Generic placeholder image

Current Organic Synthesis

Editor-in-Chief

ISSN (Print): 1570-1794
ISSN (Online): 1875-6271

Review Article

N-substitution Reactions of 2-Aminobenzimidazoles to Access Pharmacophores

Author(s): Itzia I. Padilla-Martínez, Alejandro Cruz*, Efrén V. García-Báez, Martha C. Rosales-Hernández and Jessica E. Mendieta Wejebe

Volume 20, Issue 2, 2023

Published on: 01 August, 2022

Page: [177 - 219] Pages: 43

DOI: 10.2174/1570179419666220310124223

Price: $65

Abstract

Benzimidazole (BI) and its derivatives are interesting molecules in medicinal chemistry because several of these compounds have a diversity of biological activities and some of them are even used in clinical applications. In view of the importance of these compounds, synthetic chemists are still interested in finding new procedures for the synthesis of these classes of compounds. Astemizole (antihistaminic), Omeprazole (antiulcerative), and Rabendazole (fungicide) are important examples of compounds used in medicinal chemistry containing BI nuclei. It is interesting to observe that several of these compounds contain 2-aminobenzimidazole (2ABI) as the base nucleus. The structures of 2ABI derivatives are interesting because they have a planar delocalized structure with a cyclic guanidine group, which have three nitrogen atoms with free lone pairs and labile hydrogen atoms. The 10-π electron system of the aromatic BI ring conjugated with the nitrogen lone pair of the hexocyclic amino group, making these heterocycles to have an amphoteric character. Synthetic chemists have used 2ABI as a building block to produce BI derivatives as medicinally important molecules. In view of the importance of the BIs, and because no review was found in the literature about this topic, we reviewed and summarized the procedures related to the recent methodologies used in the N-substitution reactions of 2ABIs by using aliphatic and aromatic halogenides, dihalogenides, acid chlorides, alkylsulfonic chlorides, carboxylic acids, esters, ethyl chloroformates, anhydrides, SMe-isothioureas, alcohols, alkyl cyanates, thiocyanates, carbon disulfide and aldehydes or ketones to form Schiff bases. The use of diazotized 2ABI as intermediate to obtain 2-diazoBIs was included to produce Nsubstituted 2ABIs of pharmacological interest. Some commentaries about their biological activity were included.

Keywords: 2-Aminobenzimidazoles, N-alkyl-2-aminobenzimidazoles, N-aryl-2-aminobenzimidazoles, N-acyl-2-aminobenzimidazoles, 2-aminobenzimidazol Schiff bases, astemizole.

