Generic placeholder image

Current Organic Synthesis

Editor-in-Chief

ISSN (Print): 1570-1794
ISSN (Online): 1875-6271

Review Article

The Journey from Porous Materials to Metal-organic Frameworks and their Catalytic Applications: A Review

Author(s): Jagannath Panda, Tejaswini Sahoo, Jaykishon Swain, Prasanna Kumar Panda, Bankim Chandra Tripathy, Raghabendra Samantaray* and Rojalin Sahu*

Volume 20, Issue 2, 2023

Published on: 27 July, 2022

Page: [220 - 237] Pages: 18

DOI: 10.2174/1570179419666220223093955

Price: $65

Abstract

Metal-Organic Frameworks (MOFs), a class of inorganic-organic hybrid materials, have been at the center of material science for the past three decades. They are synthesized by metal ions and organic linker precursors and have become very potential materials for different applications ranging from sensing, separation, catalytic behaviour to biomedical applications and drug delivery, owing to their structural flexibility, porosity and functionality. They are also very promising in heterogeneous catalysis for various industrial applications. These catalysts can be easily synthesized with extremely high surface areas, tunable pore sizes, and incorporation of catalytic centers via post-synthetic modification (PSM) or exchange of their components as compared to traditional heterogeneous catalysts, which is the preliminary requirement of a better catalyst. Here, in this review, we have presented the history of MOFs, different synthesis procedures, and MOFcatalysed reactions; for instance, coupling reactions, condensation reactions, Friedel-Crafts reaction, oxidation, etc. Special attention has been given to MOFs containing different catalytic centers, including open metal sites, incorporation of catalytic centers through PSM, and bifunctional acidbase sites. The important role of catalytic centers present in MOFs and reaction mechanisms have also been outlined with examples.

Keywords: Metal–organic framework, Synthesis techniques, Heterogeneous catalyst, Post synthetic modification, Applications

Graphical Abstract

[1]
Davis, M.E. Ordered porous materials for emerging applications. Nature, 2002, 417(6891), 813-821.
[http://dx.doi.org/10.1038/nature00785] [PMID: 12075343]
[2]
Zhao, X.S. Novel porous materials for emerging applications. J. Mater. Chem., 2006, 16(7), 623-625.
[http://dx.doi.org/10.1039/b600327n]
[3]
Pal, N.; Bhaumik, A. Soft templating strategies for the synthesis of mesoporous materials: Inorganic, organic-inorganic hybrid and purely organic solids. Adv. Colloid Interface Sci., 2013, 189-190, 21-41.
[http://dx.doi.org/10.1016/j.cis.2012.12.002] [PMID: 23337774]
[4]
Cote, A.P.; Benin, A.I.; Ockwig, N.W.; O'keeffe, M.; Matzger, A.J.; Yaghi, O.M. Porous, crystalline, covalent organic frameworks. Science, 2005, 310(5751), 1166-1170.
[http://dx.doi.org/10.1126/science.1120411]
[5]
Chen, Y.; Zhu, Y.; Wang, Z.; Li, Y.; Wang, L.; Ding, L.; Gao, X.; Ma, Y.; Guo, Y. Application studies of activated carbon derived from rice husks produced by chemical-thermal process--a review. Adv. Colloid Interface Sci., 2011, 163(1), 39-52.
[http://dx.doi.org/10.1016/j.cis.2011.01.006] [PMID: 21353192]
[6]
Li, Y.; Li, L.; Yu, J. Applications of zeolites in sustainable chemistry. Chem, 2017, 3(6), 928-949.
[http://dx.doi.org/10.1016/j.chempr.2017.10.009]
[7]
Griffith, R.L. The crystal structure of silver oxalate. J. Chem. Phys., 1943, 11(11), 499-505.
[http://dx.doi.org/10.1063/1.1723789]
[8]
Hofmann, K.A.; Küspert, F. Compounds of hydrocarbons with metal salts. J. Inorg. Chem., 1897, 15, 204-207.
[9]
Rayner, J.H.; Powell, H. M. Structure of molecular compounds. Part X. Crystal structure of the compound of benzene with an ammonianickel cyanide complex. J. Chem. Soc. (Resumed), 1952, 319-328.
[10]
Hoskins, B.F.; Robson, R. Infinite polymeric frameworks consisting of three dimensionally linked rod-like segments. J. Am. Chem. Soc., 1989, 111(15), 5962-5964.
[http://dx.doi.org/10.1021/ja00197a079]
[11]
Hoskins, B.F.; Robson, R. Design and construction of a new class of scaffolding-like materials comprising infinite polymeric frameworks of 3D-linked molecular rods. A reappraisal of the zinc cyanide and cadmium cyanide structures and the synthesis and structure of the diamond-related frameworks [N (CH3)4][CuIZnII (CN)4] and CuI [4, 4′, 4”, 4”'-tetracyanotetraphenylmethane] BF4. xC6H5NO2. J. Am. Chem. Soc., 1990, 112, 1546-1554.
[http://dx.doi.org/10.1021/ja00160a038]
[12]
Li, H.; Eddaoudi, M.; O’Keeffe, M.; Yaghi, O.M. Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature, 1999, 402(6759), 276-279.
[http://dx.doi.org/10.1038/46248]
[13]
Kirchon, A.; Feng, L.; Drake, H.F.; Joseph, E.A.; Zhou, H.C. From fundamentals to applications: A toolbox for robust and multifunctional MOF materials. Chem. Soc. Rev., 2018, 47(23), 8611-8638.
[http://dx.doi.org/10.1039/C8CS00688A] [PMID: 30234863]
[14]
Kurmoo, M. Magnetic metal-organic frameworks. Chem. Soc. Rev., 2009, 38(5), 1353-1379.
[http://dx.doi.org/10.1039/b804757j] [PMID: 19384442]
[15]
Chaudhari, A.K.; Nagarkar, S.S.; Joarder, B.; Ghosh, S.K. A continuous π-stacked starfish array of two-dimensional luminescent MOF for detection of nitro explosives. Cryst. Growth Des., 2013, 13(8), 3716-3721.
[http://dx.doi.org/10.1021/cg400749m]
[16]
Wang, B.; Xie, L.H.; Wang, X.; Liu, X.M.; Li, J.; Li, J.R. Applications of metal-organic frameworks for green energy and environment: New advances in adsorptive gas separation, storage and removal. Green Energy Environ., 2018, 3(3), 191-228.
[http://dx.doi.org/10.1016/j.gee.2018.03.001]
[17]
Kundu, T.; Shah, B.B.; Bolinois, L.; Zhao, D. Functionalization induced breathing control in metal-organic frameworks for methane storage with high deliverable capacity. Chem. Mater., 2019, 378(8), 2-16.
[http://dx.doi.org/10.1021/acs.chemmater.8b05332]
[18]
Yoon, M.; Srirambalaji, R.; Kim, K. Homochiral metal-organic frameworks for asymmetric heterogeneous catalysis. Chem. Rev., 2012, 112(2), 1196-1231.
[http://dx.doi.org/10.1021/cr2003147] [PMID: 22084838]
[19]
Wang, L.; Zheng, M.; Xie, Z. Nanoscale metal-organic frameworks for drug delivery: A conventional platform with new promise. J. Mater. Chem. B Mater. Biol. Med., 2018, 6(5), 707-717.
[http://dx.doi.org/10.1039/C7TB02970E] [PMID: 32254257]
[20]
Chen, Z.; Hanna, S.L.; Redfern, L.R.; Alezi, D.; Islamoglu, T.; Farha, O.K. Reticular chemistry in the rational synthesis of functional zirconium cluster-based MOFs. Coord. Chem. Rev., 2019, 386, 32-49.
[http://dx.doi.org/10.1016/j.ccr.2019.01.017]
[21]
Tanabe, K.K.; Cohen, S.M. Postsynthetic modification of metal-organic frameworks--a progress report. Chem. Soc. Rev., 2011, 40(2), 498-519.
[http://dx.doi.org/10.1039/C0CS00031K] [PMID: 21103601]
[22]
Kitagawa, S.; Kitaura, R.; Noro, S. Functional porous coordination polymers. Angew. Chem. Int. Ed., 2004, 43(18), 2334-2375.
[http://dx.doi.org/10.1002/anie.200300610] [PMID: 15114565]
[23]
Ma, S.; Zhou, H.C. A metal-organic framework with entatic metal centers exhibiting high gas adsorption affinity. J. Am. Chem. Soc., 2006, 128(36), 11734-11735.
[http://dx.doi.org/10.1021/ja063538z] [PMID: 16953594]
[24]
Cychosz, K.A.; Wong-Foy, A.G.; Matzger, A.J. Liquid phase adsorption by microporous coordination polymers: Removal of organosulfur compounds. J. Am. Chem. Soc., 2008, 130(22), 6938-6939.
[http://dx.doi.org/10.1021/ja802121u] [PMID: 18465854]
[25]
Liu, Y.; Kravtsov, V.Ch.; Larsen, R.; Eddaoudi, M. Molecular building blocks approach to the assembly of zeolite-like metal-organic frameworks (ZMOFs) with extra-large cavities. Chem. Commun. (Camb.), 2006, 14(14), 1488-1490.
[http://dx.doi.org/10.1039/b600188m] [PMID: 16575436]
[26]
Park, K.S.; Ni, Z.; Côté, A.P.; Choi, J.Y.; Huang, R.; Uribe-Romo, F.J.; Chae, H.K.; O’Keeffe, M.; Yaghi, O.M. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc. Natl. Acad. Sci. USA, 2006, 103(27), 10186-10191.
[http://dx.doi.org/10.1073/pnas.0602439103] [PMID: 16798880]
[27]
Mantion, A.; Massüger, L.; Rabu, P.; Palivan, C.; McCusker, L.B.; Taubert, A. Metal-peptide frameworks (MPFs): “Bioinspired” metal organic frameworks. J. Am. Chem. Soc., 2008, 130(8), 2517-2526.
[http://dx.doi.org/10.1021/ja0762588] [PMID: 18247607]
[28]
Lin, J.B.; Zhang, J.P.; Chen, X.M. Nonclassical active site for enhanced gas sorption in porous coordination polymer. J. Am. Chem. Soc., 2010, 132(19), 6654-6656.
[http://dx.doi.org/10.1021/ja1009635] [PMID: 20420376]
[29]
Leite, J.; Rodrigues, D.; Ferreira, S.; Figueira, F.; Almeida Paz, F.A.; Gales, L. Mesoporous metal-organic frameworks as effective nucleating agents in protein crystallography. Cryst. Growth Des., 2019, 19(3), 1610-1615.
[http://dx.doi.org/10.1021/acs.cgd.8b01444]
[30]
Imaz, I.; Rubio-Martínez, M.; An, J.; Solé-Font, I.; Rosi, N.L.; Maspoch, D. Metal-biomolecule frameworks (MBioFs). Chem. Commun. (Camb.), 2011, 47(26), 7287-7302.
[http://dx.doi.org/10.1039/c1cc11202c] [PMID: 21503346]
[31]
Férey, G.; Mellot-Draznieks, C.; Serre, C.; Millange, F.; Dutour, J.; Surblé, S.; Margiolaki, I. A chromium terephthalate-based solid with unusually large pore volumes and surface area. Science, 2005, 309(5743), 2040-2042.
[http://dx.doi.org/10.1126/science.1116275] [PMID: 16179475]
[32]
Chui, S.S.Y.; Lo, M.F.S.; Charmant, J.P.H.; Orpen, A.G.; Williams, I.D. A chemically functionalise nano porous material [Cu3 (TMA)2 (H2O)3]n. Science, 1999, 283(5405), 1148-1150.
[http://dx.doi.org/10.1126/science.283.5405.1148] [PMID: 10024237]
[33]
Park, H.J.; Suh, M.P. Mixed-ligand metal-organic frameworks with large pores: Gas sorption properties and single-crystal-to-single-crystal transformation on guest exchange. Chemistry, 2008, 14(29), 8812-8821.
[http://dx.doi.org/10.1002/chem.200801064] [PMID: 18792044]
[34]
He, H.; Sun, Q.; Gao, W.; Perman, J.A.; Sun, F.; Zhu, G.; Aguila, B.; Forrest, K.; Space, B.; Ma, S. A stable metal-organic framework featuring a local buffer environment for carbon dioxide fixation. Angew. Chem. Int. Ed. Engl., 2018, 57(17), 4657-4662.
[http://dx.doi.org/10.1002/anie.201801122] [PMID: 29457972]
[35]
Humphrey, S.M.; Chang, J.S.; Jhung, S.H.; Yoon, J.W.; Wood, P.T. Porous cobalt(II)-organic frameworks with corrugated walls: Structurally robust gas-sorption materials. Angew. Chem. Int. Ed. Engl., 2007, 46(1-2), 272-275.
[http://dx.doi.org/10.1002/anie.200601627] [PMID: 17131449]
[36]
Winarta, J.; Shan, B.; Mcintyre, S.M.; Ye, L.; Wang, C.; Liu, J.; Mu, B. A decade of UiO-66 research: A historic review of dynamic structure, synthesis mechanisms, and characterization techniques of an archetypal metal-organic framework. Cryst. Growth Des., 2019, 20(2), 1347-1362.
[http://dx.doi.org/10.1021/acs.cgd.9b00955]
[37]
Ockwig, N.W.; Delgado-Friedrichs, O.; O’Keeffe, M.; Yaghi, O.M. Reticular chemistry: Occurrence and taxonomy of nets and grammar for the design of frameworks. Acc. Chem. Res., 2005, 38(3), 176-182.
[http://dx.doi.org/10.1021/ar020022l] [PMID: 15766236]
[38]
O’Keeffe, M.; Peskov, M.A.; Ramsden, S.J.; Yaghi, O.M. The Reticular Chemistry Structure Resource (RCSR) database of, and symbols for, crystal nets. Acc. Chem. Res., 2008, 41(12), 1782-1789.
[http://dx.doi.org/10.1021/ar800124u] [PMID: 18834152]
[39]
Deria, P.; Mondloch, J.E.; Karagiaridi, O.; Bury, W.; Hupp, J.T.; Farha, O.K. Beyond post-synthesis modification: Evolution of metal-organic frameworks via building block replacement. Chem. Soc. Rev., 2014, 43(16), 5896-5912.
[http://dx.doi.org/10.1039/C4CS00067F] [PMID: 24723093]
[40]
Pachfule, P.; Chen, Y.; Jiang, J.; Banerjee, R. Experimental and computational approach of understanding the gas adsorption in amino functionalized interpenetrated metal organic frameworks (MOFs). J. Mater. Chem., 2011, 21(44), 17737-17745.
[http://dx.doi.org/10.1039/c1jm13762j]
[41]
Reinsch, H.; Stock, N. Synthesis of MOFs: A personal view on rationalisation, application and exploration. Dalton Trans., 2017, 46(26), 8339-8349.
[http://dx.doi.org/10.1039/C7DT01115F] [PMID: 28608895]
[42]
Czaja, A.U.; Trukhan, N.; Müller, U. Industrial applications of metal-organic frameworks. Chem. Soc. Rev., 2009, 38(5), 1284-1293.
[http://dx.doi.org/10.1039/b804680h] [PMID: 19384438]
[43]
Cheetham, A.K.; Férey, G.; Loiseau, T. Open‐framework inorganic materials. Angew. Chem. Int. Ed. Engl., 1999, 38(22), 3268-3292.
[http://dx.doi.org/10.1002/(SICI)1521-3773(19991115)38:22<3268::AID-ANIE3268>3.0.CO;2-U] [PMID: 10602176]
[44]
Bucar, D.K.; Papaefstathiou, G.S.; Hamilton, T.D.; Chu, Q.L.; Georgiev, I.G.; MacGillivray, L.R. Template‐controlled reactivity in the organic solid state by principles of coordination‐driven self‐assembly. Eur. J. Inorg. Chem., 2007, 2007(29), 4559-4568.
[http://dx.doi.org/10.1002/ejic.200700442]
[45]
Parnham, E.R.; Morris, R.E. Ionothermal synthesis of zeolites, metal-organic frameworks, and inorganic-organic hybrids. Acc. Chem. Res., 2007, 40(10), 1005-1013.
[http://dx.doi.org/10.1021/ar700025k] [PMID: 17580979]
[46]
Dincă, M.; Long, J.R. Hydrogen storage in microporous metal-organic frameworks with exposed metal sites. Angew. Chem. Int. Ed. Engl., 2008, 47(36), 6766-6779.
[http://dx.doi.org/10.1002/anie.200801163] [PMID: 18688902]
[47]
Ni, Z.; Masel, R.I. Rapid production of metal-organic frameworks via microwave-assisted solvothermal synthesis. J. Am. Chem. Soc., 2006, 128(38), 12394-12395.
[http://dx.doi.org/10.1021/ja0635231] [PMID: 16984171]
[48]
Choi, J.S.; Son, W.J.; Kim, J.; Ahn, W.S. Metal-organic framework MOF-5 prepared by microwave heating: Factors to be considered. Microporous Mesoporous Mater., 2008, 116(1-3), 727-731.
[http://dx.doi.org/10.1016/j.micromeso.2008.04.033]
[49]
Pichon, A.; James, S.L. An array-based study of reactivity under solvent-free mechanochemical conditions-insights and trends. CrystEngComm, 2008, 10(12), 1839-1847.
[http://dx.doi.org/10.1039/b810857a]
[50]
Braga, D.; Giaffreda, S.L.; Grepioni, F.; Chierotti, M.R.; Gobetto, R.; Palladino, G.; Polito, M. Solvent effect in a “solvent free” reaction. CrystEngComm, 2007, 9(10), 879-881.
[http://dx.doi.org/10.1039/b711983f]
[51]
Liang, Y.; Yuan, W.G.; Zhang, S.F.; He, Z.; Xue, J.; Zhang, X.; Jing, L.H.; Qin, D.B. Hydrothermal synthesis and structural characterization of metal-organic frameworks based on new tetradentate ligands. Dalton Trans., 2016, 45(4), 1382-1390.
[http://dx.doi.org/10.1039/C5DT03658E] [PMID: 26674324]
[52]
Sun, Y.; Zhou, H.C. Recent progress in the synthesis of metal-organic frameworks. Sci. Technol. Adv. Mater., 2015, 16(5), 054202.
[http://dx.doi.org/10.1088/1468-6996/16/5/054202] [PMID: 27877831]
[53]
Clausen, H.F.; Poulsen, R.D.; Bond, A.D.; Chevallier, M.A.S.; Iversen, B.B. Solvothermal synthesis of new metal organic framework structures in the zinc-terephthalic acid-dimethyl formamide system. J. Solid State Chem., 2005, 178(11), 3342-3351.
[http://dx.doi.org/10.1016/j.jssc.2005.08.013]
[54]
Samal, M.; Panda, J.; Biswal, B.P.; Sahu, R. Kitchen grinder: A tool for the synthesis of metal-organic frameworks towards size selective dye adsorption. CrystEngComm, 2018, 20(18), 2486-2490.
[http://dx.doi.org/10.1039/C8CE00333E]
[55]
Yang, S.J.; Kim, T.; Lee, K.; Kim, Y.S.; Yoon, J.; Park, C.R. Solvent evaporation mediated preparation of hierarchically porous metal organic framework-derived carbon with controllable and accessible large-scale porosity. Carbon, 2014, 71, 294-302.
[http://dx.doi.org/10.1016/j.carbon.2014.01.056]
[56]
Mueller, U.; Schubert, M.; Teich, F.; Puetter, H.; Schierle-Arndt, K.; Pastre, J. Metal-organic frameworks - prospective industrial applications. ChemInform, 2006, 37(23), 23.
[http://dx.doi.org/10.1002/chin.200623294]
[57]
Son, W-J.; Kim, J.; Kim, J.; Ahn, W-S. Sonochemical synthesis of MOF-5. Chem. Commun. (Camb.), 2008, 47(47), 6336-6338.
[http://dx.doi.org/10.1039/b814740j] [PMID: 19048147]
[58]
Tranchemontagne, D.J.; Hunt, J.R.; Yaghi, O.M. Room temperature synthesis of metal-organic frameworks: MOF-5, MOF-74, MOF-177, MOF-199, and IRMOF-0. Tetrahedron, 2008, 64(36), 8553-8557.
[http://dx.doi.org/10.1016/j.tet.2008.06.036]
[59]
Schlesinger, M.; Schulze, S.; Hietschold, M.; Mehring, M. Evaluation of synthetic methods for microporous metal-organic frameworks exemplified by the competitive formation of [Cu2(btc)3(H2O)3] and. Microporous Mesoporous Mater., 2010, 132(1-2), 121-127.
[http://dx.doi.org/10.1016/j.micromeso.2010.02.008]
[60]
Qiu, L-G.; Li, Z-Q.; Wu, Y.; Wang, W.; Xu, T.; Jiang, X. Facile synthesis of nanocrystals of a microporous metal-organic framework by an ultrasonic method and selective sensing of organoamines. Chem. Commun. (Camb.), 2008, (31), 3642-3644.
[http://dx.doi.org/10.1039/b804126a] [PMID: 18665285]
[61]
Furukawa, H.; Cordova, K.E.; O’Keeffe, M.; Yaghi, O.M. The chemistry and applications of metal-organic frameworks. Science, 2013, 341(6149), 1230444.
[http://dx.doi.org/10.1126/science.1230444] [PMID: 23990564]
[62]
O’Keeffe, M.; Yaghi, O.M. Deconstructing the crystal structures of metal-organic frameworks and related materials into their underlying nets. Chem. Rev., 2012, 112(2), 675-702.
[http://dx.doi.org/10.1021/cr200205j] [PMID: 21916513]
[63]
Cairns, A.B.; Goodwin, A.L. Structural disorder in molecular framework materials. Chem. Soc. Rev., 2013, 42(12), 4881-4893.
[http://dx.doi.org/10.1039/c3cs35524a] [PMID: 23471316]
[64]
Ryoo, R.; Joo, S.H.; Jun, S. Synthesis of highly ordered carbon molecular sieves via template-mediated structural transformation. J. Phys. Chem. B, 1999, 103(37), 7743-7746.
[http://dx.doi.org/10.1021/jp991673a]
[65]
Brinker, C.J. Porous inorganic materials. Curr. Opin. Solid State Mater. Sci., 1996, 1(6), 798-805.
[http://dx.doi.org/10.1016/S1359-0286(96)80104-5]
[66]
Eddaoudi, M.; Moler, D.B.; Li, H.; Chen, B.; Reineke, T.M.; O’Keeffe, M.; Yaghi, O.M. Modular chemistry: Secondary building units as a basis for the design of highly porous and robust metal-organic carboxylate frameworks. Acc. Chem. Res., 2001, 34(4), 319-330.
[http://dx.doi.org/10.1021/ar000034b] [PMID: 11308306]
[67]
Qin, J-S.; Yuan, S.; Lollar, C.; Pang, J.; Alsalme, A.; Zhou, H-C. Stable metal-organic frameworks as a host platform for catalysis and biomimetics. Chem. Commun. (Camb.), 2018, 54(34), 4231-4249.
[http://dx.doi.org/10.1039/C7CC09173G] [PMID: 29637210]
[68]
Rimoldi, M.; Howarth, A.J.; DeStefano, M.R.; Lin, L.; Goswami, S.; Li, P.; Hupp, J.T.; Farha, O.K. Catalytic zirconium/hafnium-based metal-organic frameworks. ACS Catal., 2017, 7(2), 997-1014.
[http://dx.doi.org/10.1021/acscatal.6b02923]
[69]
Wu, C-D.; Zhao, M. Incorporation of molecular catalysts in metal-organic frameworks for highly efficient heterogeneous catalysis. Adv. Mater., 2017, 29(14), 1605446.
[http://dx.doi.org/10.1002/adma.201605446] [PMID: 28256748]
[70]
Liu, X.; Zhang, H.; Chang, F.; Huang, S.; Yang, K.; Yang, S. Catalytic transformations of organic compounds and biomass derivatives with functionalized metal-organic frameworks. Curr. Org. Chem., 2016, 20(7), 761-776.
[http://dx.doi.org/10.2174/1385272819666150716180023]
[71]
Dhakshinamoorthy, A.; Alvaro, M.; Garcia, H. Claisen-schmidt condensation catalyzed by metal‐organic frameworks. Adv. Synth. Catal., 2010, 352(4), 711-717.
[http://dx.doi.org/10.1002/adsc.200900747]
[72]
Zi, G.; Yan, Z.; Wang, Y.; Chen, Y.; Guo, Y.; Yuan, F.; Gao, W.; Wang, Y.; Wang, J. Catalytic hydrothermal conversion of carboxymethyl cellulose to value-added chemicals over metal-organic framework MIL-53(Al). Carbohydr. Polym., 2015, 115, 146-151.
[http://dx.doi.org/10.1016/j.carbpol.2014.08.065] [PMID: 25439879]
[73]
Mitchell, L.; Gonzalez-Santiago, B.; Mowat, J.P.S.; Gunn, M.E.; Williamson, P.; Acerbi, N.; Clarke, M.L.; Wright, P.A. Remarkable Lewis acid catalytic performance of the scandium trimesate metal organic framework MIL-100 (Sc) for C-C and C [double bond, length as m-dash] N bond-forming reactions. Catal. Sci. Technol., 2013, 3, 606-617.
[http://dx.doi.org/10.1039/C2CY20577G]
[74]
Timofeeva, M.N.; Panchenko, V.N.; Khan, N.A.; Hasan, Z.; Prosvirin, I.P.; Tsybulya, S.V.; Jhung, S.H. Isostructural metal-carboxylates MIL-100(M) and MIL-53(M) (M: V, Al, Fe and Cr) as catalysts for condensation of glycerol with acetone. Appl. Catal. Gen., 529, 2017, 167-174.
[http://dx.doi.org/10.1016/j.apcata.2016.11.006]
[75]
Jiang, H.; Wang, Q.; Wang, H.; Chen, Y.; Zhang, M. Temperature effect on the morphology and catalytic performance of Co-MOF-74 in low-temperature NH3-SCR process. Catal. Commun., 2016, 80, 24-27.
[http://dx.doi.org/10.1016/j.catcom.2016.03.013]
[76]
Zhu, M.; Srinivas, D.; Bhogeswararao, S.; Ratnasamy, P.; Carreon, M.A. Catalytic activity of ZIF-8 in the synthesis of styrene carbonate from CO2 and styrene oxide. Catal. Commun., 2013, 32, 36-40.
[http://dx.doi.org/10.1016/j.catcom.2012.12.003]
[77]
Proch, S.; Herrmannsdörfer, J.; Kempe, R.; Kern, C.; Jess, A.; Seyfarth, L.; Senker, J. Pt@MOF-177: Synthesis, room-temperature hydrogen storage and oxidation catalysis. Chemistry, 2008, 14(27), 8204-8212.
[http://dx.doi.org/10.1002/chem.200801043] [PMID: 18666269]
[78]
Pascanu, V.; Hansen, P.R.; Bermejo Gómez, A.; Ayats, C.; Platero-Prats, A.E.; Johansson, M.J.; Pericàs, M.A.; Martín-Matute, B. Highly functionalized biaryls via Suzuki-Miyaura cross-coupling catalyzed by Pd@MOF under batch and continuous flow regimes. ChemSusChem, 2015, 8(1), 123-130.
[http://dx.doi.org/10.1002/cssc.201402858] [PMID: 25421122]
[79]
Dhakshinamoorthy, A.; Asiri, A.M.; Garcia, H. Metal organic frameworks as versatile hosts of Au nanoparticles in heterogeneous catalysis. ACS Catal., 2017, 7(4), 2896-2919.
[http://dx.doi.org/10.1021/acscatal.6b03386]
[80]
Zhao, Y.; Zhang, J.; Song, J.; Li, J.; Liu, J.; Wu, T.; Zhang, P.; Han, B. Ru nanoparticles immobilized on metal-organic framework nanorods by supercritical CO2-methanol solution: Highly efficient catalyst. Green Chem., 2011, 13(8), 2078-2082.
[http://dx.doi.org/10.1039/c1gc15340d]
[81]
Calvino-Casilda, V.; Martin-Aranda, R.M. Advances in metal-organic frameworks for heterogeneous catalysis. Recent Pat. Chem. Eng., 2011, 4(1), 1-16.
[http://dx.doi.org/10.2174/2211334711104010001]
[82]
Oien, S.; Agostini, G.; Svelle, S.; Borfecchia, E.; Lomachenko, K.A.; Mino, L.; Gallo, E.; Bordiga, S.; Olsbye, U.; Lillerud, K.P.; Lamberti, C. Probing reactive platinum sites in UiO-67 zirconium metal-organic frameworks. Chem. Mater., 2015, 27(3), 1042-1056.
[http://dx.doi.org/10.1021/cm504362j]
[83]
Fujita, M.; Kwon, Y.J.; Washizu, S.; Ogura, K. Preparation, clathration ability, and catalysis of a two-dimensional square network material composed of cadmium (II) and 4, 4′-bipyridine. J. Am. Chem. Soc., 1994, 116(3), 1151-1152.
[http://dx.doi.org/10.1021/ja00082a055]
[84]
Henschel, A.; Gedrich, K.; Kraehnert, R.; Kaskel, S. Catalytic properties of MIL-101. Chem. Commun. (Camb.), 2008, 35(35), 4192-4194.
[http://dx.doi.org/10.1039/b718371b] [PMID: 18802526]
[85]
Ma, B.Q.; Mulfort, K.L.; Hupp, J.T. Microporous pillared paddle-wheel frameworks based on mixed-ligand coordination of zinc ions. Inorg. Chem., 2005, 44(14), 4912-4914.
[http://dx.doi.org/10.1021/ic050452i] [PMID: 15998017]
[86]
Han, J.W.; Hill, C.L. A coordination network that catalyzes O2-based oxidations. J. Am. Chem. Soc., 2007, 129(49), 15094-15095.
[http://dx.doi.org/10.1021/ja069319v] [PMID: 18020331]
[87]
Kang, Y-S.; Lu, Y.; Chen, K.; Zhao, Y.; Wang, P.; Sun, W-Y. Metal-organic frameworks with catalytic centers: From synthesis to catalytic application. Coord. Chem. Rev., 2019, 378, 262-280.
[http://dx.doi.org/10.1016/j.ccr.2018.02.009]
[88]
Gustafsson, M.; Bartoszewicz, A.; Martín-Matute, B.; Sun, J.; Grins, J.; Zhao, T.; Li, Z.; Zhu, G.; Zou, X. A family of highly stable lanthanide metal−organic frameworks: structural evolution and catalytic activity. Chem. Mater., 2010, 22(11), 3316-3322.
[http://dx.doi.org/10.1021/cm100503q]
[89]
Mo, K.; Yang, Y.; Cui, Y. A homochiral metal-organic framework as an effective asymmetric catalyst for cyanohydrin synthesis. J. Am. Chem. Soc., 2014, 136(5), 1746-1749.
[http://dx.doi.org/10.1021/ja411887c] [PMID: 24447241]
[90]
Du, X.; Li, Z.; Liu, Y.; Yang, S.; Cui, Y. Chiral porous metal-organic frameworks containing μ-oxo-bis[Ti(salan)] units for asymmetric cyanation of aldehydes. Dalton Trans., 2015, 44(29), 12999-13002.
[http://dx.doi.org/10.1039/C5DT01682G] [PMID: 26144531]
[91]
Echenique-Errandonea, E.; Pérez, J.M.; Rojas, S.; Cepeda, J.; Seco, J.M.; Fernández, I.; Rodríguez-Diéguez, A. A novel yttrium-based metal-organic framework for the efficient solvent-free catalytic synthesis of cyanohydrin silyl ethers. Dalton Trans., 2021, 50(34), 11720-11724.
[http://dx.doi.org/10.1039/D1DT01953H] [PMID: 34612309]
[92]
Luo, J.; Ying, L-F.; Zhang, F.; Zhou, Z.; Zhang, Y-G. Cu(II)-containing metal-organic framework with 1D hexagonal channels for cyanosilylation reaction and anticancer activity on osteosarcoma cells. ACS Omega, 2021, 6(8), 5856-5864.
[http://dx.doi.org/10.1021/acsomega.0c06270] [PMID: 33681624]
[93]
Seo, J.S.; Whang, D.; Lee, H.; Jun, S.I.; Oh, J.; Jeon, Y.J.; Kim, K. A homochiral metal-organic porous material for enantioselective separation and catalysis. Nature, 2000, 404(6781), 982-986.
[http://dx.doi.org/10.1038/35010088] [PMID: 10801124]
[94]
Chen, J.; Liu, R.; Gao, H.; Chen, L.; Ye, D. Amine-functionalized metal-organic frameworks for the transesterification of triglycerides. J. Mater. Chem. A Mater. Energy Sustain., 2014, 2(20), 7205-7213.
[http://dx.doi.org/10.1039/C4TA00253A]
[95]
Karmakar, A.; Guedes da Silva, M.F.C.; Pombeiro, A.J.L. Zinc metal-organic frameworks: Efficient catalysts for the diastereoselective Henry reaction and transesterification. Dalton Trans., 2014, 43(21), 7795-7810.
[http://dx.doi.org/10.1039/C4DT00219A] [PMID: 24715037]
[96]
Karmakar, A.; Rúbio, G.M.D.M.; Guedes da Silva, M.F.C.; Ribeiro, A.P.C.; Pombeiro, A.J.L. ZnII and CdII MOFs based on an amido isophthalic acid ligand: Synthesis, structure and catalytic application in transesterification. RSC Advances, 2016, 6(92), 89007-89018.
[http://dx.doi.org/10.1039/C6RA17518J]
[97]
Pangestu, T.; Kurniawan, Y.; Soetaredjo, F.E.; Santoso, S.P.; Irawaty, W.; Yuliana, M.; Hartono, S.B.; Ismadji, S. The synthesis of biodiesel using copper based metal-organic framework as a catalyst. J. Environ. Chem. Eng., 2019, 7(4), 103277.
[http://dx.doi.org/10.1016/j.jece.2019.103277]
[98]
Dhakshinamoorthy, A.; Alvaro, M.; Garcia, H. Claisen-schmidt condensation catalyzed by metal-organic frameworks. Adv. Synth. Catal., 2010, 352(4), 711-717.
[http://dx.doi.org/10.1002/adsc.200900747]
[99]
Maity, T.; Saha, D.; Das, S.; Koner, S. Barium carboxylate metal-organic framework - synthesis, x-ray crystal structure, photoluminescence and catalytic study. Eur. J. Inorg. Chem., 2012, 30(30), 4914-4920.
[http://dx.doi.org/10.1002/ejic.201200417]
[100]
Saha, D.; Maity, T.; Sen, R.; Koner, S. Heterogeneous catalysis over a barium carboxylate framework compound: Synthesis, X-ray crystal structure and aldol condensation reaction. Polyhedron, 2012, 43(1), 63-70.
[http://dx.doi.org/10.1016/j.poly.2012.05.043]
[101]
Saha, D.; Maity, T.; Das, S.; Koner, S. A magnesium-based multifunctional metal-organic framework: Synthesis, thermally induced structural variation, selective gas adsorption, photoluminescence and heterogeneous catalytic study. Dalton Trans., 2013, 42(38), 13912-13922.
[http://dx.doi.org/10.1039/c3dt51509e] [PMID: 23925708]
[102]
Zhang, G.; Yashima, E.; Woggon, W.D. Versatile supramolecular copper(ii) complexes for henry and aza-henry reactions. Adv. Synth. Catal., 2009, 351(9), 1255-1262.
[http://dx.doi.org/10.1002/adsc.200900069]
[103]
Cirujano, F.G.; Luque, R.; Dhakshinamoorthy, A. Metal-organic frameworks as versatile heterogeneous solid catalysts for henry reactions. Molecules, 2021, 26(5), 1445.
[http://dx.doi.org/10.3390/molecules26051445] [PMID: 33800017]
[104]
Panchenko, V.N.; Matrosova, M.M.; Jeon, J.; Jun, J.W.; Timofeeva, M.N.; Jhung, S.H. Catalytic behavior of metal-organic frameworks in the Knoevenagel condensation reaction. J. Catal., 2014, 316, 251-259.
[http://dx.doi.org/10.1016/j.jcat.2014.05.018]
[105]
Dhakshinamoorthy, A.; Heidenreich, N.; Lenzen, D.; Stock, N. Knoevenagel condensation reaction catalysed by Al-MOFs with CAU-1 and CAU-10-type structures. CrystEngComm, 2017, 19(29), 4187-4193.
[http://dx.doi.org/10.1039/C6CE02664H]
[106]
Neogi, S.; Sharma, M.K.; Bharadwaj, P.K. Knoevenagel condensation and cyanosilylation reactions catalyzed by a MOF containing coordinatively unsaturated Zn (II) centers. J. Mol. Catal. Chem., 2009, 299(1-2), 1-4.
[http://dx.doi.org/10.1016/j.molcata.2008.10.008]
[107]
Pariyar, A.; Yaghoobnejad Asl, H.; Choudhury, A. Tetragonal versus hexagonal: structure-dependent catalytic activity of co/zn bimetallic metal-organic frameworks. Inorg. Chem., 2016, 55(18), 9250-9257.
[http://dx.doi.org/10.1021/acs.inorgchem.6b01288] [PMID: 27583793]
[108]
Saha, D.; Hazra, D.K.; Maity, T.; Koner, S. Heterometallic metal-organic frameworks that catalyze two different reactions sequentially. Inorg. Chem., 2016, 55(12), 5729-5731.
[http://dx.doi.org/10.1021/acs.inorgchem.6b00292] [PMID: 27232433]
[109]
Zhao, H.; Yi, B.; Si, X.; Cao, L.; Su, L.; Wang, Y.; Chou, L-Y.; Xie, J. Solid-state synthesis of defect-rich Zr-UiO-66 Metal-organic framework nanoparticles for the catalytic ring opening of epoxides with alcohols. ACS Appl. Nano Mater., 2021, 4(9), 9752-9759.
[http://dx.doi.org/10.1021/acsanm.1c02156]
[110]
Dhakshinamoorthy, A.; Alvaro, M.; Garcia, H. Metal-organic frameworks as efficient heterogeneous catalysts for the regioselective ring opening of epoxides. Chemistry, 2010, 16(28), 8530-8536.
[http://dx.doi.org/10.1002/chem.201000588] [PMID: 20549723]
[111]
Shimizu, K.; Niimi, K.; Satsuma, A. Polyvalent-metal salts of heteropolyacid as catalyst for Friedel-Crafts alkylation reactions. Appl. Catal. A Gen., 2008, 349(1-2), 1-5.
[http://dx.doi.org/10.1016/j.apcata.2008.03.042]
[112]
Corma, A.; García, H.; Llabrés i Xamena, F.X. Engineering metal organic frameworks for heterogeneous catalysis. Chem. Rev., 2010, 110(8), 4606-4655.
[http://dx.doi.org/10.1021/cr9003924] [PMID: 20359232]
[113]
Leo, P.; Martínez, F.; Calleja, G.; Briones, D.; Wojtas, L.; Orcajo, G.D, L. Wojtas and G. Orcajo. New URJC-1 material with remarkable stability and acid-base catalytic properties. Polymers (Basel), 2016, 8(2), 44.
[http://dx.doi.org/10.3390/polym8020044]
[114]
Chung, Y-M.; Kim, H-Y.; Ahn, W-S. Friedel-crafts acylation of p-xylene over sulfonated zirconium terephthalates. Catal. Lett., 2014, 144(5), 817-824.
[http://dx.doi.org/10.1007/s10562-014-1242-4]
[115]
Nagarjun, N.; Concepcion, P.; Dhakshinamoorthy, A. Influence of oxophilic behavior of UiO‐66(Ce) metal-organic framework with superior catalytic performance in friedel‐crafts alkylation reaction. Appl. Organomet. Chem., 2020, 34(5), 34.
[http://dx.doi.org/10.1002/aoc.5578]
[116]
Wang, C.; Xie, Z.; deKrafft, K.E.; Lin, W. Doping metal-organic frameworks for water oxidation, carbon dioxide reduction, and organic photocatalysis. J. Am. Chem. Soc., 2011, 133(34), 13445-13454.
[http://dx.doi.org/10.1021/ja203564w] [PMID: 21780787]
[117]
Fu, Y.; Sun, D.; Chen, Y.; Huang, R.; Ding, Z.; Fu, X.; Li, Z. An amine-functionalized titanium metal-organic framework photocatalyst with visible-light-induced activity for CO2 reduction. Angew. Chem. Int. Ed. Engl., 2012, 51(14), 3364-3367.
[http://dx.doi.org/10.1002/anie.201108357] [PMID: 22359408]
[118]
Lee, Y.; Kim, S.; Kang, J.K.; Cohen, S.M. Photocatalytic CO2 reduction by a mixed metal (Zr/Ti), mixed ligand metal-organic framework under visible light irradiation. Chem. Commun. (Camb.), 2015, 51(26), 5735-5738.
[http://dx.doi.org/10.1039/C5CC00686D] [PMID: 25719864]
[119]
Wang, S.; Yao, W.; Lin, J.; Ding, Z.; Wang, X. Cobalt imidazolate metal-organic frameworks photosplit CO(2) under mild reaction conditions. Angew. Chem. Int. Ed. Engl., 2014, 53(4), 1034-1038.
[http://dx.doi.org/10.1002/anie.201309426] [PMID: 24339134]
[120]
Fei, H.; Sampson, M.D.; Lee, Y.; Kubiak, C.P.; Cohen, S.M. Photocatalytic CO2 reduction to formate using a Mn(I) molecular catalyst in a robust metal-organic framework. Inorg. Chem., 2015, 54(14), 6821-6828.
[http://dx.doi.org/10.1021/acs.inorgchem.5b00752] [PMID: 26135673]
[121]
Perles, J.; Iglesias, M.; Martín-Luengo, M-A.; Monge, C.; Ruiz-Valero, C.; Snejko, N. Ruiz-Valero, N. Snejko. Metal-organic scandium framework: useful material for hydrogen storage and catalysis. Chem. Mater., 2005, 17(23), 5837-5842.
[http://dx.doi.org/10.1021/cm051362e]
[122]
Wei, L-Q.; Ye, B-H. Cyclometalated Ir-Zr metal-organic frameworks as recyclable visible-light photocatalysts for sulfide oxidation into sulfoxide in water. ACS Appl. Mater. Interfaces, 2019, 11(44), 41448-41457.
[http://dx.doi.org/10.1021/acsami.9b15646] [PMID: 31604013]
[123]
Dhakshinamoorthy, A.; Alvaro, M.; Hwang, Y.K.; Seo, Y-K.; Corma, A.; Garcia, H. Intracrystalline diffusion in metal organic framework during heterogeneous catalysis: Influence of particle size on the activity of MIL-100 (Fe) for oxidation reactions. Dalton Trans., 2011, 40(40), 10719-10724.
[http://dx.doi.org/10.1039/c1dt10826c] [PMID: 21879084]
[124]
Rasero-Almansa, A.M.; Iglesias, M.; Sánchez, F. Synthesis of bimetallic Zr(Ti)-naphthalene dicarboxylate MOFs and their properties as Lewis acid catalysis. RSC Advances, 2016, 6(108), 106790-106797.
[http://dx.doi.org/10.1039/C6RA23143H]
[125]
Kong, G-Q.; Ou, S.; Zou, C.; Wu, C.D. Assembly and post-modification of a metal-organic nanotube for highly efficient catalysis. J. Am. Chem. Soc., 2012, 134(48), 19851-19857.
[http://dx.doi.org/10.1021/ja309158a] [PMID: 23163641]
[126]
Genna, D.T.; Wong-Foy, A.G.; Matzger, A.J.; Sanford, M.S. Heterogenization of homogeneous catalysts in metal-organic frameworks via cation exchange. J. Am. Chem. Soc., 2013, 135(29), 10586-10589.
[http://dx.doi.org/10.1021/ja402577s] [PMID: 23837970]
[127]
Hu, F.; Wang, Y.; Xu, S.; Zhang, Z.; Chen, Y.; Fan, J.; Yuan, H.; Gao, L.; Xiao, G. Efficient and selective Ni/Al 2 O 3-C catalyst derived from metal-organic frameworks for the hydrogenation of Furfural to Furfuryl alcohol. Catal. Lett., 2019, 149, 1-11.
[128]
Cao, W.; Lin, L.; Qi, H.; He, Q.; Wu, Z.; Wang, A.; Luo, W.; Zhang, T. In-situ synthesis of single-atom Ir by utilizing metal-organic frameworks: An acid-resistant catalyst for hydrogenation of levulinic acid to γ-valerolactone. J. Catal., 2019, 373, 161-172.
[http://dx.doi.org/10.1016/j.jcat.2019.03.035]
[129]
Chen, L.; Chen, H.; Li, Y. One-pot synthesis of Pd@MOF composites without the addition of stabilizing agents. Chem. Commun. (Camb.), 2014, 50(94), 14752-14755.
[http://dx.doi.org/10.1039/C4CC06568A] [PMID: 25318046]
[130]
Chen, H.; Wang, L.; Yang, J.; Yang, R.T. Investigation on hydrogenation of metal-organic frameworks HKUST-1, MIL-53, and ZIF-8 by hydrogen spillover. J. Phys. Chem. C, 2013, 117(15), 7565-7576.
[http://dx.doi.org/10.1021/jp401367k]
[131]
Ertas, I.E.; Gulcan, M.; Bulut, A.; Yurderi, M.; Zahmakiran, M. Metal-organic framework (MIL-101) stabilized ruthenium nanoparticles: Highly efficient catalytic material in the phenol hydrogenation. Microporous Mesoporous Mater., 2016, 226, 94-103.
[http://dx.doi.org/10.1016/j.micromeso.2015.12.048]
[132]
Guo, Z.; Xiao, C.; Maligal-Ganesh, R.V.; Zhou, L.; Goh, T.W.; Li, X.; Tesfagaber, D.; Thiel, A.; Huang, W. Pt nanoclusters confined within metal-organic framework cavities for chemoselective cinnamaldehyde hydrogenation. ACS Catal., 2014, 4(5), 1340-1348.
[http://dx.doi.org/10.1021/cs400982n]
[133]
Ji, P.; Manna, K.; Lin, Z.; Feng, X.; Urban, A.; Song, Y.; Lin, W. Single-site cobalt catalysts at new Zr12(μ3-O)8(μ3-OH)8(μ2-OH)6 metal-organic framework nodes for highly active hydrogenation of nitroarenes, nitriles, and isocyanides. J. Am. Chem. Soc., 2017, 139(20), 7004-7011.
[http://dx.doi.org/10.1021/jacs.7b02394] [PMID: 28478673]
[134]
Liu, H.; Chang, L.; Chen, L.; Li, Y. Nanocomposites of platinum/metal-organic frameworks coated with metal-organic frameworks with remarkably enhanced chemoselectivity for cinnamaldehyde hydrogenation. ChemCatChem, 2016, 8(5), 946-951.
[http://dx.doi.org/10.1002/cctc.201501256]
[135]
Manna, K.; Zhang, T.; Carboni, M.; Abney, C.W.; Lin, W. Salicylaldimine-based metal-organic framework enabling highly active olefin hydrogenation with iron and cobalt catalysts. J. Am. Chem. Soc., 2014, 136(38), 13182-13185.
[http://dx.doi.org/10.1021/ja507947d] [PMID: 25187995]
[136]
Rungtaweevoranit, B.; Baek, J.; Araujo, J.R.; Archanjo, B.S.; Choi, K.M.; Yaghi, O.M.; Somorjai, G.A. Copper nanocrystals encapsulated in Zr-based metal-organic frameworks for highly selective CO2 hydrogenation to methanol. Nano Lett., 2016, 16(12), 7645-7649.
[http://dx.doi.org/10.1021/acs.nanolett.6b03637] [PMID: 27960445]
[137]
Thacker, N.C.; Lin, Z.; Zhang, T.; Gilhula, J.C.; Abney, C.W.; Lin, W. Robust and porous β-diketiminate-functionalized metal-organic frameworks for earth-abundant-metal-catalyzed C-H amination and hydrogenation. J. Am. Chem. Soc., 2016, 138(10), 3501-3509.
[http://dx.doi.org/10.1021/jacs.5b13394] [PMID: 26885768]
[138]
Wan, Ye.; Chen, C.; Xiao, W.; Jian, L.; Zhang, N. Ni/MIL-120: An efficient metal-organic framework catalyst for hydrogenation of benzene to cyclohexane. Microporous Mesoporous Mater., 2013, 171, 9-13.
[http://dx.doi.org/10.1016/j.micromeso.2013.01.005]
[139]
Wang, X.; Chen, W.; Zhang, L.; Yao, T.; Liu, W.; Lin, Y.; Ju, H.; Dong, J.; Zheng, L.; Yan, W.; Zheng, X.; Li, Z.; Wang, X.; Yang, J.; He, D.; Wang, Y.; Deng, Z.; Wu, Y.; Li, Y. Uncoordinated amine groups of metal-organic frameworks to anchor single Ru sites as chemoselective catalysts toward the hydrogenation of quinoline. J. Am. Chem. Soc., 2017, 139(28), 9419-9422.
[http://dx.doi.org/10.1021/jacs.7b01686] [PMID: 28661130]
[140]
Li, Y.; Zhou, Y-X.; Ma, X.; Jiang, H-L. A metal-organic framework-templated synthesis of γ-Fe2O3 nanoparticles encapsulated in porous carbon for efficient and chemoselective hydrogenation of nitro compounds. Chem. Commun. (Camb.), 2016, 52(22), 4199-4202.
[http://dx.doi.org/10.1039/C6CC00011H] [PMID: 26908070]
[141]
Zhao, M.; Yuan, K.; Wang, Y.; Li, G.; Guo, J.; Gu, L.; Hu, W.; Zhao, H.; Tang, Z. Metal-organic frameworks as selectivity regulators for hydrogenation reactions. Nature, 2016, 539(7627), 76-80.
[http://dx.doi.org/10.1038/nature19763] [PMID: 27706142]
[142]
Panda, J. Synthesis of metal organic frameworks for adsorption catalysis and drug delivery applications; PhD Thesis, Shodhganga, INFLIBNET Centre, KIIT University: India, 2019. Available from: http://hdl.handle.net/10603/287315

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy