Benzimidazole Derivatives., Org. Chem. Curr. Res. 2018, 7 (3), 1-9. f) Saber, A.; Sebbara, N.K.; Essassia, El M. Synthesis, Reactivities and Biolobical Properties of Benzimidazole Derivatives., J. Mar. Chim. Heterocycl. 2019, 18, 1-50. g) Vasavaa, M.S.; Rathwaa, S.K.; Jethavaa, D.J.; Acharyaa, P.T.; Patela, D.B. and Patel, H.D. Benzimidazole: A Milestone in the Field of Medicinal Chemistry., Mini-Rev. Med. Chem. 2020, 20, 532-565. h) Tahlan, S.; Kumar, S. and Narasimhan, B. Pharmacological Significance of Heterocyclic 1H-Benzimidazole Scaffolds: A Review., BMC Chem. 2019, 13:101. i) Singhal, S.; Khanna, P.; Panda, S.S.; Khanna, L. Recent Trends in the Synthesis of Benzimidazoles From o-Phenylenediamine via Nanoparticles and Green Strategies Using Transition Metal Catalysts., J. Heterocyclic Chem. 2019, 56, 2702-2729. j) Manna, S.K.; Das, T.; Samanta, Sh. “Polycyclic Benzimidazole: Synthesis and Photophysical Properties., Chemistry Select2019, 4, 8781-8790. k) Faheem, M.; Rathaur, A.; Pandey, A.; Singh, V.K. and Tiwari, A.K. A Review on the Modern Synthetic Approach of Benzimidazole Candidate., Chem. Select2020, 5, 3981-3994. l) Padhy, G.K.; Panda, J.; Raul, S.K.; Behera, A.K. 2-Acetylbenzimidazole: a Valuable Synthon for the synthesis of Biologically Active Molecules., Biointerface Res. App. Chem. 2021, 11, 11562-11591. m) Sweeney, M.; Conboy, D.; Mirallai, S.I. and Aldabbagh, F. Advances in the Synthesis of Ring-Fused Benzimidazoles and Imidazobenzimidazoles. Molecules, 2021, 26, 2684.
[http://dx.doi.org/10.1055/s-1983-30546]
[http://dx.doi.org/10.1016/j.ejmech.2006.01.002] [PMID: 16828523]
[http://dx.doi.org/10.1016/j.ejmech.2013.01.026] [PMID: 23425969]
[http://dx.doi.org/10.1016/j.bmc.2013.05.001] [PMID: 23719283]
[http://dx.doi.org/10.1021/jm021043o] [PMID: 15084125]
[http://dx.doi.org/10.1016/j.ejmech.2011.04.061] [PMID: 21605925]
[http://dx.doi.org/10.1016/j.ejmech.2013.03.010] [PMID: 23567959]
[http://dx.doi.org/10.1016/j.bmc.2015.08.029] [PMID: 26344590]
[http://dx.doi.org/10.3390/molecules22040579] [PMID: 28375176]
[http://dx.doi.org/10.1016/j.bmcl.2006.11.090] [PMID: 17194585]
[http://dx.doi.org/10.1023/A:1022498224975]
[http://dx.doi.org/10.1007/s11094-006-0105-8]
[http://dx.doi.org/10.1007/s11094-006-0185-5]
[http://dx.doi.org/10.1007/s11094-010-0465-y]
[http://dx.doi.org/10.1134/S1070428011090156]
[http://dx.doi.org/10.1134/S1070428011090168]
[http://dx.doi.org/10.1016/j.ejmech.2014.07.038] [PMID: 25036797]
[http://dx.doi.org/10.1023/A:1021888520874]
[http://dx.doi.org/10.1128/AAC.48.5.1749-1755.2004]
[http://dx.doi.org/10.1007/978-0-387-31047-3_11]
[http://dx.doi.org/10.1345/aph.1L065] [PMID: 18698013]
[http://dx.doi.org/10.1002/9780470929353.ch29]
[http://dx.doi.org/10.1016/S0960-894X(00)80628-96204249]
[http://dx.doi.org/10.1016/j.coviro.2011.10.015] [PMID: 22162744]
[http://dx.doi.org/10.1128/JVI.01575-09] [PMID: 19759127]
[http://dx.doi.org/10.1128/AAC.47.7.2186-2192.2003] [PMID: 12821466]
[http://dx.doi.org/10.2165/00126839-200708030-00006] [PMID: 17472414]
[http://dx.doi.org/10.1182/blood-2007-11-121558] [PMID: 18285548]
[http://dx.doi.org/10.1111/j.1399-3062.2010.00550.x] [PMID: 20682012]
[http://dx.doi.org/10.1080/07391102.2020.1850358]
[http://dx.doi.org/10.1080/15257779908041486] [PMID: 10432642]
[http://dx.doi.org/10.1016/j.bmcl.2017.03.100] [PMID: 28408228]
[http://dx.doi.org/10.1016/S0011-393X(04)90008-2] [PMID: 24936107]
[http://dx.doi.org/10.1159/000237969] [PMID: 7009087]
[http://dx.doi.org/10.1002/anie.201204710] [PMID: 22969040]
[http://dx.doi.org/10.1039/C6OB01307D] [PMID: 27603555]
[http://dx.doi.org/10.1080/00397911.2011.567883]
[http://dx.doi.org/10.1016/j.bmc.2007.06.017] [PMID: 17600722]
[http://dx.doi.org/10.1002/ejoc.201200698]
[http://dx.doi.org/10.1016/j.bmc.2016.09.036] [PMID: 27670100]
[http://dx.doi.org/10.1016/S0223-5234(98)80027-5]
[http://dx.doi.org/10.1016/j.ejmech.2007.03.005] [PMID: 17499889]
[http://dx.doi.org/10.3987/COM-06-10844]
[http://dx.doi.org/10.1016/j.molstruc.2019.126871]
[http://dx.doi.org/10.1016/j.bmcl.2014.07.035] [PMID: 25091926]
[http://dx.doi.org/10.1021/jm701456r] [PMID: 18271517]
[http://dx.doi.org/10.1016/j.ejmech.2017.05.014] [PMID: 28525845]
[http://dx.doi.org/10.1039/p19760000309]
[http://dx.doi.org/10.1016/j.bioorg.2018.05.014] [PMID: 29864685]
[http://dx.doi.org/10.1007/BF02975257] [PMID: 11885688]
[http://dx.doi.org/10.1016/j.bmc.2017.09.045] [PMID: 29033348]
[http://dx.doi.org/10.1016/j.bmcl.2006.03.020] [PMID: 16563752];
(b) Martin, M.M.; Bhuiyan, M.M.H.; Kabir, E.; Sanaullah, A.F.M.; Rahman, M.A.; Hossain, M.E.; Uzzaman, M. Synthesis, Characterization, ADMET, PASS predication, and antimicrobial study of 6-O-lauroyl mannopyranosides. J. Mol. Struct., 2019, 1195, 189-197.
[http://dx.doi.org/10.1016/j.molstruc.2019.05.102]
[http://dx.doi.org/10.1007/s00044-014-1180-0]
[http://dx.doi.org/10.1016/j.apsb.2014.07.001] [PMID: 26579406]
[http://dx.doi.org/10.1039/c2ob26299a] [PMID: 22911002]
[http://dx.doi.org/10.1016/j.bmc.2015.02.054] [PMID: 25801156]
[http://dx.doi.org/10.1016/j.jtumed.2016.05.004]
[http://dx.doi.org/10.1007/s00044-014-1198-3]
[http://dx.doi.org/10.1016/j.tet.2012.09.071]
[http://dx.doi.org/10.2174/15701808113109990028]
[http://dx.doi.org/10.1016/j.bmcl.2004.08.035] [PMID: 15454206]
[http://dx.doi.org/10.1002/jhet.3569]
[http://dx.doi.org/10.1080/17518253.2018.1499968]
[http://dx.doi.org/10.1007/s00044-016-1552-8]
[http://dx.doi.org/10.1002/jhet.3634]
[http://dx.doi.org/10.1016/j.ejmech.2011.03.008] [PMID: 21439689]
[http://dx.doi.org/10.1016/j.arabjc.2011.02.011]
[http://dx.doi.org/10.1016/j.farmac.2003.12.001] [PMID: 14871499]
[http://dx.doi.org/10.1016/j.tetlet.2005.07.002]
[http://dx.doi.org/10.1021/jm800809f] [PMID: 18998663]
[http://dx.doi.org/10.1016/j.matpr.2018.06.579]
[http://dx.doi.org/10.1016/j.molstruc.2017.02.021]
[http://dx.doi.org/10.1007/s00706-016-1796-5]
[http://dx.doi.org/10.1016/j.bmc.2018.02.045] [PMID: 29519603]
[http://dx.doi.org/10.1021/ol070592r] [PMID: 17439227]
[http://dx.doi.org/10.1007/s12272-011-0903-8] [PMID: 21975803]
[http://dx.doi.org/10.3390/molecules23051232] [PMID: 29883398]
[http://dx.doi.org/10.1016/j.saa.2015.03.020] [PMID: 25827773]
[http://dx.doi.org/10.1016/j.exppara.2017.11.009] [PMID: 29191699]
[http://dx.doi.org/10.1039/C6NJ04074H]
[http://dx.doi.org/10.1055/s-0034-1380154]
[http://dx.doi.org/10.1021/ja9024676] [PMID: 19621946]
[http://dx.doi.org/10.1016/j.mencom.2007.06.014]
[http://dx.doi.org/10.1007/s11224-010-9632-8]
[http://dx.doi.org/10.1016/j.molstruc.2021.130566]
[PMID: 22574507]
[http://dx.doi.org/10.1016/0960-894X(95)00273-V]
[http://dx.doi.org/10.1007/s00044-012-0220-x]
[http://dx.doi.org/10.21123/bsj.2016.13.2.2NCC.0128]
[http://dx.doi.org/10.1016/S0143-7208(99)00066-2]
[http://dx.doi.org/10.1016/j.dyepig.2005.05.003]
[http://dx.doi.org/10.1016/j.dyepig.2005.08.004]