Next »
Graphical Abstract

[1]
(a) Enumula, S.; Pangal, A.; Gazge, M.; Javed, A.; Shaikh, J.A.; Ahmed, K. Diverse pharmacological aspects of benzimidazole derivatives: A review. Res. J. Chem. Sci, 2014, 4, 78-88.;
(b) Srestha, N.; Banerjee, J.; Srivastava, S. A review on chemistry and biological significance of benzimidazole nucleus. IOSR J. Pharm., 2014, 4(12), 28-41.
[http://dx.doi.org/10.9790/3013-0401201028041];
(c) Yerragunta, V.; Patil, P.; Srujana, S.; Devi, R.; Srujana, G.R.; Divya, A. Benzimidazole derivatives and its biological importance: A review. PharmaTutor, 2014, 2, 109-113.;
(d) Hamiduzzaman, M.; Mannan, S.J.; Dey, A.; Rahman, S.M.A. Evaluation of analgesic, antipyretic, hypoglycemic and CNS depressant activity of 2-bromopopylamine hydrobromide, 3-bromopopyl ammonium bromide, ortho-amino aniline and benzimidazole-2-thiol in animal model. Der. Pharm. Lett, 2014, 6, 47-53.;
(e) Arulmurugan, S.; Kavitha, H.P.; Sathishkumar, S.; Arulmozhi, R. Biologically active benzimidazole derivatives. Mini Rev. Org. Chem., 2015, 12, 178-195.
[http://dx.doi.org/10.2174/1570193X1202150225153403];
(f) Naga, P.K.; Kumar, K.R. Green synthesis of benzimidazole derivatives: An overview of bulk drug synthesis. Int. J. Pharm. Tech. Res., 2015, 8, 60-68.;
(g) Wang, Y-T.; Qin, Y-J.; Yang, N.; Zhang, Y-L.; Liu, C.H.; Zhu, H.L. Synthesis, biological evaluation, and molecular docking studies of novel 1-benzene acyl-2-(1-methylindol-3-yl)-benzimidazole derivatives as potential tubulin polymerization inhibitors. Eur. J. Med. Chem., 2015, 99, 125-137.
[http://dx.doi.org/10.1016/j.ejmech.2015.05.021] [PMID: 26070164];
(h) Alasmary, F.A.; Snelling, A.M.; Zain, M.E.; Alafeefy, A.M.; Awaad, A.S.; Karodia, N.; Karodia, N. Synthesis and evaluation of selected benzimidazole derivatives as potential antimicrobial agents. Molecules, 2015, 20(8), 15206-15223.
[http://dx.doi.org/10.3390/molecules200815206] [PMID: 26307956];
(i) Maiti, B.; Chanda, K. Diversity oriented synthesis of benzimidazole-based biheterocyclic molecules by combinatorial approach: A critical review. RSC Advances, 2016, 6(56), 50384-50413.
[http://dx.doi.org/10.1039/C6RA06930D];
(j) Keri, R.S.; Rajappa, C.K.; Patil, S.A.; Nagaraja, B.M. Benzimidazole-core as an antimycobacterial agent. Pharmacol. Rep., 2016, 68(6), 1254-1265.
[http://dx.doi.org/10.1016/j.pharep.2016.08.002] [PMID: 27686965];
(k) Aishwarya, M.N.L.; Rao, E.A.; Babu, M.N. A review on gastrointestinal drug esomeprazole. Pharm. Tutor, 2017, 5, 19-26.;
(l) Rajasekhar, S.; Maiti, B.; Balamurali, M.M.; Chanda, K. Synthesis and medicinal applications of benzimidazoles: An overview. Curr. Org. Synth., 2017, 14, 40-60.
[http://dx.doi.org/10.2174/1570179413666160818151932]
[2]
(a) al-Muhaimeed, H. A parallel-group comparison of astemizole and loratadine for the treatment of perennial allergic rhinitis. J. Int. Med. Res., 1997, 25(4), 175-181.
[http://dx.doi.org/10.1177/030006059702500401] [PMID: 9283989];
(b) Ramalingan, C.; Balasubramanian, S.; Kabilan, S. A convenient synthesis of novel 1‐[2‐(Benzimidazol‐2‐yl)ethoxy]‐2,6‐diarylpiperidin‐4‐ones. Synth. Commun., 2004, 34(6), 1105-1116.
[http://dx.doi.org/10.1081/SCC-120028643]
[3]
Gaba, M.; Mohan, C. Development of drugs based on imidazole and benzimidazole bioactive heterocycles: Recent advances and future directions. Med. Chem. Res., 2016, 25(2), 173-210.
[http://dx.doi.org/10.1007/s00044-015-1495-5]
[4]
Wahe, H.; Asobo, P.F.; Cherkasov, R.A.; Nkengfack, A.E.; Folefoc, G.N.; Forum, Z.T.; Doepp, D. Heterocycles of biological importance. part 6. the formation of novel biologically active pyrimido [1,2-a]benzimidazoles from electron deficient alkynes and 2-aminobenzimidazoles. ARKIVOC, 2003, xiv(14), 170-177.
[http://dx.doi.org/10.3998/ark.5550190.0004.e16]
[5]
Beaulieu, C.; Wang, Z.; Denis, D.; Greig, G.; Lamontagne, S.; O’Neill, G.; Slipetz, D.; Wang, J. Benzimidazoles as new potent and selective dp antagonists for the treatment of allergic rhinitis. Bioorg. Med. Chem. Lett., 2004, 14(12), 3195-3199.
[http://dx.doi.org/10.1016/j.bmcl.2004.04.005]
[6]
(a) Janssens, F.; Torremans, J.; Janssen, M.; Stokbroekx, R.A.; Luyckx, M.; Janssen, P.A. New antihistaminic N-heterocyclic 4-piperidinamines. 1. Synthesis and antihistaminic activity of N-(4-piperidinyl)-1H-benzimidazol-2-amines. J. Med. Chem., 1985, 28(12), 1925-1933.
[http://dx.doi.org/10.1021/jm00150a028] [PMID: 4068010];
(b) Mor, M.; Bordi, F.; Silva, C.; Rivara, S.; Zuliani, V.; Vacondio, F.; Rivara, M.; Barocelli, E.; Bertoni, S.; Ballabeni, V.; Magnanini, F.; Impicciatore, M.; Plazzi, P.V. Synthesis, biological activity, QSAR and QSPR study of 2-aminobenzimidazole derivatives as potent H3-antagonists. Bioorg. Med. Chem., 2004, 12(4), 663-674.
[http://dx.doi.org/10.1016/j.bmc.2003.11.030] [PMID: 14759727]
[7]
Nawrocka, W.; Zimecki, M. Synthesis and immunotropic activity of some 2-aminobenzimidazoles, Part 4. Arch. Pharm. (Weinheim), 1998, 331(7-8), 249-253.
[http://dx.doi.org/10.1002/(SICI)1521-4184(199807)331:7/8<249::AID-ARDP249>3.0.CO;2-B] [PMID: 9747181]
[8]
Sethi, P.; Bansal, Y.; Bansal, G. Synthesis and pass-assisted evaluation of coumarin-benzimidazole derivatives as potential anti-inflammatory and anthelmintic agents. Med. Chem. Res., 2018, 27(1), 61-71.
[http://dx.doi.org/10.1007/s00044-017-2036-1]
[9]
Charifson, P.S.; Grillot, A-L.; Grossman, T.H.; Parsons, J.D.; Badia, M.; Bellon, S.; Deininger, D.D.; Drumm, J.E.; Gross, C.H.; LeTiran, A.; Liao, Y.; Mani, N.; Nicolau, D.P.; Perola, E.; Ronkin, S.; Shannon, D.; Swenson, L.L.; Tang, Q.; Tessier, P.R.; Tian, S.K.; Trudeau, M.; Wang, T.; Wei, Y.; Zhang, H.; Stamos, D.; Stamos, D. Novel dual-targeting benzimidazole urea inhibitors of DNA gyrase and topoisomerase IV possessing potent antibacterial activity: Intelligent design and evolution through the judicious use of structure-guided design and structure-activity relationships. J. Med. Chem., 2008, 51(17), 5243-5263.
[http://dx.doi.org/10.1021/jm800318d] [PMID: 18690678]
[10]
(a) Middleton, T.; Lim, H.B.; Montgomery, D.; Rockway, T.; Tang, H.; Cheng, X.; Lu, L.; Mo, H.; Kohlbrenner, W.E.; Molla, A.; Kati, W.M. Inhibition of human immunodeficiency virus type I integrase by naphthamidines and 2-aminobenzimidazoles. Antiviral Res., 2004, 64(1), 35-45.
[http://dx.doi.org/10.1016/j.antiviral.2004.04.007] [PMID: 15451177];
(b) Dayam, R.; Deng, J.; Neamati, N. HIV-1 integrase inhibitors: 2003-2004 update. Med. Res. Rev., 2006, 26(3), 271-309.
[http://dx.doi.org/10.1002/med.20054] [PMID: 16496343]
[11]
(a) Kling, A.; Backfisch, G.; Delzer, J.; Geneste, H.; Graef, C.; Hornberger, W.; Lange, U.E.; Lauterbach, A.; Seitz, W.; Subkowski, T. Design and synthesis of 1,5- and 2,5-substituted tetrahydrobenzazepinones as novel potent and selective integrin alphaVbeta3 antagonists. Bioorg. Med. Chem., 2003, 11(7), 1319-1341.
[http://dx.doi.org/10.1016/S0968-0896(02)00616-8] [PMID: 12628659];
(b) Carpenter, R.D.; Andrei, M.; Lau, E.Y.; Lightstone, F.C.; Liu, R.; Lam, K.S.; Kurth, M.J. Highly potent, water soluble benzimidazole antagonist for activated α 4 β 1 integrin. J. Med. Chem., 2007, 50(23), 5863-5867.
[http://dx.doi.org/10.1021/jm070790o] [PMID: 17948981]
[12]
(a) Snow, R.J.; Cardozo, M.G.; Morwick, T.M.; Busacca, C.A.; Dong, Y.; Eckner, R.J.; Jacober, S.; Jakes, S.; Kapadia, S.; Lukas, S.; Panzenbeck, M.; Peet, G.W.; Peterson, J.D.; Prokopowicz, A.S., III; Sellati, R.; Tolbert, R.M.; Tschantz, M.A.; Moss, N. Discovery of 2-phenylamino-imidazo[4,5-h]isoquinolin-9-ones: A new class of inhibitors of lck kinase. J. Med. Chem., 2002, 45(16), 3394-3405.
[http://dx.doi.org/10.1021/jm020113o] [PMID: 12139450];
(b) Zhong, M.; Bui, M.; Shen, W.; Baskaran, S.; Allen, D.A.; Elling, R.A.; Flanagan, W.M.; Fung, A.D.; Hanan, E.J.; Harris, S.O.; Heumann, S.A.; Hoch, U.; Ivy, S.N.; Jacobs, J.W.; Lam, S.; Lee, H.; McDowell, R.S.; Oslob, J.D.; Purkey, H.E.; Romanowski, M.J.; Silverman, J.A.; Tangonan, B.T.; Taverna, P.; Yang, W.; Yoburn, J.C.; Yu, C.H.; Zimmerman, K.M.; O’Brien, T.; Lew, W. 2-Aminobenzimidazoles as potent Aurora kinase inhibitors. Bioorg. Med. Chem. Lett., 2009, 19(17), 5158-5161.
[http://dx.doi.org/10.1016/j.bmcl.2009.07.016] [PMID: 19646866];
(c) Cee, V.J.; Cheng, A.C.; Romero, K.; Bellon, S.; Mohr, C.; Whittington, D.A.; Bak, A.; Bready, J.; Caenepeel, S.; Coxon, A.; Deak, H.L.; Fretland, J.; Gu, Y.; Hodous, B.L.; Huang, X.; Kim, J.L.; Lin, J.; Long, A.M.; Nguyen, H.; Olivieri, P.R.; Patel, V.F.; Wang, L.; Zhou, Y.; Hughes, P.; Geuns-Meyer, S. Pyridyl-pyrimidine benzimidazole derivatives as potent, selective, and orally bioavailable inhibitors of Tie-2 kinase. Bioorg. Med. Chem. Lett., 2009, 19(2), 424-427.
[http://dx.doi.org/10.1016/j.bmcl.2008.11.056] [PMID: 19062275]
[13]
Fujita, M.; Nakao, Y.; Matsunaga, S.; Seiki, M.; Itoh, Y.; Yamashita, J.; Van Soest, R.W.M.; Fusetani, N.; Ageladine, A. Ageladine a: An antiangiogenic matrixmetalloproteinase inhibitor from the marine sponge agelas nakamurai. J. Am. Chem. Soc., 2003, 125(51), 15700-15701.
[http://dx.doi.org/10.1021/ja038025w] [PMID: 14677933]
[14]
Bansal, Y.; Silakari, O. The therapeutic journey of benzimidazoles: A review. Bioorg. Med. Chem., 2012, 20(21), 6208-6236.
[http://dx.doi.org/10.1016/j.bmc.2012.09.013] [PMID: 23031649]
[15]
(a) Mpamhanga, C.P.; Spinks, D.; Tulloch, L.B.; Shanks, E.J.; Robinson, D.A.; Collie, I.T.; Fairlamb, A.H.; Wyatt, P.G.; Frearson, J.A.; Hunter, W.N.; Gilbert, I.H.; Brenk, R. One scaffold, three binding modes: Novel and selective pteridine reductase 1 inhibitors derived from fragment hits discovered by virtual screening. J. Med. Chem., 2009, 52(14), 4454-4465.
[http://dx.doi.org/10.1021/jm900414x] [PMID: 19527033];
(b) Bharti, N.; Shailendra, M.T.; Gonzalez Garza, M.T.; Cruz-Vega, D.E.; Castro-Garza, J.; Saleem, K.; Naqvi, F.; Maurya, M.R.; Azam, A. Synthesis, characterization and antiamoebic activity of benzimidazole derivatives and their vanadium and molybdenum complexes. Bioorg. Med. Chem. Lett., 2002, 12(6), 869-871.
[http://dx.doi.org/10.1016/S0960-894X(02)00034-3] [PMID: 11958982];
(c) Ravina, E.; Sanchez-Alonso, R.; Fueyo, J.; Baltar, M.P.; Bos, J.; Iglesias, R.; Sanmartin, M.L. Synthesis and potential anthelmintic activity of methyl-5-(4-salicyloyl-piperazin-1-yl)-benzimidazole-2-carbamates. Arzneimittelforschung, 1993, 43(6), 689-694.
[PMID: 8352825]
[16]
(a) Weinreb, S.M. Some recent advances in the synthesis of polycyclic imidazole-containing marine natural products. Nat. Prod. Rep., 2007, 24(5), 931-948.
[http://dx.doi.org/10.1039/b700206h] [PMID: 17898890];
(b) Hassan, W.; Edrada, R.; Ebel, R.; Wray, V.; Berg, A.; van Soest, R.; Wiryowidagdo, S.; Proksch, P. New imidazole alkaloids from the Indonesian sponge Leucetta chagosensis. J. Nat. Prod., 2004, 67(5), 817-822.
[http://dx.doi.org/10.1021/np0305223] [PMID: 15165143];
(c) Kamal, A.; Reddy, K.L.; Devaiah, V.; Shankaraiah, N.; Rao, M.V. Recent advances in the solid-phase combinatorial synthetic strategies for the quinoxaline, quinazoline and benzimidazole based privileged structures. Mini Rev. Med. Chem., 2006, 6(1), 71-89.
[http://dx.doi.org/10.2174/138955706775197839] [PMID: 16457633];
(d) Cruz, A.; Padilla-Martínez, I.I.; Ramos-Organillo, A.A. Methods to access 2-aminobenzimidazoles of medicinal interest. Curr. Org. Chem., 2019, 23(23), 2573-2597.
[http://dx.doi.org/10.2174/1385272823666191023150201]
[17]
de Dios, A.; Shih, C.; López de Uralde, B.; Sánchez, C.; del Prado, M.; Martín Cabrejas, L.M.; Pleite, S.; Blanco-Urgoiti, J.; Lorite, M.J.; Nevill, C.R., Jr; Bonjouklian, R.; York, J.; Vieth, M.; Wang, Y.; Magnus, N.; Campbell, R.M.; Anderson, B.D.; McCann, D.J.; Giera, D.D.; Lee, P.A.; Schultz, R.M.; Li, L.C.; Johnson, L.M.; Wolos, J.A. Design of potent and selective 2-aminobenzimidazole-based p38alpha MAP kinase inhibitors with excellent in vivo efficacy. J. Med. Chem., 2005, 48(7), 2270-2273.
[http://dx.doi.org/10.1021/jm048978k] [PMID: 15801819]
[18]
El Maatougui, A.; Azuaje, J.; González-Gómez, M.; Miguez, G.; Crespo, A.; Carbajales, C.; Escalante, L.; García-Mera, X.; Gutiérrez-de-Terán, H.; Sotelo, E. Discovery of potent and highly selective A2B adenosine receptor antagonist chemotypes. J. Med. Chem., 2016, 59(5), 1967-1983.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01586] [PMID: 26824742]
[19]
(a) Rogers, S.A.; Huigens, R.W., III; Cavanagh, J.; Melander, C. Synergistic effects between conventional antibiotics and 2-aminoimidazole-derived antibiofilm agents. Antimicrob. Agents Chemother., 2010, 54(5), 2112-2118.
[http://dx.doi.org/10.1128/AAC.01418-09] [PMID: 20211901];
(b) Su, Z.; Rogers, S.A.; McCall, W.S.; Smith, A.C.; Ravishankar, S.; Mullikin, T.; Melander, C. A nitroenolate approach to the synthesis of 4,5-disubstituted-2-aminoimidazoles. Pilot library assembly and screening for antibiotic and antibiofilm activity. Org. Biomol. Chem., 2010, 8(12), 2814-2822.
[http://dx.doi.org/10.1039/c001479f] [PMID: 20428587];
(c) Huigens, R.W., III; Reyes, S.; Reed, C.S.; Bunders, C.; Rogers, S.A.; Steinhauer, A.T.; Melander, C. The chemical synthesis and antibiotic activity of a diverse library of 2-aminobenzimidazole small molecules against MRSA and multidrug-resistant A. baumannii. Bioorg. Med. Chem., 2010, 18(2), 663-674.
[http://dx.doi.org/10.1016/j.bmc.2009.12.003] [PMID: 20044260];
(d) Frei, R.; Breitbach, A.S.; Blackwell, H.E. 2-Aminobenzimidazole derivatives strongly inhibit and disperse Pseudomonas aeruginosa biofilms. Angew. Chem. Int. Ed. Engl., 2012, 51(21), 5226-5229.
[http://dx.doi.org/10.1002/anie.201109258] [PMID: 22488868]
[20]
Clément, M.J.; Rathinasamy, K.; Adjadj, E.; Toma, F.; Curmi, P.A.; Panda, D. Benomyl and colchicine synergistically inhibit cell proliferation and mitosis: Evidence of distinct binding sites for these agents in tubulin. Biochemistry, 2008, 47(49), 13016-13025.
[http://dx.doi.org/10.1021/bi801136q] [PMID: 19049291]
[21]
Yenjerla, M.; Cox, C.; Wilson, L.; Jordan, M.A. Carbendazim inhibits cancer cell proliferation by suppressing microtubule dynamics. J. Pharmacol. Exp. Ther., 2009, 328(2), 390-398.
[http://dx.doi.org/10.1124/jpet.108.143537] [PMID: 19001156]
[22]
(a) Zhao, Y.; Pourgholami, M.H.; Morris, D.L.; Collins, J.G.; Day, A.I. Enhanced cytotoxicity of benzimidazole carbamate derivatives and solubilisation by encapsulation in cucurbit[n]uril. Org. Biomol. Chem., 2010, 8(14), 3328-3337.
[http://dx.doi.org/10.1039/c003732j] [PMID: 20523944];
(b) Spagnuolo, P.A.; Hu, J.; Hurren, R.; Wang, X.; Gronda, M.; Sukhai, M.A.; Di Meo, A.; Boss, J.; Ashali, I.; Beheshti Zavareh, R.; Fine, N.; Simpson, C.D.; Sharmeen, S.; Rottapel, R.; Schimmer, A.D. The antihelmintic flubendazole inhibits microtubule function through a mechanism distinct from Vinca alkaloids and displays preclinical activity in leukemia and myeloma. Blood, 2010, 115(23), 4824-4833.
[http://dx.doi.org/10.1182/blood-2009-09-243055] [PMID: 20348394];
(c) Laryea, D.; Gullbo, J.; Isaksson, A.; Larsson, R.; Nygren, P. Characterization of the cytotoxic properties of the benzimidazole fungicides, benomyl and carbendazim, in human tumour cell lines and primary cultures of patient tumour cells. Anticancer Drugs, 2010, 21(1), 33-42.
[http://dx.doi.org/10.1097/CAD.0b013e328330e74e] [PMID: 19786863];
(d) Doudican, N.; Rodriguez, A.; Osman, I.; Orlow, S.J. Mebendazole induces apoptosis via Bcl-2 inactivation in chemoresistant melanoma cells. Mol. Cancer Res., 2008, 6(8), 1308-1315.
[http://dx.doi.org/10.1158/1541-7786.MCR-07-2159] [PMID: 18667591];
(e) Bai, R.Y.; Staedtke, V.; Aprhys, C.M.; Gallia, G.L.; Riggins, G.J. Antiparasitic mebendazole shows survival benefit in 2 preclinical models of glioblastoma multiforme. Neuro-oncol., 2011, 13(9), 974-982.
[http://dx.doi.org/10.1093/neuonc/nor077] [PMID: 21764822]
[23]
(a) Podunavac-Kuzmanović, S.O.; Cvetković, D.M.; Ćetković, G.S. Antimicrobial activity of cobalt (II) complexes with 2-aminobenzimidazole derivatives. APTEFF, 2004, 35, 231-237.;
(b) Kukalenko, S.S.; Udovenko, V.A.; Borysova, V.P.; Kulugina, N.L.; Burmakin, N.M.; Andreeva, E.L.U.S.S.R. SU 1,636,414. Odkrytiya Izobret, 1991, 11, 75.;
(c) Esser, F.; Schonnenberg, G.; Dollinger, H.; Geida, W. Ger. Offen DE, 1999.
[24]
Nikolova, A.; Ivanov, D.; Buyukliev, R.; Konstantinov, S.; Karaivanova, M. Preparation, physicochemical characterization and pharmacological study of novel ruthenium(III) complexes with imidazole and benzimidazole derivatives. Arzneimittelforschung, 2001, 51(9), 758-762.
[PMID: 11642009]
[25]
Seth, P.P.; Jefferson, E.A.; Griffey, R.H.; Swayze, E.E. Benzimidazoles and analogs thereof as antivirals PCT Int. Appl, 2009, 7642265B2.
[26]
(a) Seth, P.P.; Miyaji, A.; Jefferson, E.A.; Sannes-Lowery, K.A.; Osgood, S.A.; Propp, S.S.; Ranken, R.; Massire, C.; Sampath, R.; Ecker, D.J.; Swayze, E.E.; Griffey, R.H. SAR by MS: Discovery of a new class of RNA-binding small molecules for the hepatitis C virus: Internal ribosome entry site IIA subdomain. J. Med. Chem., 2005, 48(23), 7099-7102.
[http://dx.doi.org/10.1021/jm050815o] [PMID: 16279767];
(b) Henriksen, N.M.; Hayatshahi, H.S.; Davis, D.R.; Cheatham, T.E. III Structural and energetic analysis of 2-aminobenzimidazole inhibitors in complex with the hepatitis C virus IRES RNA using molecular dynamics simulations. J. Chem. Inf. Model., 2014, 54(6), 1758-1772.
[http://dx.doi.org/10.1021/ci500132c] [PMID: 24835734]
[27]
(a) Almaşi, D.; Alonso, D.A.; Gómez-Bengoa, E.; Nájera, C. Chiral 2-aminobenzimidazoles as recoverable organocatalysts for the addition of 1,3-dicarbonyl compounds to nitroalkenes. J. Org. Chem., 2009, 74(16), 6163-6168.
[http://dx.doi.org/10.1021/jo9010552] [PMID: 19627118];
(b) Gómez-Torres, E.; Alonso, D.A.; Gómez-Bengoa, E.; Nájera, C. Conjugate addition of 1,3-dicarbonyl compounds to maleimides using a chiral C2-symmetric bis(2-aminobenzimidazole) as recyclable organocatalyst. Org. Lett., 2011, 13(22), 6106-6109.
[http://dx.doi.org/10.1021/ol202599h] [PMID: 22029403];
(c) Gómez-Torres, E.; Alonso, D.A.; Gómez-Bengoa, E.; Nájera, C. Enantioselective synthesis of succinimides by michael addition of1,3-dicarbonyl compounds to maleimides catalyzed by a chiral bis(2-aminobenzimidazole) organocatalyst. Eur. J. Org. Chem., 2013, 2013(8), 1434-1440.
[http://dx.doi.org/10.1002/ejoc.201201046];
(d) Nájera, C.; Yus, M. Chiral Benzimidazoles as Hydrogen Bonding Organocatalysts., Tetrahedron Lett. 2015, 56, 2623-2633. (f) Trillo, P.; Gómez-Martínez, M.; Alonso D. A.; Baeza, A. 2-Aminobenzimidazole Organocatalyzed Asymmetric Amination of Cyclic 1,3-Dicarbonyl Compounds., Synlett2015, 26, 95-100. (g) Serrano-Sánchez, D.; Baeza A. and Alonso, D. A. Organocatalytic Asymmetric α-Chlorination of 1,3-Dicarbonyl Compounds Catalyzed by 2-Aminobenzimidazole Derivatives. Symmetry (Basel), 2016, 8, 1-12.
[28]
Cruz, A.; Padilla-Martínez, I.I.; García-Báez, E.V.; Guerrero-Muñoz, G. Synthesis and structure of sulfur derivatives from 2-aminobenzimidazole. Molecules, 2014, 19(9), 13878-13893.
[http://dx.doi.org/10.3390/molecules190913878] [PMID: 25255762]
[29]
(a) Wright, J.B. The chemistry of the benzimidazoles. Chem. Rev., 1951, 48(3), 397-541.
[http://dx.doi.org/10.1021/cr60151a002] [PMID: 24541208];
(b) Yadav, G.; Ganguly, S. Structure activity relationship (SAR) study of benzimidazole scaffold for different biological activities: A mini-review. Eur. J. Med. Chem., 2015, 97, 419-443.
[http://dx.doi.org/10.1016/j.ejmech.2014.11.053] [PMID: 25479684];
(c) Alaqueel, Sh.I. Synthetic Approaches to Benzimidazoles from o-Phenylenediamine: A literature review. J. Saudi Chem. Soc., 2017, 21(2), 229-237.
[http://dx.doi.org/10.1016/j.jscs.2016.08.001];
(d) Akhtar, W.; Khan, M.F.; Verma, G.; Shaquiquzzaman, M.; Rizvi, M.A.; Mehdi, S.H.; Akhter, M.; Alam, M.M. Therapeutic evolution of benzimidazole derivatives in the last quinquennial period. Eur. J. Med. Chem., 2017, 126, 705-753.
[http://dx.doi.org/10.1016/j.ejmech.2016.12.010] [PMID: 27951484];
(e) Hadole, C.D.; Rajput, J.D.; Bendre, R.S. Concise on Some Biologically Important 2-Substituted Benzimidazole Derivatives., Org. Chem. Curr. Res. 2018, 7 (3), 1-9. f) Saber, A.; Sebbara, N.K.; Essassia, El M. Synthesis, Reactivities and Biolobical Properties of Benzimidazole Derivatives., J. Mar. Chim. Heterocycl. 2019, 18, 1-50. g) Vasavaa, M.S.; Rathwaa, S.K.; Jethavaa, D.J.; Acharyaa, P.T.; Patela, D.B. and Patel, H.D. Benzimidazole: A Milestone in the Field of Medicinal Chemistry., Mini-Rev. Med. Chem. 2020, 20, 532-565. h) Tahlan, S.; Kumar, S. and Narasimhan, B. Pharmacological Significance of Heterocyclic 1H-Benzimidazole Scaffolds: A Review., BMC Chem. 2019, 13:101. i) Singhal, S.; Khanna, P.; Panda, S.S.; Khanna, L. Recent Trends in the Synthesis of Benzimidazoles From o-Phenylenediamine via Nanoparticles and Green Strategies Using Transition Metal Catalysts., J. Heterocyclic Chem. 2019, 56, 2702-2729. j) Manna, S.K.; Das, T.; Samanta, Sh. “Polycyclic Benzimidazole: Synthesis and Photophysical Properties., Chemistry Select2019, 4, 8781-8790. k) Faheem, M.; Rathaur, A.; Pandey, A.; Singh, V.K. and Tiwari, A.K. A Review on the Modern Synthetic Approach of Benzimidazole Candidate., Chem. Select2020, 5, 3981-3994. l) Padhy, G.K.; Panda, J.; Raul, S.K.; Behera, A.K. 2-Acetylbenzimidazole: a Valuable Synthon for the synthesis of Biologically Active Molecules., Biointerface Res. App. Chem. 2021, 11, 11562-11591. m) Sweeney, M.; Conboy, D.; Mirallai, S.I. and Aldabbagh, F. Advances in the Synthesis of Ring-Fused Benzimidazoles and Imidazobenzimidazoles. Molecules, 2021, 26, 2684.
[30]
Simonov, A.M.; Anisimova, V.A. Synthesis and transformation of 2-Aminobenzimidazoles (review); Plenum Publishing Corporation, 1980, pp. 705-723.
[31]
Rastogi, R.; Sharma, S. 2-Aminobenzimidazoles in organic syntheses. Synthesis, 1983, 11(11), 861-882.
[http://dx.doi.org/10.1055/s-1983-30546]
[32]
Guida, X.; Jianhua, H.; Xiaomin, L. Synthesis and QSAR studies of novel 1-substituted-2-aminobenzimidazoles derivatives. Eur. J. Med. Chem., 2006, 41(9), 1080-1083.
[http://dx.doi.org/10.1016/j.ejmech.2006.01.002] [PMID: 16828523]
[33]
Di Braccio, M.; Grossi, G.; Signorello, M.G.; Leoncini, G.; Cichero, E.; Fossa, P.; Alfei, S.; Damonte, G. Synthesis, in vitro antiplatelet activity and molecular modelling studies of 10-substituted 2-(1-piperazinyl)pyrimido[1,2-a]benzimidazol-4(10H)-ones. Eur. J. Med. Chem., 2013, 62, 564-578.
[http://dx.doi.org/10.1016/j.ejmech.2013.01.026] [PMID: 23425969]
[34]
Rao, S.S. An eco-friendly synthesis of N-alkyl-2-aminobenzimidazole. Heterocyclic Lett, 2016, 6, 181-184.
[35]
Zhu, J.; Wu, C.F.; Li, X.; Wu, G.S.; Xie, S.; Hu, Q.N.; Deng, Z.; Zhu, M.X.; Luo, H-R.; Hong, X. Synthesis, biological evaluation and molecular modeling of substituted 2-aminobenzimidazoles as novel inhibitors of acetylcholinesterase and butyrylcholinesterase. Bioorg. Med. Chem., 2013, 21(14), 4218-4224.
[http://dx.doi.org/10.1016/j.bmc.2013.05.001] [PMID: 23719283]
[36]
Ramström, H.; Bourotte, M.; Philippe, C.; Schmitt, M.; Haiech, J.; Bourguignon, J-J. Heterocyclic bis-cations as starting hits for design of inhibitors of the bifunctional enzyme histidine-containing protein kinase/phosphatase from bacillus subtilis. J. Med. Chem., 2004, 47(9), 2264-2275.
[http://dx.doi.org/10.1021/jm021043o] [PMID: 15084125]
[37]
Mavrova, A.Ts.; Wesselinova, D.; Vassilev, N.; Tsenov, J.A. Synthesis, characterization and cytotoxicity of some novel 1,3-disubstituted-2,3-dihydro-2-iminobenzimidazoles. Eur. J. Med. Chem., 2011, 46(8), 3362-3367.
[http://dx.doi.org/10.1016/j.ejmech.2011.04.061] [PMID: 21605925]
[38]
Mavrova, A.Ts.; Wesselinova, D.; Vassilev, N.; Tsenov, J.A. Design, synthesis and antiproliferative properties of some new 5-substituted-2-iminobenzimidazole derivatives. Eur. J. Med. Chem., 2013, 63, 696-701.
[http://dx.doi.org/10.1016/j.ejmech.2013.03.010] [PMID: 23567959]
[39]
Mavrova, A.Ts.; Yancheva, D.; Anastassova, N.; Anichina, K.; Zvezdanovic, J.; Djordjevic, A.; Markovic, D.; Smelcerovic, A. Synthesis, electronic properties, antioxidant and antibacterial activity of some new benzimidazoles. Bioorg. Med. Chem., 2015, 23(19), 6317-6326.
[http://dx.doi.org/10.1016/j.bmc.2015.08.029] [PMID: 26344590]
[40]
Hernández-Núñez, E.; Tlahuext, H.; Moo-Puc, R.; Moreno, D.; González-Díaz, M.O.; Vázquez, G.N. Design, synthesis and biological evaluation of 2-(2-Amino-5(6)-nitro-1H-benzimidazol-1-yl)-N-arylacetamides as Antiprotozoal Agents. Molecules, 2017, 22(4), 579.
[http://dx.doi.org/10.3390/molecules22040579] [PMID: 28375176]
[41]
Holloway, G.A.; Baell, J.B.; Fairlamb, A.H.; Novello, P.M.; Parisot, J.P.; Richardson, J.; Watson, K.G.; Street, I.P. Discovery of 2-iminobenzimidazoles as a new class of trypanothione reductase inhibitor by high-throughput screening. Bioorg. Med. Chem. Lett., 2007, 17(5), 1422-1427.
[http://dx.doi.org/10.1016/j.bmcl.2006.11.090] [PMID: 17194585]
[42]
Anisimova, V.A.; Spasov, A.A.; Kucheryavenko, A.F.; Panchenko, T.I.; Ostrovskii, O.V.; Kosolapov, V.A.; Larionov, N.P. Synthesis and pharmacological activity of 2-(hetaryl)imidazo[1,2-a]benzimidazoles. Pharm. Chem. J., 2002, 36(10), 528-534.
[http://dx.doi.org/10.1023/A:1022498224975]
[43]
Simova, V.A.; Tolpygin, I.E.; Spasov, A.A.; Kosolapov, V.A.; Stepanov, A.V.; Kucheryavenko, A.F. Synthesis and biological activity of n-acylmethyl derivatives of 9H-2,3-dihydroimidazoand 10H-2,3,4,10-tetrahydropyrimido[1,2-a]benzimidazoles and their reduction products. Pharm. Chem. J., 2006, 40(5), 261-267.
[http://dx.doi.org/10.1007/s11094-006-0105-8]
[44]
Anisimova, V.A.; Spasov, A.A.; Kosolapov, V.A.; Chernikov, M.V.; Stukovina, A.Yu.; El’tsova, L.V.; Larionov, N.P.; Libinzon, R.E.; Vatolkina, O.E. Synthesis and biological activity of 9-dialkylaminoethyl-2-oxy(dioxy)-phenylimidazo[1,2-a]benzimidazoles. Pharm. Chem. J., 2006, 40(10), 521-529.
[http://dx.doi.org/10.1007/s11094-006-0185-5]
[45]
Anisimova, V.A.; Spasov, A.A.; Tolpygin, I.E.; Minkin, V.I.; Chernikov, M.V.; Yakovlev, D.S.; Stukovina, A.Yu.; Goryagin, I.I.; Grechko, O.Y.; Kirillova, N.V.; Kosolapov, V.A.; Tibir’kova, E.V.; Salaznikova, O.A.; Naumenko, L.V.; Gurova, N.A. Synthesis and pharmacological activity of 9-R-2-halogenophenylimidazo[1,2-a]benzimidazoles. Pharm. Chem. J., 2010, 44(7), 345-351.
[http://dx.doi.org/10.1007/s11094-010-0465-y]
[46]
Anisimova, V.A.; Tolpygin, E.I. Imidazo[1,2-a]benzimidazole derivatives: XXVIII. Syntheses and heterocyclizations on the basis of 1-Allyl-2-aminobenzimidazole. Russ. J. Org. Chem., 2011, 47(9), 1346-1353.
[http://dx.doi.org/10.1134/S1070428011090156]
[47]
Anisimova, V.A.; Tolpygin, E.I. Imidazo[1,2-a]benzimidazole derivatives: XXIX. 1-Allyl-2-amino-3-acylmethylbenzimidazolium halides and syntheses on their base. Russ. J. Org. Chem., 2011, 47(9), 1354-1361.
[http://dx.doi.org/10.1134/S1070428011090168]
[48]
Oh, S.; Kim, S.; Kong, S.; Yang, G.; Lee, N.; Han, D.; Goo, J.; Siqueira-Neto, J.L.; Freitas-Junior, L.H.; Song, R. Synthesis and biological evaluation of 2,3-dihydroimidazo[1,2-a]benzimidazole derivatives against Leishmania donovani and Trypanosoma cruzi. Eur. J. Med. Chem., 2014, 84, 395-403.
[http://dx.doi.org/10.1016/j.ejmech.2014.07.038] [PMID: 25036797]
[49]
Anisinova, V.A.; Osipova, M.M.; Spasov, A.A.; Turchaeva, A.F.; Dudchenko, G.P.; Larionov, N.P.; Kovalev, S.G. Synthesis and pharmacological activity of 1-n- and 10-n-substituted-1(10),2,3,4-tetrahydropyrimido-[1,2-a]benzimidazoles. Pharm. Chem. J., 2002, 36(9), 468-473.
[http://dx.doi.org/10.1023/A:1021888520874]
[50]
Kern, E.R.; Hartline, C.B.; Rybak, R.J.; Drach, J.C.; Townsend, L.B.; Biron, K.K.; Bidanset, D.J. Activities of benzimidazole D- and L-ribonucleosides in animal models of cytomegalovirus infections. Antimicrob. Agents Chemother., 2004, 48, 1749-1755.
[http://dx.doi.org/10.1128/AAC.48.5.1749-1755.2004]
[51]
Biron, K.K. New concepts of antiviral therapy; Springer: Dordrecht, 2006, p. 309.
[http://dx.doi.org/10.1007/978-0-387-31047-3_11]
[52]
Trofe, J.; Pote, L.; Wade, E.; Blumberg, E.; Bloom, R.D. Maribavir: A novel antiviral agent with activity against cytomegalovirus. Ann. Pharmacother., 2008, 42(10), 1447-1457.
[http://dx.doi.org/10.1345/aph.1L065] [PMID: 18698013]
[53]
Biron, K.K.; Gudmundsson, K.S.; Drach, J.C. Antiviral drugs: From basic discovery throught clinical trials, 1st ed; Kazmierski, W.M., Ed.; Wiley: Hoboken, NJ, 2011, p. 417.
[http://dx.doi.org/10.1002/9780470929353.ch29]
[54]
Peabody, J.D. Maribavir isomers, compositions, methods of making and methods of using. 20120283210, 2012.
[55]
Chamberlain, S.D.; Daluge, S.M.; Koszalka, G.W. Antiviral benzimidazole nucleoside analogues and method for their preparation. Glaxo Wellcome Inc., 6,077,832A2000,
[56]
Freeman, S.; Wycombe, H. GlaxoSmithKline, , 7,858,773.2010
[57]
Devivar, R.V.; Drach, J.C.; Townsend, L.B. Benzimidazole ribonucleosides: Observation of an unexpected nitration when performing non-aqueous diazotizations with t-butyl nitrite. Bioorg. Med. Chem. Lett., 1992, 2(9), 1105-1110.
[http://dx.doi.org/10.1016/S0960-894X(00)80628-96204249]
[58]
Price, N.B.; Prichard, M.N. Progress in the development of new therapies for herpesvirus infections. Curr. Opin. Virol., 2011, 1(6), 548-554.
[http://dx.doi.org/10.1016/j.coviro.2011.10.015] [PMID: 22162744]
[59]
Wang, F-Z.; Roy, D.; Gershburg, E.; Whitehurst, C.B.; Dittmer, D.P.; Pagano, J.S. Maribavir inhibits epstein-barr virus transcription in addition to viral DNA replication. J. Virol., 2009, 83(23), 12108-12117.
[http://dx.doi.org/10.1128/JVI.01575-09] [PMID: 19759127]
[60]
Williams, S.L.; Hartline, C.B.; Kushner, N.L.; Harden, E.A.; Bidanset, D.J.; Drach, J.C.; Townsend, L.B.; Underwood, M.R.; Biron, K.K.; Kern, E.R. In vitro activities of benzimidazole D- and L-ribonucleosides against herpesviruses. Antimicrob. Agents Chemother., 2003, 47(7), 2186-2192.
[http://dx.doi.org/10.1128/AAC.47.7.2186-2192.2003] [PMID: 12821466]
[61]
Maribavir: 1263W94, Benzimidavir, GW 1263, GW 1263W94, VP41263. Drugs R D., 2007, 8(3), 188-192.
[http://dx.doi.org/10.2165/00126839-200708030-00006] [PMID: 17472414]
[62]
Jhon, D.P. Maribavir isomers, compositions, methods of making and methods of using. 8940707, 2015.
[63]
Winston, D.J.; Young, J.A.; Pullarkat, V.; Papanicolaou, G.A.; Vij, R.; Vance, E.; Alangaden, G.J.; Chemaly, R.F.; Petersen, F.; Chao, N.; Klein, J.; Sprague, K.; Villano, S.A.; Boeckh, M. Maribavir prophylaxis for prevention of cytomegalovirus infection in allogeneic stem cell transplant recipients: A multicenter, randomized, double-blind, placebo-controlled, dose-ranging study. Blood, 2008, 111(11), 5403-5410.
[http://dx.doi.org/10.1182/blood-2007-11-121558] [PMID: 18285548]
[64]
Avery, R.K.; Marty, F.M.; Strasfeld, L.; Lee, I.; Arrieta, A.; Chou, S.; Tatarowicz, W.; Villano, S. Oral maribavir for treatment of refractory or resistant cytomegalovirus infections in transplant recipients. Transpl. Infect. Dis., 2010, 12(6), 489-496.
[http://dx.doi.org/10.1111/j.1399-3062.2010.00550.x] [PMID: 20682012]
[65]
No authors listed. Efficacy and safety study of maribavir treatment compared to investigator-assigned treatment in transplant recipients with cytomegalovirus (cmv) infections that are refractory or resistant to treatment with ganciclovir, valganciclovir, foscarnet, or cidofovir” https://clinicaltrials.gov/show/NCT029315392017
[66]
Martin, M.M.; Uzzaman, M.; Chowdhury, S.A.; Bhuiyan, M.M.H. In vitro antimicrobial, physicochemical, pharmacokinetics, and molecular docking studies of benzoyl uridine esters against SARS-CoV-2 main protease. J. Biomol. Struct. Dyn., 2020, 38, 1-13.
[http://dx.doi.org/10.1080/07391102.2020.1850358]
[67]
Townsend, L.B.; Gudmundsson, K.S.; Daluge, S.M.; Chen, J.J.; Zhu, Z.; Koszalka, G.W.; Boyd, L.; Chamberlain, S.D.; Freeman, G.A.; Biron, K.K.; Drach, J.C. Studies designed to increase the stability and antiviral activity (HCMV) of the active benzimidazole nucleoside, TCRB. Nucleosides Nucleotides, 1999, 18(4-5), 509-519.
[http://dx.doi.org/10.1080/15257779908041486] [PMID: 10432642]
[68]
Kharitonova, M.I.; Denisova, A.O.; Ándronova, V.L.A.; Kayushin, A.L.; Konstantinova, I.D.; Kotovskaya, S.K.; Galegov, G.A.; Charushin, V.N.; Miroshnikov, A.I. New modified 2-aminobenzimidazole nucleosides: Synthesis and evaluation of their activity against herpes simplex virus type 1. Bioorg. Med. Chem. Lett., 2017, 27(11), 2484-2487.
[http://dx.doi.org/10.1016/j.bmcl.2017.03.100] [PMID: 28408228]
[69]
Terzano, C.; Petroianni, A.; Ricci, A. Herpes simplex pneumonia: Combination therapy with oral acyclovir and aerosolized ribavirin in an immunocompetent patient. Curr. Ther. Res. Clin. Exp., 2004, 65(1), 90-96.
[http://dx.doi.org/10.1016/S0011-393X(04)90008-2] [PMID: 24936107]
[70]
Bierman, S.M.; Kirkpatrick, W.; Fernandez, H. Clinical efficacy of ribavirin in the treatment of genital herpes simplex virus infection. Chemotherapy, 1981, 27(2), 139-145.
[http://dx.doi.org/10.1159/000237969] [PMID: 7009087]
[71]
Ueda, S.; Buchwald, S.L. Catalyst-controlled chemoselective arylation of 2-aminobenzimidazoles. Angew. Chem. Int. Ed. Engl., 2012, 51(41), 10364-10367.
[http://dx.doi.org/10.1002/anie.201204710] [PMID: 22969040]
[72]
Kumar, K.A.; Kannaboina, P.; Rao, D.N.; Das, P. Nickel-catalyzed Chan-Lam cross-coupling: Chemoselective N-arylation of 2-aminobenzimidazoles. Org. Biomol. Chem., 2016, 14(38), 8989-8997.
[http://dx.doi.org/10.1039/C6OB01307D] [PMID: 27603555]
[73]
Servi, S.; Genc, M. Microwave-Assisted synthesis of N-(1H-Imidazoline-2-yl)-1H-benzimidazol-2-amine and Its N-Functionalized Derivatives. Synth. Commun., 2012, 42(19), 2797-2805.
[http://dx.doi.org/10.1080/00397911.2011.567883]
[74]
Mavrova, A.Ts.; Denkova, P.; Tsenov, Y.A.; Anichina, K.K.; Vutchev, D.I. Synthesis and antitrichinellosis activity of some bis(benzimidazol-2-yl)amines. Bioorg. Med. Chem., 2007, 15(18), 6291-6297.
[http://dx.doi.org/10.1016/j.bmc.2007.06.017] [PMID: 17600722]
[75]
Mavrova, A.T.; Wesselinova, D.; Tsenov, J.A.; Denkova, P. Cytotoxic effects of some N-Substituted-2-Amino-1H-Benzimidazoles., 2012.
[76]
Li, F.; Kang, Q.; Shan, H.; Chen, L.; Xie, J. Regioselective N-Alkylation of 2-Aminoimidazoles with alcohols to 2-(NAlkylamino)imidazoles catalyzed by the [Cp*IrCl2]2/K2CO3 System. Eur. J. Org. Chem., 2012, 2012(26), 5085-5092.
[http://dx.doi.org/10.1002/ejoc.201200698]
[77]
Zarubaev, V.V.; Morkovnik, A.S.; Divaeva, L.N.; Karpinskaya, L.A.; Borodkin, G.S.; Borodkin, G.S. Tautomeric and non-tautomeric N-substituted 2-iminobenzimidazolines as new lead compounds for the design of anti-influenza drugs: An in vitro study. Bioorg. Med. Chem., 2016, 24(22), 5796-5803.
[http://dx.doi.org/10.1016/j.bmc.2016.09.036] [PMID: 27670100]
[78]
Da Settimo, A.; Da Settimo, F.; Marini, A.M.; Primofiore, G.; Salerno, S.; Viola, S.; Lisa Dalla Via, L.D.; Magno, S.M. Synthesis, DNA Binding and in Vitro antiproliferative activity of purinoquinazoline, pyridopyrimidopurine and pyridopyrimidobenzimidazole derivatives as potential antitumor agents. Eur. J. Med. Chem., 1998, 33(9), 685-696.
[http://dx.doi.org/10.1016/S0223-5234(98)80027-5]
[79]
Li, Y-F.; Wang, G-F.; Luo, Y.; Huang, W-G.; Tang, W.; Feng, C.L.; Shi, L-P.; Ren, Y-D.; Zuo, J-P.; Lu, W. Identification of 1-isopropylsulfonyl-2-amine benzimidazoles as a new class of inhibitors of hepatitis B virus. Eur. J. Med. Chem., 2007, 42(11-12), 1358-1364.
[http://dx.doi.org/10.1016/j.ejmech.2007.03.005] [PMID: 17499889]
[80]
Starcevic, K.; Caleta, I.; Cincic, D.; Kaitner, B.; Kralj, M.; Ester, K.; Karminski-Zamola, G. Synthesis, crystal structure determination and antiproliferative evaluation of novel benzazoyl benzamides. Heterocycles, 2006, 68(11), 2285-2289.
[http://dx.doi.org/10.3987/COM-06-10844]
[81]
Babu, G.S.; Rajani, N.; Malathy, P.S.; Srinivas, B.; Kulandaivelu, U.; Rao, J.V. Synthesis, characterization and evaluation of Novel N-(1H-Benzimidazol-2-yl)-2-isatinylidene-hydrazinecarboxamide derivatives as Anti-Inflammatory agents. Scholars Research Library, 2010, 2(3), 196-204.
[82]
Babu, K.N.; Nagarjuna, U.; Reddy, G.D.; Padmaja, A.; Padmavathi, V. Synthesis and antimicrobial activity of benzazolyl azolyl urea derivatives. J. Mol. Struct., 2019, 1198, 126871.
[http://dx.doi.org/10.1016/j.molstruc.2019.126871]
[83]
Wang, W.; Kong, D.; Cheng, H.; Tan, L.; Zhang, Z.; Zhuang, X.; Long, H.; Zhou, Y.; Xu, Y.; Yang, X.; Ding, K. New benzimidazole-2-urea derivates as tubulin inhibitors. Bioorg. Med. Chem. Lett., 2014, 24(17), 4250-4253.
[http://dx.doi.org/10.1016/j.bmcl.2014.07.035] [PMID: 25091926]
[84]
Chassaing, C.; Berger, M.; Heckeroth, A.; Ilg, T.; Jaeger, M.; Kern, C.; Schmid, K.; Uphoff, M. Highly water-soluble prodrugs of anthelmintic benzimidazole carbamates: Synthesis, pharmacodynamics, and pharmacokinetics. J. Med. Chem., 2008, 51(5), 1111-1114.
[http://dx.doi.org/10.1021/jm701456r] [PMID: 18271517]
[85]
Cindrić, M.; Jambon, S.; Harej, A.; Depauw, S.; David-Cordonnier, M-H.; Kraljević Pavelić, S.; Karminski-Zamola, G.; Hranjec, M. Novel amidino substituted benzimidazole and benzothiazole benzo[b]thieno-2-carboxamides exert strong antiproliferative and DNA binding properties. Eur. J. Med. Chem., 2017, 136, 468-479.
[http://dx.doi.org/10.1016/j.ejmech.2017.05.014] [PMID: 28525845]
[86]
Katritzky, A.R.; Yates, F. Phthaloylation of amino-azoles and aminoazines. J. Chem. Soc., Perkin Trans. 1, 1976, (3), 309-312.
[http://dx.doi.org/10.1039/p19760000309]
[87]
Kaur, G.; Silakari, O. Benzimidazole scaffold based hybrid molecules for various inflammatory targets: Synthesis and evaluation. Bioorg. Chem., 2018, 80, 24-35.
[http://dx.doi.org/10.1016/j.bioorg.2018.05.014] [PMID: 29864685]
[88]
Nofal, Z.M.; Fahmy, H.H.; Mohamed, H.S. Synthesis, antimicrobial and molluscicidal activities of new benzimidazole derivatives. Arch. Pharm. Res., 2002, 25(1), 28-38.
[http://dx.doi.org/10.1007/BF02975257] [PMID: 11885688]
[89]
Abbhi, V.; Saini, L.; Mishra, S.; Sethi, G.; Kumar, A.P.; Piplani, P. Design and synthesis of benzimidazole-based Rho kinase inhibitors for the treatment of glaucoma. Bioorg. Med. Chem., 2017, 25(21), 6071-6085.
[http://dx.doi.org/10.1016/j.bmc.2017.09.045] [PMID: 29033348]
[90]
(a) Powers, J.P.; Li, S.; Jaen, J.C.; Liu, J.; Walker, N.P.C.; Wang, Z.; Wesche, H. Discovery and initial SAR of inhibitors of interleukin-1 receptor-associated kinase-4. Bioorg. Med. Chem. Lett., 2006, 16(11), 2842-2845.
[http://dx.doi.org/10.1016/j.bmcl.2006.03.020] [PMID: 16563752];
(b) Martin, M.M.; Bhuiyan, M.M.H.; Kabir, E.; Sanaullah, A.F.M.; Rahman, M.A.; Hossain, M.E.; Uzzaman, M. Synthesis, Characterization, ADMET, PASS predication, and antimicrobial study of 6-O-lauroyl mannopyranosides. J. Mol. Struct., 2019, 1195, 189-197.
[http://dx.doi.org/10.1016/j.molstruc.2019.05.102]
[91]
Reddy, L.M.; Prakash, T.B.; Padmaja, A.; Padmavathi, V. Synthesis and antimicrobial activity of pyrazolyl benzoxazoles, benzothiazoles and benzimidazoles. Med. Chem. Res., 2015, 24(3), 970-979.
[http://dx.doi.org/10.1007/s00044-014-1180-0]
[92]
Arora, R.K.; Kaur, N.; Bansal, Y.; Bansal, G. Novel coumarin-benzimidazole derivatives as antioxidants and safer anti-inflammatory agents. Acta Pharm. Sin. B, 2014, 4(5), 368-375.
[http://dx.doi.org/10.1016/j.apsb.2014.07.001] [PMID: 26579406]
[93]
Hiscock, J.R.; Gale, P.A.; Lalaoui, N.; Light, M.E.; Wells, N.J. Benzimidazole-based anion receptors exhibiting selectivity for lactate over pyruvate. Org. Biomol. Chem., 2012, 10(38), 7780-7788.
[http://dx.doi.org/10.1039/c2ob26299a] [PMID: 22911002]
[94]
He, X.; Lakkaraju, S.K.; Hanscom, M.; Zhao, Z.; Wu, J.; Stoica, B.; MacKerell, A.D., Jr; Faden, A.I.; Xue, F. Acyl-2-aminobenzimidazoles: A novel class of neuroprotective agents targeting mGluR5. Bioorg. Med. Chem., 2015, 23(9), 2211-2220.
[http://dx.doi.org/10.1016/j.bmc.2015.02.054] [PMID: 25801156]
[95]
Aruna Sindhe, M.M.; Bodke, Y.D.; Kenchappa, R.; Telkar, S.; Chandrashekar, A.; Vinoda, B.M. Catalytic assemble of 2-Amino-5,6-dimethyl-1H-benzimidazole with carboxylic acids and evaluation of their antimicrobial and antioxidant activities. J. Taibah Univ. Med. Sci., 2016, 11, 418-426.
[http://dx.doi.org/10.1016/j.jtumed.2016.05.004]
[96]
Bansal, Y.; Silakari, O. 2-Aminobenzimidazole conjugates of NSAIDS: Novel compounds with immunomodulatory, anti-inflammatory and antioxidant actions. Med. Chem. Res., 2015, 24(3), 1170-1179.
[http://dx.doi.org/10.1007/s00044-014-1198-3]
[97]
Tang, G.; Gün, Ü.; Altenbach, H-J. Altenbach, H.-J. Novel aminoimidazole derived proline organocatalysts for aldol reactions. Tetrahedron, 2012, 68(49), 10230-10235.
[http://dx.doi.org/10.1016/j.tet.2012.09.071]
[98]
Munguía, B.; Mendina, P.; Espinosa, R.; Lanz, A.; Saldaña, J.; Andina, M.J.; Ures, X.; López, A.; Manta, E.; Domínguez, L. Synthesis and anthelmintic evaluation of novel valerolactam benzimidazole hybrids. Lett. Drug Des. Discov., 2013, 10, 1007-1014.
[http://dx.doi.org/10.2174/15701808113109990028]
[99]
Terzioglu, N.; van Rijn, R.M.; Bakker, R.A.; De Esch, I.J.P.; Leurs, R. Synthesis and structure-activity relationships of indole and benzimidazole piperazines as histamine H(4) receptor antagonists. Bioorg. Med. Chem. Lett., 2004, 14(21), 5251-5256.
[http://dx.doi.org/10.1016/j.bmcl.2004.08.035] [PMID: 15454206]
[100]
Sowdari, J.; Gudi, Y.; Donthamsetty, S.V.; Venkatapuram, P.; Adivireddy, P. Green approach for the synthesis of a new class of diamidomethane-linked benzazolyl pyrazoles and evaluation as antifungals. J. Heterocycl. Chem., 2019, 56(8), 2080-2089.
[http://dx.doi.org/10.1002/jhet.3569]
[101]
Kalhor, M.; Banibairami, S.; Mirshokraie, S.A. Ni@zeolite-Y Nanoporous; a valuable and efficient nanocatalyst for the synthesis of N-Benzimidazole-1,3-thiazolidinones. Green Chem. Lett. Rev., 2018, 11(3), 334-344.
[http://dx.doi.org/10.1080/17518253.2018.1499968]
[102]
Patil, D.A.; Surana, S.J. Synthesis, biological evaluation of 2,3-disubstitutedimidazolyl/benzimidazolyl-quinazolin-4(3H)-one derivatives. Med. Chem. Res., 2016, 25(6), 1125-1139.
[http://dx.doi.org/10.1007/s00044-016-1552-8]
[103]
Rajeswari, T.; Rekha, T.; Reddy, G.D.; Padmaja, A.; Padmavathi, V. Synthesis and antibacterial activity of benzazolyl azolylsulfamoyl acetamides. J. Heterocycl. Chem., 2019, 56(9), 2449-2459.
[http://dx.doi.org/10.1002/jhet.3634]
[104]
Mobinikhaledi, A.; Forughifar, N.; Kalhor, M. An efficient synthesis of schiff bases containing benzimidazole moiety catalyzed by transition metal nitrates. Turk. J. Chem., 2010, 34, 367-373.
[105]
Hranjec, M.; Starčević, K.; Pavelić, S.K.; Lučin, P.; Pavelić, K.; Karminski Zamola, G. Synthesis, spectroscopic characterization and antiproliferative evaluation in vitro of novel Schiff bases related to benzimidazoles. Eur. J. Med. Chem., 2011, 46(6), 2274-2279.
[http://dx.doi.org/10.1016/j.ejmech.2011.03.008] [PMID: 21439689]
[106]
Noolvi, M.; Agrawal, S.; Patel, H.; Badiger, A.; Gaba, M.; Zambre, A. Synthesis, antimicrobial and cytotoxic activity of novel azetidine-2-one derivatives of 1H-benzimidazole. Arab. J. Chem., 2014, 7(2), 219-226.
[http://dx.doi.org/10.1016/j.arabjc.2011.02.011]
[107]
Nawrocka, W.; Sztuba, B.; Kowalska, M.W.; Liszkiewicz, H.; Wietrzyk, J.; Nasulewicz, A.; Pełczyńska, M.; Opolski, A. Synthesis and antiproliferative activity in vitro of 2-aminobenzimidazole derivatives. Farmaco, 2004, 59(2), 83-91.
[http://dx.doi.org/10.1016/j.farmac.2003.12.001] [PMID: 14871499]
[108]
Kang, J.; Kim, H.S.; Jang, D.O. Fluorescent anion chemosensors using 2-aminobenzimidazole receptors. Tetrahedron Lett., 2005, 46(36), 6079-6082.
[http://dx.doi.org/10.1016/j.tetlet.2005.07.002]
[109]
Sørensen, U.S.; Strøbaek, D.; Christophersen, P.; Hougaard, C.; Jensen, M.L.; Nielsen, E.Ø.; Peters, D.; Teuber, L. Synthesis and structure-activity relationship studies of 2-(N-substituted)-aminobenzimidazoles as potent negative gating modulators ofsmall conductance Ca2+-activated K+ channels. J. Med. Chem., 2008, 51(23), 7625-7634.
[http://dx.doi.org/10.1021/jm800809f] [PMID: 18998663]
[110]
Mangaveni, P.; Durga, G.; Bhushanavathi, P.; Sarada, P. Synthesis, characterization and their antimicrobial activity of crystalline materials of nickel (II) complexes with substituted 2-amino-benzimidazole. Mater. Today Proc., 2018, 5(12), 25862-25866.
[http://dx.doi.org/10.1016/j.matpr.2018.06.579]
[111]
Joseph, J.; Suman, A.; Nagashri, K.; Joseyphus, R.S.; Balakrishnan, N. Synthesis, characterization and biological studies of copper(ii) complexes with 2-aminobenzimidazole derivatives. J. Mol. Struct., 2017, 1137, 17-26.
[http://dx.doi.org/10.1016/j.molstruc.2017.02.021]
[112]
Horaka, E.; Kassala, P.; Hranjec, M.; Steinberg, I.M. B 2018, 258, 415-423.
[113]
Sovic´, I.; Orehovec, I.; Stilinovic´, V.; Basaric´, N.; Karminski-Zamola, G. Benzothiazolyl- and benzimidazolyl-substituted 1-iminoisoindolines: Synthesis, mechanistic studies, and crystal structure determination. Monatsh. Chem., 2016, 147(10), 1825-1837.
[http://dx.doi.org/10.1007/s00706-016-1796-5]
[114]
Sović, I.; Jambon, S.; Kraljević Pavelić, S.; Markova-Car, E.; Ilić, N.; Depauw, S.; David-Cordonnier, M-H.; Karminski-Zamola, G. Synthesis, antitumor activity and DNA binding features of benzothiazolyl and benzimidazolyl substituted isoindolines. Bioorg. Med. Chem., 2018, 26(8), 1950-1960.
[http://dx.doi.org/10.1016/j.bmc.2018.02.045] [PMID: 29519603]
[115]
Singh, N.; Jang, D.O. Benzimidazole-based tripodal receptor: Highly selective fluorescent chemosensor for iodide in aqueous solution. Org. Lett., 2007, 9(10), 1991-1994.
[http://dx.doi.org/10.1021/ol070592r] [PMID: 17439227]
[116]
Özkay, Y.; Tunalı, Y.; Karaca, H.; Işıkdağ, I. Antimicrobial activity of a new series of benzimidazole derivatives. Arch. Pharm. Res., 2011, 34(9), 1427-1435.
[http://dx.doi.org/10.1007/s12272-011-0903-8] [PMID: 21975803]
[117]
Hussain, A.; AlAjmi, M.F.; Rehman, M.T.; Khan, A.A.; Shaikh, P.A.; Khan, R.A. Evaluation of transition metal complexes of benzimidazole-derived scaffold as promising anticancer chemotherapeutics. Molecules, 2018, 23(5), 1232.
[http://dx.doi.org/10.3390/molecules23051232] [PMID: 29883398]
[118]
El-wakiel, N.; El-keiy, M.; Gaber, M. Synthesis, spectral, antitumor, antioxidant and antimicrobial studies on Cu(II), Ni(II) and Co(II) complexes of 4-[(1H-Benzoimidazol-2-ylimino)-methyl]-benzene-1,3-diol. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2015, 147, 117-123.
[http://dx.doi.org/10.1016/j.saa.2015.03.020] [PMID: 25827773]
[119]
Nieto-Meneses, R.; Castillo, R.; Hernández-Campos, A.; Maldonado-Rangel, A.; Matius-Ruiz, J.B.; Trejo-Soto, P.J.; Nogueda-Torres, B.; Dea-Ayuela, M.A.; Bolás-Fernández, F.; Méndez-Cuesta, C.; Yépez-Mulia, L. In vitro activity of new N-benzyl-1H-benzimidazol-2-amine derivatives against cutaneous, mucocutaneous and visceral Leishmania species. Exp. Parasitol., 2018, 184, 82-89.
[http://dx.doi.org/10.1016/j.exppara.2017.11.009] [PMID: 29191699]
[120]
Javarishir, S.F. Afacile three-component one-pot solvent-free synthesis of 2´-aminobenzimidazolomethylnaphthols. 14th International conference on synthetic organic chemistry ECSOC-14, 2010.
[121]
Yarie, M.; Mohammad Ali Zolfigol, M.A.; Baghery, S.; Alonso, D.A.; Khoshnood, A.; Kalhor, M.; Bayatd, Y.; Asgarid, A. Design and preparation of [4,40-bipyridine]-1,10-diium trinitromethanide (BPDTNM) as a novel nanosized ionic liquid catalyst: Application to the synthesis of 1-(benzoimidazolylamino)methyl-2-naphthols. New J. Chem., 2017, 41, 4431-4440.
[http://dx.doi.org/10.1039/C6NJ04074H]
[122]
Eleftheriadis, N.; Kasapidou, P.M.; Stephanidou-Stephanatou, J.; Tsoleridis, C.A.; Hadjipavlou-Litina, D.J.; Kontogiorgis, C.; Pritsa, A.; Papadopoulos, A. One-Pot Synthesis of highly functionalized benzimidazolylisophthalates and (2E)-2-Ethylidene-(1H)-pyridinecarboxylates by ultrasound-promoted multicomponent reactions. Synthesis, 2015, 47(10), 1390-1398.
[http://dx.doi.org/10.1055/s-0034-1380154]
[123]
Rogers, S.A.; Huigens, R.W., III; Melander, C. A 2-aminobenzimidazole that inhibits and disperses gram-positive biofilms through a zinc-dependent mechanism. J. Am. Chem. Soc., 2009, 131(29), 9868-9869.
[http://dx.doi.org/10.1021/ja9024676] [PMID: 19621946]
[124]
Srivastava, P.K.; Upadhyaya, J.S.; Gupta, M.B. Synthesis and antithyroid activity of some benzimidazolyl and benzenesulphonyl thiocarbamides. Curr. Sci., 1981, 50, 305-307.
[125]
Morkovnik, A.S.; Divaeva, L.N.; Nelyubina, Y.V.; Lyssenko, K.A.; Vasilchenko, I.S. Structure and tautomerism of 2-benzimidazolylthioureas. Mendeleev Commun., 2007, 17(4), 224-226.
[http://dx.doi.org/10.1016/j.mencom.2007.06.014]
[126]
S’miechowska, A.; Przychodzen´, W.; Chojnacki, J.; Bruz’dziak, P.; Namies’nik, J.; Bartoszek, A. Synthesis and structural characterization of novel 2-benzimidazolylthioureas: Adducts of natural isothiocyanates and 2-amino-1-methylbenzimidazole. Struct. Chem., 2010, 21(5), 955-964.
[http://dx.doi.org/10.1007/s11224-010-9632-8]
[127]
Lafzi, F.; Kilic, D.; Yildiz, M.; Saracoglu, N. Design, synthesis, antimicrobial evaluation, and molecular docking of novel chiral urea/thiourea derivatives bearing indole, benzimidazole, and benzothiazole scaffolds. J. Mol. Struct., 2021, 1241, 130566.
[http://dx.doi.org/10.1016/j.molstruc.2021.130566]
[128]
Bhrigu, B.; Siddiqui, N.; Pathak, D.; Alam, M.S.; Ali, R.; Azad, B. Anticonvulsant evaluation of some newer benzimidazole derivatives: Design and synthesis. Acta Pol. Pharm., 2012, 69(1), 53-62.
[PMID: 22574507]
[129]
Hamley, P.; Tinker, A.C. 1,2-Diaminobenzimidazoles: Selective inhibitors of nitric oxide synthase derived from aminoguanidine. Bioorg. Med. Chem. Lett., 1995, 5(15), 1573-1576.
[http://dx.doi.org/10.1016/0960-894X(95)00273-V]
[130]
Murthy, Y.L.N.; Durga, G.; Jha, A. Synthesis, characterization, and antimicrobial activity of some new 2-diazo-benzimidazole derivatives and their Ni(II), Cu(II), and Ag(I) complexes. Med. Chem. Res., 2013, 22(5), 2266-2272.
[http://dx.doi.org/10.1007/s00044-012-0220-x]
[131]
Abbas, A.K. Preparation, characterization and biological evaluation of some lanthanide (iii) ions complexes with 3-(1-methyl-2-benzimidazolylazo)-tyrosine. Baghdad Sci. J., 2016, 13(2), 128-142.
[http://dx.doi.org/10.21123/bsj.2016.13.2.2NCC.0128]
[132]
Ertan, N. Synthesis of some hetarylazopyrazolone dyes and solvent effects on their absorption spectra. Dyes Pigments, 1999, 44(1), 41-48.
[http://dx.doi.org/10.1016/S0143-7208(99)00066-2]
[133]
Jain, R.; Pandey, P. Synthesis and polarographic behaviour of (benzothiazolylazo)-pyrimidines. J. Electrochem. Soc. India, 1987, 36, 179-183.
[134]
Sener, I.; Karci, F.; Ertan, N.; Kilic, E. Synthesis and investigations of the absorption spectra of hetarylazo disperse dyes derived from 2,4-quinolinediol. Dyes Pigments, 2006, 70(2), 143-148.
[http://dx.doi.org/10.1016/j.dyepig.2005.05.003]
[135]
Karci, F.; Demircali, A. Synthesis of 4-amino-1Hbenzo[4,5]imidazo[1,2-a]pyrimidin-2-one and its disperse azo dyes. Part 2: Hetarylazo derivatives. Dyes Pigments, 2006, 71(2), 97-102.
[http://dx.doi.org/10.1016/j.dyepig.2005.08.004]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy