Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Review Article

Carbon-based Nanomaterials: Carbon Nanotubes, Graphene, and Fullerenes for the Control of Burn Infections and Wound Healing

Author(s): Mohammad Akhlaquer Rahman*, Harshita Abul Barkat, Ranjit K. Harwansh and Rohitas Deshmukh

Volume 23, Issue 12, 2022

Published on: 29 April, 2022

Page: [1483 - 1496] Pages: 14

DOI: 10.2174/1389201023666220309152340

Price: $65

Abstract

Burn injuries are extremely debilitating, resulting in high morbidity and mortality rates around the world. The risk of infection escalates in correlation with impairment of skin integrity, creating a barrier to healing and possibly leading to sepsis. With its numerous advantages over traditional treatment methods, nanomaterial-based wound healing has an immense capability of treating and preventing wound infections. Carbon-based nanomaterials (CNMs), owing to their distinctive physicochemical and biological properties, have emerged as promising platforms for biomedical applications. Carbon nanotubes, graphene, fullerenes, and their nanocomposites have demonstrated broad antimicrobial activity against invasive bacteria, fungi, and viruses causing burn wound infection. The specific mechanisms that govern the antimicrobial activity of CNMs must be understood in order to ensure the safe and effective incorporation of these structures into biomaterials. However, it is challenging to decouple individual and synergistic contributions of the physical, chemical, and electrical effects of CNMs on cells. This review reported significant advances in the application of CNMs in burn wound infection and wound healing, with a brief discussion on the interaction between different families of CNMs and microorganisms to assess antimicrobial performance.

Keywords: Burn wound, infection, healing, antimicrobial activity, carbon nanomaterials, nanotubes, graphene, fullerenes, nanocomposites.

Graphical Abstract

[1]
Jahromi, M.A.M.; Zangabad, P.S.; Basri, S.M.M.; Zangabad, K.S.; Ghamarypour, A.; Aref, A.R.; Karimi, M.; Hamblin, M.R. Nanomedicine and advanced technologies for burns: Preventing infection and facilitating wound healing. Adv. Drug Deliv. Rev., 2018, 123, 33-64.
[http://dx.doi.org/10.1016/j.addr.2017.08.001] [PMID: 28782570]
[2]
Douglas, H.E.; Dunne, J.A.; Rawlins, J.M. Management of burns. Surgery, 2017, 35(9), 511-518.
[http://dx.doi.org/10.1016/j.mpsur.2017.06.007]
[3]
Sanchez, D.A.; Schairer, D.; Tuckman-Vernon, C.; Chouake, J.; Kutner, A.; Makdisi, J.; Friedman, J.M.; Nosanchuk, J.D.; Friedman, A.J. Amphotericin B releasing nanoparticle topical treatment of Candida spp. in the setting of a burn wound. Nanomedicine, 2014, 10(1), 269-277.
[http://dx.doi.org/10.1016/j.nano.2013.06.002] [PMID: 23770066]
[4]
World Health Organization. Burns-Key Facts., Available from: https://www.who.int/news-room/factsheets/detail/burns
[5]
Santos, J.V.; Viana, J.; Amarante, J.; Freitas, A. Paediatric burn unit in Portugal: Beds needed using a bed-day approach. Burns, 2017, 43(2), 403-410.
[http://dx.doi.org/10.1016/j.burns.2016.08.014] [PMID: 27644139]
[6]
Tiwari, V.K. Burn wound: How it differs from other wounds? Indian J. Plast. Surg., 2012, 45(2), 364-373.
[http://dx.doi.org/10.4103/0970-0358.101319] [PMID: 23162236]
[7]
Rajendran, N.K.; Kumar, S.S.D.; Houreld, N.N.; Abrahamse, H. A review on nanoparticle based treatment for wound healing. J. Drug Deliv. Sci. Technol., 2018, 44, 421-430.
[http://dx.doi.org/10.1016/j.jddst.2018.01.009]
[8]
Debone, H.S.; Lopes, P.S.; Severino, P.; Yoshida, C.M.P.; Souto, E.B.; da Silva, C.F. Chitosan/Copaiba oleoresin films for would dressing application. Int. J. Pharm., 2019, 555, 146-152.
[http://dx.doi.org/10.1016/j.ijpharm.2018.11.054] [PMID: 30468843]
[9]
Souto, E.B.; Ribeiro, A.F.; Ferreira, M.I.; Teixeira, M.C.; Shimojo, A.A.M.; Soriano, J.L.; Naveros, B.C.; Durazzo, A.; Lucarini, M.; Souto, S.B.; Santini, A.; Santini, A. New nanotechnologies for the treatment and repair of skin burns infections. Int. J. Mol. Sci., 2020, 21(2), 393.
[http://dx.doi.org/10.3390/ijms21020393] [PMID: 31936277]
[10]
Guo, S.; Dipietro, L.A. Factors affecting wound healing. J. Dent. Res., 2010, 89(3), 219-229.
[http://dx.doi.org/10.1177/0022034509359125] [PMID: 20139336]
[11]
Novelli, S.; García-Muret, P.; Mozos, A.; Sierra, J.; Briones, J. Total body-surface area as a new prognostic variable in mycosis fungoides and Sézary syndrome. Leuk. Lymphoma, 2016, 57(5), 1060-1066.
[http://dx.doi.org/10.3109/10428194.2015.1057894] [PMID: 27096891]
[12]
Malic, C.C.; Karoo, R.O.; Austin, O.; Phipps, A. Resuscitation burn card--a useful tool for burn injury assessment. Burns, 2007, 33(2), 195-199.
[http://dx.doi.org/10.1016/j.burns.2006.07.019] [PMID: 17222978]
[13]
Sharma, B.R. Infection in patients with severe burns: Causes and prevention thereof. Infect. Dis. Clin. North Am., 2007, 21(3), 745-759.
[http://dx.doi.org/10.1016/j.idc.2007.06.003] [PMID: 17826621]
[14]
Barret, J.P.; Herndon, D.N. Effects of burn wound excision on bacterial colonization and invasion. Plast. Reconstr. Surg., 2003, 111(2), 744-750.
[http://dx.doi.org/10.1097/01.PRS.0000041445.76730.23] [PMID: 12560695]
[15]
Church, D.; Elsayed, S.; Reid, O.; Winston, B.; Lindsay, R. Burn wound infections. Clin. Microbiol. Rev., 2006, 19(2), 403-434.
[http://dx.doi.org/10.1128/CMR.19.2.403-434.2006] [PMID: 16614255]
[16]
Manson, W.L.; Coenen, J.M.; Klasen, H.J.; Horwitz, E.H. Intestinal bacterial translocation in experimentally burned mice with wounds colonized by Pseudomonas aeruginosa. J. Trauma, 1992, 33(5), 654-658.
[http://dx.doi.org/10.1097/00005373-199211000-00009] [PMID: 1464911]
[17]
Desai, M.H.; Herndon, D.N. Eradication of Candida burn wound septicemia in massively burned patients. J. Trauma, 1988, 28(2), 140-145.
[http://dx.doi.org/10.1097/00005373-198802000-00002] [PMID: 3279219]
[18]
Lesseva, M.; Girgitzova, B.P.; Bojadjiev, C. β-haemolytic streptococcal infections in burned patients. Burns, 1994, 20(5), 422-425.
[http://dx.doi.org/10.1016/0305-4179(94)90034-5] [PMID: 7999270]
[19]
Phillips, L.G.; Heggers, J.P.; Robson, M.C.; Boertman, J.A.; Meltzer, T.; Smith, D.J., Jr The effect of endogenous skin bacteria on burn wound infection. Ann. Plast. Surg., 1989, 23(1), 35-38.
[http://dx.doi.org/10.1097/00000637-198907000-00007] [PMID: 2764460]
[20]
Altoparlak, U.; Erol, S.; Akcay, M.N.; Celebi, F.; Kadanali, A. The time-related changes of antimicrobial resistance patterns and predominant bacterial profiles of burn wounds and body flora of burned patients. Burns, 2004, 30(7), 660-664.
[http://dx.doi.org/10.1016/j.burns.2004.03.005] [PMID: 15475138]
[21]
Heggers, J.P.; McCoy, L.; Reisner, B.; Smith, M.; Edgar, P.; Ramirez, R.J. Alternate antimicrobial therapy for vancomycin-resistant Enterococci burn wound infections. J. Burn Care Rehabil., 1998, 19(5), 399-403.
[http://dx.doi.org/10.1097/00004630-199809000-00007] [PMID: 9789173]
[22]
Shankowsky, H.A.; Callioux, L.S.; Tredget, E.E. North American survey of hydrotherapy in modern burn care. J. Burn Care Rehabil., 1994, 15(2), 143-146.
[http://dx.doi.org/10.1097/00004630-199403000-00007] [PMID: 8195254]
[23]
Frame, J.D.; Kangesu, L.; Malik, W.M. Changing flora in burn and trauma units: Experience in the United Kingdom. J. Burn Care Rehabil., 1992, 13(2 Pt 2), 281-286.
[http://dx.doi.org/10.1097/00004630-199203000-00021] [PMID: 1577840]
[24]
Revathi, G.; Puri, J.; Jain, B.K. Bacteriology of burns. Burns, 1998, 24(4), 347-349.
[http://dx.doi.org/10.1016/S0305-4179(98)00009-6] [PMID: 9688200]
[25]
Baddley, J.W.; Moser, S.A. Emerging fungal resistance. Clin. Lab. Med., 2004, 24(3), 721-735.
[http://dx.doi.org/10.1016/j.cll.2004.05.003] [PMID: 15325062]
[26]
Kuhn, D.M.; Ghannoum, M.A. Candida biofilms: Antifungal resistance and emerging therapeutic options. Curr. Opin. Investig. Drugs, 2004, 5(2), 186-197.
[PMID: 15043393]
[27]
Han, G.; Ceilley, R. Chronic wound healing: A review of current management and treatments. Adv. Ther., 2017, 34(3), 599-610.
[http://dx.doi.org/10.1007/s12325-017-0478-y] [PMID: 28108895]
[28]
Gurtner, G.C.; Werner, S.; Barrandon, Y.; Longaker, M.T. Wound repair and regeneration. Nature, 2008, 453(7193), 314-321.
[http://dx.doi.org/10.1038/nature07039] [PMID: 18480812]
[29]
Strbo, N.; Yin, N.; Stojadinovic, O. Innate and adaptive immune responses in wound epithelialization. Adv. Wound Care (New Rochelle), 2014, 3(7), 492-501.
[http://dx.doi.org/10.1089/wound.2012.0435] [PMID: 25032069]
[30]
Li, J.; Chen, J.; Kirsner, R. Pathophysiology of acute wound healing. Clin. Dermatol., 2007, 25(1), 9-18.
[http://dx.doi.org/10.1016/j.clindermatol.2006.09.007] [PMID: 17276196]
[31]
Pastar, I.; Stojadinovic, O.; Yin, N.C.; Ramirez, H.; Nusbaum, A.G.; Sawaya, A.; Patel, S.B.; Khalid, L.; Isseroff, R.R.; Tomic-Canic, M. Epithelialization in wound healing: A comprehensive review. Adv. Wound Care (New Rochelle), 2014, 3(7), 445-464.
[http://dx.doi.org/10.1089/wound.2013.0473] [PMID: 25032064]
[32]
Tonnesen, M.G.; Feng, X.; Clark, R.A. Angiogenesis in wound healing. J. Investig. Dermatol. Symp. Proc., 2000, 5(1), 40-46.
[33]
Demidova-Rice, T.N.; Hamblin, M.R.; Herman, I.M. Acute and impaired wound healing: pathophysiology and current methods for drug delivery, part 2: role of growth factors in normal and pathological wound healing: Therapeutic potential and methods of delivery. Adv. Skin Wound Care, 2012, 25(8), 349-370.
[http://dx.doi.org/10.1097/01.ASW.0000418541.31366.a3] [PMID: 22820962]
[34]
Hinz, B. Formation and function of the myofibroblast during tissue repair. J. Invest. Dermatol., 2007, 127(3), 526-537.
[http://dx.doi.org/10.1038/sj.jid.5700613] [PMID: 17299435]
[35]
Karimi, M.; Zare, H.; Bakhshian Nik, A.; Yazdani, N.; Hamrang, M.; Mohamed, E.; Sahandi Zangabad, P.; Moosavi Basri, S.M.; Bakhtiari, L.; Hamblin, M.R. Nanotechnology in diagnosis and treatment of coronary artery disease. Nanomedicine (Lond.), 2016, 11(5), 513-530.
[http://dx.doi.org/10.2217/nnm.16.3] [PMID: 26906471]
[36]
Karimi, M.; Bahrami, S.; Ravari, S.B.; Zangabad, P.S.; Mirshekari, H.; Bozorgomid, M.; Shahreza, S.; Sori, M.; Hamblin, M.R. Albumin nanostructures as advanced drug delivery systems. Expert Opin. Drug Deliv., 2016, 13(11), 1609-1623.
[http://dx.doi.org/10.1080/17425247.2016.1193149] [PMID: 27216915]
[37]
Jia, F.; Liu, X.; Li, L.; Mallapragada, S.; Narasimhan, B.; Wang, Q. Multifunctional nanoparticles for targeted delivery of immune activating and cancer therapeutic agents. J. Control. Release, 2013, 172(3), 1020-1034.
[http://dx.doi.org/10.1016/j.jconrel.2013.10.012] [PMID: 24140748]
[38]
Tocco, I.; Zavan, B.; Bassetto, F.; Vindigni, V. Nanotechnology-based therapies for skin wound regeneration. J. Nanomater., 2012, 2012, Article ID 714134.
[http://dx.doi.org/10.1155/2012/714134]
[39]
Smith, D.M.; Simon, J.K.; Baker, J.R., Jr Applications of nanotechnology for immunology. Nat. Rev. Immunol., 2013, 13(8), 592-605.
[http://dx.doi.org/10.1038/nri3488] [PMID: 23883969]
[40]
Yah, C.S.; Simate, G.S. Nanoparticles as potential new generation broad spectrum antimicrobial agents. Daru, 2015, 23(1), 43.
[http://dx.doi.org/10.1186/s40199-015-0125-6] [PMID: 26329777]
[41]
Naskar, A.; Kim, K.S. Recent advances in nanomaterial-based wound-healing therapeutics. Pharmaceutics, 2020, 12(6), 499.
[http://dx.doi.org/10.3390/pharmaceutics12060499] [PMID: 32486142]
[42]
Mugabe, C.; Azghani, A.O.; Omri, A. Liposome-mediated gentamicin delivery: Development and activity against resistant strains of Pseudomonas aeruginosa isolated from cystic fibrosis patients. J. Antimicrob. Chemother., 2005, 55(2), 269-271.
[http://dx.doi.org/10.1093/jac/dkh518] [PMID: 15590716]
[43]
Mao, C.; Xiang, Y.; Liu, X.; Cui, Z.; Yang, X.; Li, Z.; Zhu, S.; Zheng, Y.; Yeung, K.W.K.; Wu, S. Repeatable photodynamic therapy with triggered signaling pathways of fibroblast cell proliferation and differentiation to promote bacteria-accompanied wound healing. ACS Nano, 2018, 12(2), 1747-1759.
[http://dx.doi.org/10.1021/acsnano.7b08500] [PMID: 29376340]
[44]
Chereddy, K.K.; Vandermeulen, G.; Préat, V. PLGA based drug delivery systems: Promising carriers for wound healing activity. Wound Repair Regen., 2016, 24(2), 223-236.
[http://dx.doi.org/10.1111/wrr.12404] [PMID: 26749322]
[45]
Nurhasni, H.; Cao, J.; Choi, M.; Kim, I.; Lee, B.L.; Jung, Y.; Yoo, J-W. Nitric oxide-releasing poly(lactic-co-glycolic acid)-polyethylenimine nanoparticles for prolonged nitric oxide release, antibacterial efficacy, and in vivo wound healing activity. Int. J. Nanomedicine, 2015, 10, 3065-3080.
[PMID: 25960648]
[46]
Shahverdi, S.; Hajimiri, M.; Esfandiari, M.A.; Larijani, B.; Atyabi, F.; Rajabiani, A.; Dehpour, A.R.; Gharehaghaji, A.A.; Dinarvand, R. Fabrication and structure analysis of poly(lactide-co-glycolic acid)/silk fibroin hybrid scaffold for wound dressing applications. Int. J. Pharm., 2014, 473(1-2), 345-355.
[http://dx.doi.org/10.1016/j.ijpharm.2014.07.021] [PMID: 25051110]
[47]
Dellera, E.; Bonferoni, M.C.; Sandri, G.; Rossi, S.; Ferrari, F.; Del Fante, C.; Perotti, C.; Grisoli, P.; Caramella, C. Development of chitosan oleate ionic micelles loaded with silver sulfadiazine to be associated with platelet lysate for application in wound healing. Eur. J. Pharm. Biopharm., 2014, 88(3), 643-650.
[http://dx.doi.org/10.1016/j.ejpb.2014.07.015] [PMID: 25128852]
[48]
Kazemi, M.; Mohammadifar, M.; Aghadavoud, E.; Vakili, Z.; Aarabi, M.H.; Talaei, S.A. Deep skin wound healing potential of lavender essential oil and licorice extract in a nanoemulsion form: Biochemical, histopathological and gene expression evidences. J. Tissue Viability, 2020, 29(2), 116-124.
[http://dx.doi.org/10.1016/j.jtv.2020.03.004] [PMID: 32204968]
[49]
Kwon, M.J.; An, S.; Choi, S.; Nam, K.; Jung, H.S.; Yoon, C.S.; Ko, J.H.; Jun, H.J.; Kim, T.K.; Jung, S.J.; Park, J.H.; Lee, Y.; Park, J.S. Effective healing of diabetic skin wounds by using nonviral gene therapy based on minicircle vascular endothelial growth factor DNA and a cationic dendrimer. J. Gene Med., 2012, 14(4), 272-278.
[http://dx.doi.org/10.1002/jgm.2618] [PMID: 22407991]
[50]
Küchler, S.; Wolf, N.B.; Heilmann, S.; Weindl, G.; Helfmann, J.; Yahya, M.M.; Stein, C.; Schäfer-Korting, M. 3D-wound healing model: Influence of morphine and solid lipid nanoparticles. J. Biotechnol., 2010, 148(1), 24-30.
[http://dx.doi.org/10.1016/j.jbiotec.2010.01.001] [PMID: 20138929]
[51]
Kalashnikova, I.; Das, S.; Seal, S. Nanomaterials for wound healing: Scope and advancement. Nanomedicine (Lond.), 2015, 10(16), 2593-2612.
[http://dx.doi.org/10.2217/nnm.15.82] [PMID: 26295361]
[52]
Zhou, Z.; Joslin, S.; Dellinger, A.; Ehrich, M.; Brooks, B.; Ren, Q.; Rodeck, U.; Lenk, R.; Kepley, C.L. A novel class of compounds with cutaneous wound healing properties. J. Biomed. Nanotechnol., 2010, 6(5), 605-611.
[http://dx.doi.org/10.1166/jbn.2010.1157] [PMID: 21329053]
[53]
Zhao, X.; Guo, B.; Wu, H.; Liang, Y.; Ma, P.X. Injectable antibacterial conductive nanocomposite cryogels with rapid shape recovery for noncompressible hemorrhage and wound healing. Nat. Commun., 2018, 9(1), 2784.
[http://dx.doi.org/10.1038/s41467-018-04998-9] [PMID: 30018305]
[54]
Zhou, Y.; Chen, R.; He, T.; Xu, K.; Du, D.; Zhao, N.; Cheng, X.; Yang, J.; Shi, H.; Lin, Y. Biomedical potential of ultrafine Ag/AgCl nanoparticles coated on graphene with special reference to antimicrobial performances and burn wound healing. ACS Appl. Mater. Interfaces, 2016, 8(24), 15067-15075.
[http://dx.doi.org/10.1021/acsami.6b03021] [PMID: 27064187]
[55]
Tong, C.; Zou, W.; Ning, W.; Fan, J.; Li, L.; Liu, B.; Liu, X. Synthesis of DNA-guided silver nanoparticles on a graphene oxide surface: Enhancing the antibacterial effect and the wound healing activity. RSC Advances, 2018, 8(49), 28238-28248.
[http://dx.doi.org/10.1039/C8RA04933E]
[56]
Holban, A.M.; Grumezescu, V.; Grumezescu, A.M.; Vasile, B.Ş.; Truşcă, R.; Cristescu, R.; Socol, G.; Iordache, F. Antimicrobial nanospheres thin coatings prepared by advanced pulsed laser technique. Beilstein J. Nanotechnol., 2014, 5, 872-880.
[http://dx.doi.org/10.3762/bjnano.5.99] [PMID: 24991524]
[57]
Hajji, S.; Khedir, S.B.; Hamza-Mnif, I.; Hamdi, M.; Jedidi, I.; Kallel, R.; Boufi, S.; Nasri, M. Biomedical potential of chitosan-silver nanoparticles with special reference to antioxidant, antibacterial, hemolytic and in vivo cutaneous wound healing effects. Biochim. Biophys. Acta, Gen. Subj., 2019, 1863(1), 241-254.
[http://dx.doi.org/10.1016/j.bbagen.2018.10.010] [PMID: 30339915]
[58]
Matica, M.A.; Aachmann, F.L.; Tøndervik, A.; Sletta, H.; Ostafe, V. Chitosan as a wound dressing starting material: Antimicrobial properties and mode of action. Int. J. Mol. Sci., 2019, 20(23), 5889.
[http://dx.doi.org/10.3390/ijms20235889] [PMID: 31771245]
[59]
Hsu, S.H.; Chang, Y-B.; Tsai, C-L.; Fu, K-Y.; Wang, S-H.; Tseng, H-J. Characterization and biocompatibility of chitosan nanocomposites. Colloids Surf. B Biointerfaces, 2011, 85(2), 198-206.
[http://dx.doi.org/10.1016/j.colsurfb.2011.02.029] [PMID: 21435843]
[60]
Kumar, P.T.; Lakshmanan, V-K.; Anilkumar, T.V.; Ramya, C.; Reshmi, P.; Unnikrishnan, A.G.; Nair, S.V.; Jayakumar, R. Flexible and microporous chitosan hydrogel/nano ZnO composite bandages for wound dressing: in vitro and in vivo evaluation. ACS Appl. Mater. Interfaces, 2012, 4(5), 2618-2629.
[http://dx.doi.org/10.1021/am300292v] [PMID: 22489770]
[61]
Gholipour-Kanani, A.; Bahrami, S.H.; Rabbani, S. Effect of novel blend nanofibrous scaffolds on diabetic wounds healing. IET Nanobiotechnol., 2016, 10(1), 1-7.
[http://dx.doi.org/10.1049/iet-nbt.2014.0066] [PMID: 26766866]
[62]
Gopal, A.; Kant, V.; Gopalakrishnan, A.; Tandan, S.K.; Kumar, D. Chitosan-based copper nanocomposite accelerates healing in excision wound model in rats. Eur. J. Pharmacol., 2014, 731, 8-19.
[http://dx.doi.org/10.1016/j.ejphar.2014.02.033] [PMID: 24632085]
[63]
Vasile, B.S.; Oprea, O.; Voicu, G.; Ficai, A.; Andronescu, E.; Teodorescu, A.; Holban, A. Synthesis and characterization of a novel controlled release zinc oxide/gentamicin-chitosan composite with potential applications in wounds care. Int. J. Pharm., 2014, 463(2), 161-169.
[http://dx.doi.org/10.1016/j.ijpharm.2013.11.035] [PMID: 24291078]
[64]
Rangaraj, A.; Harding, K.; Leaper, D. Role of collagen in wound management. Wounds UK, 2011, 7, 54-63.
[65]
GhavamiNejad. A.; Rajan Unnithan, A.; Ramachandra Kurup Sasikala, A.; Samarikhalaj, M.; Thomas, R.G.; Jeong, Y.Y.; Nasseri, S.; Murugesan, P.; Wu, D.; Hee Park, C.; Kim, C.S.; GhavamiNejad, A.; Rajan Unnithan, A.; Ramachandra Kurup Sasikala, A.; Samarikhalaj, M.; Thomas, R.G.; Jeong, Y.Y.; Nasseri, S.; Murugesan, P.; Wu, D.; Hee Park, C. Mussel-inspired electrospun nanofibers functionalized with size-controlled silver nanoparticles for wound dressing application. ACS Appl. Mater. Interfaces, 2015, 7(22), 12176-12183.
[http://dx.doi.org/10.1021/acsami.5b02542]
[66]
Dong, R-H.; Jia, Y-X.; Qin, C-C.; Zhan, L.; Yan, X.; Cui, L.; Zhou, Y.; Jiang, X.; Long, Y-Z. In situ deposition of a personalized nanofibrous dressing via a handy electrospinning device for skin wound care. Nanoscale, 2016, 8(6), 3482-3488.
[http://dx.doi.org/10.1039/C5NR08367B] [PMID: 26796508]
[67]
Vijayakumar, V.; Samal, S.K.; Mohanty, S.; Nayak, S.K. Recent advancements in biopolymer and metal nanoparticle-based materials in diabetic wound healing management. Int. J. Biol. Macromol., 2019, 122, 137-148.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.10.120] [PMID: 30342131]
[68]
Volkova, N.; Yukhta, M.; Pavlovich, O.; Goltsev, A. Application of cryopreserved fibroblast culture with Au nanoparticles to treat burns. Nanoscale Res. Lett., 2016, 11(1), 22.
[http://dx.doi.org/10.1186/s11671-016-1242-y] [PMID: 26762263]
[69]
Sherwani, M.A.; Tufail, S.; Khan, A.A.; Owais, M. Gold nanoparticle-photosensitizer conjugate based photodynamic inactivation of biofilm producing cells: Potential for treatment of C. albicans infection in BALB/c mice. PLoS One, 2015, 10(7), e0131684.
[http://dx.doi.org/10.1371/journal.pone.0131684] [PMID: 26148012]
[70]
Chen, S-A.; Chen, H-M.; Yao, Y-D.; Hung, C-F.; Tu, C-S.; Liang, Y-J. Topical treatment with anti-oxidants and Au nanoparticles promote healing of diabetic wound through receptor for advance glycation end-products. Eur. J. Pharm. Sci., 2012, 47(5), 875-883.
[http://dx.doi.org/10.1016/j.ejps.2012.08.018] [PMID: 22985875]
[71]
Xu, Z.; Liang, Z.; Ding, F. Isomerization of sp2‐hybridized carbon nanomaterials: structural transformation and topological defects of fullerene, carbon nanotube, and graphene. Wiley Interdiscip. Rev. Comput. Mol. Sci., 2017, 7(2), e1283.
[http://dx.doi.org/10.1002/wcms.1283]
[72]
Randeria, P.S.; Seeger, M.A.; Wang, X-Q.; Wilson, H.; Shipp, D.; Mirkin, C.A.; Paller, A.S. siRNA-based spherical nucleic acids reverse impaired wound healing in diabetic mice by ganglioside GM3 synthase knockdown. Proc. Natl. Acad. Sci. USA, 2015, 112(18), 5573-5578.
[http://dx.doi.org/10.1073/pnas.1505951112] [PMID: 25902507]
[73]
Anghel, I.; Holban, A.M.; Grumezescu, A.M.; Andronescu, E.; Ficai, A.; Anghel, A.G.; Maganu, M.; Laz, R.V.; Chifiriuc, M.C. Modified wound dressing with phyto-nanostructured coating to prevent Staphylococcal and Pseudomonal biofilm development. Nanoscale Res. Lett., 2012, 7(1), 690.
[http://dx.doi.org/10.1186/1556-276X-7-690] [PMID: 23272823]
[74]
Thomas, L.A.; Dekker, L.; Kallumadil, M.; Southern, P.; Wilson, M.; Nair, S.P.; Pankhurst, Q.A.; Parkin, I.P. Carboxylic acid-stabilised iron oxide nanoparticles for use in magnetic hyperthermia. J. Mater. Chem., 2009, 19(36), 6529-6535.
[http://dx.doi.org/10.1039/b908187a]
[75]
Kim, M-H.; Yamayoshi, I.; Mathew, S.; Lin, H.; Nayfach, J.; Simon, S.I. Magnetic nanoparticle targeted hyperthermia of cutaneous Staphylococcus aureus infection. Ann. Biomed. Eng., 2013, 41(3), 598-609.
[http://dx.doi.org/10.1007/s10439-012-0698-x] [PMID: 23149904]
[76]
Abenojar, E.C.; Wickramasinghe, S.; Ju, M.; Uppaluri, S.; Klika, A.; George, J.; Barsoum, W.; Frangiamore, S.J.; Higuera-Rueda, C.A.; Samia, A.C.S. Magnetic glycol chitin-based hydrogel nanocomposite for combined thermal and D-amino-acid-assisted biofilm disruption. ACS Infect. Dis., 2018, 4(8), 1246-1256.
[http://dx.doi.org/10.1021/acsinfecdis.8b00076] [PMID: 29775283]
[77]
Hetrick, E.M.; Shin, J.H.; Paul, H.S.; Schoenfisch, M.H. Anti-biofilm efficacy of nitric oxide-releasing silica nanoparticles. Biomaterials, 2009, 30(14), 2782-2789.
[http://dx.doi.org/10.1016/j.biomaterials.2009.01.052] [PMID: 19233464]
[78]
Gao, Y.; Han, Y.; Cui, M.; Tey, H.L.; Wang, L.; Xu, C. ZnO nanoparticles as an antimicrobial tissue adhesive for skin wound closure. J. Mater. Chem. B Mater. Biol. Med., 2017, 5(23), 4535-4541.
[http://dx.doi.org/10.1039/C7TB00664K] [PMID: 32263980]
[79]
Balaure, P.C.; Holban, A.M.; Grumezescu, A.M.; Mogoşanu, G.D.; Bălşeanu, T.A.; Stan, M.S.; Dinischiotu, A.; Volceanov, A.; Mogoantă, L. In vitro and in vivo studies of novel fabricated bioactive dressings based on collagen and zinc oxide 3D scaffolds. Int. J. Pharm., 2019, 557, 199-207.
[http://dx.doi.org/10.1016/j.ijpharm.2018.12.063] [PMID: 30597267]
[80]
Rakhmetova, A.; Bogoslovskaya, O.; Olkhovskaya, I.; Zhigach, A.; Ilyina, A.; Varlamov, V.; Gluschenko, N. Concomitant action of organic and inorganic nanoparticles in wound healing and antibacterial resistance: Chitosan and copper nanoparticles in an ointment as an example. Nanotechnol. Russ., 2015, 10(1-2), 149-157.
[http://dx.doi.org/10.1134/S1995078015010164]
[81]
Chigurupati, S.; Mughal, M.R.; Okun, E.; Das, S.; Kumar, A.; McCaffery, M.; Seal, S.; Mattson, M.P. Effects of cerium oxide nanoparticles on the growth of keratinocytes, fibroblasts and vascular endothelial cells in cutaneous wound healing. Biomaterials, 2013, 34(9), 2194-2201.
[http://dx.doi.org/10.1016/j.biomaterials.2012.11.061] [PMID: 23266256]
[82]
Nikpasand, A.; Parvizi, M.R. Evaluation of the effect of titatnium dioxide nanoparticles/gelatin composite on infected skin wound healing; an animal model study. Bull. Emerg. Trauma, 2019, 7(4), 366-372.
[http://dx.doi.org/10.29252/beat-070405] [PMID: 31857999]
[83]
Mukhopadhyay, S.; Maiti, D.; Saha, A.; Devi, P.S. Shape transition of TiO2 nanocube to nanospindle embedded on reduced graphene oxide with enhanced photocatalytic activity. Cryst. Growth Des., 2016, 16(12), 6922-6932.
[http://dx.doi.org/10.1021/acs.cgd.6b01096]
[84]
Zhang, D-Y.; Zheng, Y.; Tan, C-P.; Sun, J-H.; Zhang, W.; Ji, L-N.; Mao, Z-W. Graphene oxide decorated with Ru (II)-polyethylene glycol complex for lysosome-targeted imaging and photodynamic/photothermal therapy. ACS Appl. Mater. Interfaces, 2017, 9(8), 6761-6771.
[http://dx.doi.org/10.1021/acsami.6b13808] [PMID: 28150943]
[85]
Mostofizadeh, A.; Li, Y.; Song, B.; Huang, Y. Synthesis, properties, and applications of low-dimensional carbon-related nanomaterials. J. Nanomater., 2011, 2011, 1-21.
[http://dx.doi.org/10.1155/2011/685081]
[86]
Hong, G.; Diao, S.; Antaris, A.L.; Dai, H. Carbon nanomaterials for biological imaging and nanomedicinal therapy. Chem. Rev., 2015, 115(19), 10816-10906.
[http://dx.doi.org/10.1021/acs.chemrev.5b00008] [PMID: 25997028]
[87]
Bhattacharya, K.; Mukherjee, S.P.; Gallud, A.; Burkert, S.C.; Bistarelli, S.; Bellucci, S.; Bottini, M.; Star, A.; Fadeel, B. Biological interactions of carbon-based nanomaterials: From coronation to degradation. Nanomedicine, 2016, 12(2), 333-351.
[http://dx.doi.org/10.1016/j.nano.2015.11.011] [PMID: 26707820]
[88]
Maleki Dizaj, S.; Mennati, A.; Jafari, S.; Khezri, K.; Adibkia, K. Antimicrobial activity of carbon-based nanoparticles. Adv. Pharm. Bull., 2015, 5(1), 19-23.
[PMID: 25789215]
[89]
Ji, H.; Sun, H.; Qu, X. Antibacterial applications of graphene-based nanomaterials: Recent achievements and challenges. Adv. Drug Deliv. Rev., 2016, 105(Pt B), 176-189.
[http://dx.doi.org/10.1016/j.addr.2016.04.009] [PMID: 27129441]
[90]
Azizi-Lalabadi, M.; Hashemi, H.; Feng, J.; Jafari, S.M. Carbon nanomaterials against pathogens; the antimicrobial activity of carbon nanotubes, graphene/graphene oxide, fullerenes, and their nanocomposites. Adv. Colloid Interface Sci., 2020, 284, 102250.
[http://dx.doi.org/10.1016/j.cis.2020.102250] [PMID: 32966964]
[91]
Chong, Y.; Ge, C.; Fang, G.; Wu, R.; Zhang, H.; Chai, Z.; Chen, C.; Yin, J-J. Light-enhanced antibacterial activity of graphene oxide, mainly via accelerated electron transfer. Environ. Sci. Technol., 2017, 51(17), 10154-10161.
[http://dx.doi.org/10.1021/acs.est.7b00663] [PMID: 28771330]
[92]
Al-Jumaili, A.; Alancherry, S.; Bazaka, K.; Jacob, M. AL-Jumaili, A.; Alancherry, S; Bazaka, K.; Jacob, M. V. Review on the antimicrobial properties of carbon nanostructures. Materials (Basel), 2017, 10(9), 1066.
[http://dx.doi.org/10.3390/ma10091066]
[93]
Chang, Y-N.; Gong, J-L.; Zeng, G-M.; Ou, X-M.; Song, B.; Guo, M.; Zhang, J.; Liu, H-Y. Antimicrobial behavior comparison and antimicrobial mechanism of silver coated carbon nanocomposites. Process Saf. Environ. Prot., 2016, 102, 596-605.
[http://dx.doi.org/10.1016/j.psep.2016.05.023]
[94]
Kang, S.; Pinault, M.; Pfefferle, L.D.; Elimelech, M. Single-walled carbon nanotubes exhibit strong antimicrobial activity. Langmuir, 2007, 23(17), 8670-8673.
[http://dx.doi.org/10.1021/la701067r] [PMID: 17658863]
[95]
Maksimova, Y.G. Microorganisms and carbon nanotubes: interaction and applications. Appl. Biochem. Microbiol., 2019, 55(1), 1-12.
[http://dx.doi.org/10.1134/S0003683819010101]
[96]
Liu, S.; Ng, A.K.; Xu, R.; Wei, J.; Tan, C.M.; Yang, Y.; Chen, Y. Antibacterial action of dispersed single-walled carbon nanotubes on Escherichia coli and Bacillus subtilis investigated by atomic force microscopy. Nanoscale, 2010, 2(12), 2744-2750.
[http://dx.doi.org/10.1039/c0nr00441c] [PMID: 20877897]
[97]
Brady-Estévez, A.S.; Kang, S.; Elimelech, M. A single-walled-carbon-nanotube filter for removal of viral and bacterial pathogens. Small, 2008, 4(4), 481-484.
[http://dx.doi.org/10.1002/smll.200700863] [PMID: 18383192]
[98]
Chen, Q.; Ma, Z.; Liu, G.; Wei, H.; Xie, X. Antibacterial activity of cationic cyclen-functionalized fullerene derivatives: Membrane stress. Dig. J. Nanomater. Biostruct., 2016, 11, 753-761.
[99]
Zhao, C.; Deng, B.; Chen, G.; Lei, B.; Hua, H.; Peng, H.; Yan, Z. Large-area chemical vapor deposition-grown monolayer graphene-wrapped silver nanowires for broad-spectrum and robust antimicrobial coating. Nano Res., 2016, 9(4), 963-973.
[http://dx.doi.org/10.1007/s12274-016-0984-2]
[100]
Gurunathan, S.; Han, J.W.; Dayem, A.A.; Eppakayala, V.; Kim, J-H. Oxidative stress-mediated antibacterial activity of graphene oxide and reduced graphene oxide in Pseudomonas aeruginosa. Int. J. Nanomedicine, 2012, 7, 5901-5914.
[http://dx.doi.org/10.2147/IJN.S37397] [PMID: 23226696]
[101]
Monthioux, M.; Kuznetsov, V.L. Who should be given the credit for the discovery of carbon nanotubes? Carbon, 2006, 44(9), 1621-1623.
[http://dx.doi.org/10.1016/j.carbon.2006.03.019]
[102]
Odom, T.W.; Huang, J-L.; Kim, P.; Lieber, C.M. Atomic structure and electronic properties of single-walled carbon nanotubes. Nature, 1998, 391(6662), 62-64.
[http://dx.doi.org/10.1038/34145]
[103]
Eatemadi, A.; Daraee, H.; Karimkhanloo, H.; Kouhi, M.; Zarghami, N.; Akbarzadeh, A.; Abasi, M.; Hanifehpour, Y.; Joo, S.W. Carbon nanotubes: Properties, synthesis, purification, and medical applications. Nanoscale Res. Lett., 2014, 9(1), 393.
[http://dx.doi.org/10.1186/1556-276X-9-393] [PMID: 25170330]
[104]
Roldo, M.; Fatouros, D.G. Biomedical applications of carbon nanotubes. Annu. Rep. Sect. C Phys. Chem., 2013, 109, 10-35.
[http://dx.doi.org/10.1039/c3pc90010j]
[105]
Shanbhag, V.K.L.; Prasad, K. Graphene based sensors in the detection of glucose in saliva-a promising emerging modality to diagnose diabetes mellitus. Anal. Methods, 2016, 8(33), 6255-6259.
[http://dx.doi.org/10.1039/C6AY01023G]
[106]
Karimi, M.; Solati, N.; Amiri, M.; Mirshekari, H.; Mohamed, E.; Taheri, M.; Hashemkhani, M.; Saeidi, A.; Estiar, M.A.; Kiani, P.; Ghasemi, A.; Basri, S.M.; Aref, A.R.; Hamblin, M.R. Carbon nanotubes part I: Preparation of a novel and versatile drug-delivery vehicle. Expert Opin. Drug Deliv., 2015, 12(7), 1071-1087.
[http://dx.doi.org/10.1517/17425247.2015.1003806] [PMID: 25601356]
[107]
Ahmed, F.; Santos, C.M.; Vergara, R.A.M.V.; Tria, M.C.R.; Advincula, R.; Rodrigues, D.F. Antimicrobial applications of electroactive PVK-SWNT nanocomposites. Environ. Sci. Technol., 2012, 46(3), 1804-1810.
[http://dx.doi.org/10.1021/es202374e] [PMID: 22091864]
[108]
Malek, I.; Schaber, C.F.; Heinlein, T.; Schneider, J.J.; Gorb, S.N.; Schmitz, R.A. Vertically aligned multi walled carbon nanotubes prevent biofilm formation of medically relevant bacteria. J. Mater. Chem. B Mater. Biol. Med., 2016, 4(31), 5228-5235.
[http://dx.doi.org/10.1039/C6TB00942E] [PMID: 32263603]
[109]
Aslan, S.; Deneufchatel, M.; Hashmi, S.; Li, N.; Pfefferle, L.D.; Elimelech, M.; Pauthe, E.; Van Tassel, P.R. Carbon nanotube-based antimicrobial biomaterials formed via layer-by-layer assembly with polypeptides. J. Colloid Interface Sci., 2012, 388(1), 268-273.
[http://dx.doi.org/10.1016/j.jcis.2012.08.025] [PMID: 23006909]
[110]
Aslan, S.; Määttä, J.; Haznedaroglu, B.Z.; Goodman, J.P.; Pfefferle, L.D.; Elimelech, M.; Pauthe, E.; Sammalkorpi, M.; Van Tassel, P.R. Carbon nanotube bundling: influence on layer-by-layer assembly and antimicrobial activity. Soft Matter, 2013, 9, 2136-2144CC.
[http://dx.doi.org/10.1039/c2sm27444b]
[111]
Xia, L.; Xu, M.; Cheng, G.; Yang, L.; Guo, Y.; Li, D.; Fang, D.; Zhang, Q.; Liu, H. Facile construction of Ag nanoparticles encapsulated into carbon nanotubes with robust antibacterial activity. Carbon, 2018, 130, 775-781.
[http://dx.doi.org/10.1016/j.carbon.2018.01.073]
[112]
Kavoosi, G.; Dadfar, S.M.; Dadfar, S.M.; Ahmadi, F.; Niakosari, M. Investigation of gelatin/multi-walled carbon nanotube nanocomposite films as packaging materials. Food Sci. Nutr., 2014, 2(1), 65-73.
[http://dx.doi.org/10.1002/fsn3.81] [PMID: 24804066]
[113]
Gan, L.; Geng, A.; Jin, L.; Zhong, Q.; Wang, L.; Xu, L.; Mei, C. Antibacterial nanocomposite based on carbon nanotubes-silver nanoparticles-co-doped polylactic acid. Polym. Bull., 2020, 77(2), 793-804.
[http://dx.doi.org/10.1007/s00289-019-02776-1]
[114]
Aziz, A.; Lim, H.; Girei, S.; Yaacob, M.; Mahdi, M.; Huang, N.; Pandikumar, A. Silver/graphene nanocomposite-modified optical fiber sensor platform for ethanol detection in water medium. Sens. Actuators B Chem., 2015, 206, 119-125.
[http://dx.doi.org/10.1016/j.snb.2014.09.035]
[115]
Benigno, E.; Lorente, M.A.; Olmos, D.; González-Gaitano, G.; González-Benito, J. Nanocomposites based on low density polyethylene filled with carbon nanotubes prepared by high energy ball milling and their potential antibacterial activity. Polym. Int., 2019, 68(6), 1155-1163.
[http://dx.doi.org/10.1002/pi.5808]
[116]
Aslan, S.; Loebick, C.Z.; Kang, S.; Elimelech, M.; Pfefferle, L.D.; Van Tassel, P.R. Antimicrobial biomaterials based on carbon nanotubes dispersed in poly(lactic-co-glycolic acid). Nanoscale, 2010, 2(9), 1789-1794.
[http://dx.doi.org/10.1039/c0nr00329h] [PMID: 20680202]
[117]
Ashfaq, M.; Verma, N.; Khan, S. Copper/zinc bimetal nanoparticles-dispersed carbon nanofibers: A novel potential antibiotic material. Mater. Sci. Eng. C, 2016, 59, 938-947.
[http://dx.doi.org/10.1016/j.msec.2015.10.079] [PMID: 26652451]
[118]
Simmons, T.J.; Lee, S-H.; Park, T-J.; Hashim, D.P.; Ajayan, P.M.; Linhardt, R.J. Antiseptic single wall carbon nanotube bandages. Carbon, 2009, 47(6), 1561-1564.
[http://dx.doi.org/10.1016/j.carbon.2009.02.005]
[119]
Erickson, K.; Erni, R.; Lee, Z.; Alem, N.; Gannett, W.; Zettl, A. Determination of the local chemical structure of graphene oxide and reduced graphene oxide. Adv. Mater., 2010, 22(40), 4467-4472.
[http://dx.doi.org/10.1002/adma.201000732] [PMID: 20717985]
[120]
Zhang, H.; Grüner, G.; Zhao, Y. Recent advancements of graphene in biomedicine. J. Mater. Chem. B Mater. Biol. Med., 2013, 1(20), 2542-2567.
[http://dx.doi.org/10.1039/c3tb20405g] [PMID: 32260943]
[121]
Pattnaik, S.; Swain, K.; Lin, Z. Graphene and graphene-based nanocomposites: Biomedical applications and biosafety. J. Mater. Chem. B Mater. Biol. Med., 2016, 4(48), 7813-7831.
[http://dx.doi.org/10.1039/C6TB02086K] [PMID: 32263772]
[122]
Rourke, J.P.; Pandey, P.A.; Moore, J.J.; Bates, M.; Kinloch, I.A.; Young, R.J.; Wilson, N.R. The real graphene oxide revealed: Stripping the oxidative debris from the graphene-like sheets. Angew. Chem. Int. Ed. Engl., 2011, 50(14), 3173-3177.
[http://dx.doi.org/10.1002/anie.201007520] [PMID: 21432951]
[123]
Shahnawaz Khan, M.; Abdelhamid, H.N.; Wu, H-F. Near infrared (NIR) laser mediated surface activation of graphene oxide nanoflakes for efficient antibacterial, antifungal and wound healing treatment. Colloids Surf. B Biointerfaces, 2015, 127, 281-291.
[http://dx.doi.org/10.1016/j.colsurfb.2014.12.049] [PMID: 25687099]
[124]
Mitra, T.; Manna, P.J.; Raja, S.; Gnanamani, A.; Kundu, P. Curcumin loaded nano graphene oxide reinforced fish scale collagen-a 3D scaffold biomaterial for wound healing applications. RSC Advances, 2015, 5(119), 98653-98665.
[http://dx.doi.org/10.1039/C5RA15726A]
[125]
Thangavel, P.; Kannan, R.; Ramachandran, B.; Moorthy, G.; Suguna, L.; Muthuvijayan, V. Development of reduced graphene oxide (rGO)-isabgol nanocomposite dressings for enhanced vascularization and accelerated wound healing in normal and diabetic rats. J. Colloid Interface Sci., 2018, 517, 251-264.
[http://dx.doi.org/10.1016/j.jcis.2018.01.110] [PMID: 29428812]
[126]
Shahmoradi, S.; Golzar, H.; Hashemi, M.; Mansouri, V.; Omidi, M.; Yazdian, F.; Yadegari, A.; Tayebi, L. Optimizing the nanostructure of graphene oxide/silver/arginine for effective wound healing. Nanotechnology, 2018, 29(47), 475101.
[http://dx.doi.org/10.1088/1361-6528/aadedc] [PMID: 30179859]
[127]
Zhang, H-Z.; Zhang, C.; Zeng, G-M.; Gong, J-L.; Ou, X-M.; Huan, S-Y. Easily separated silver nanoparticle-decorated magnetic graphene oxide: Synthesis and high antibacterial activity. J. Colloid Interface Sci., 2016, 471, 94-102.
[http://dx.doi.org/10.1016/j.jcis.2016.03.015] [PMID: 26994349]
[128]
Tran, N.; Mir, A.; Mallik, D.; Sinha, A.; Nayar, S.; Webster, T.J. Bactericidal effect of iron oxide nanoparticles on Staphylococcus aureus. Int. J. Nanomedicine, 2010, 5, 277-283.
[PMID: 20463943]
[129]
Salomoni, R.; Léo, P.; Montemor, A.F.; Rinaldi, B.G.; Rodrigues, M. Antibacterial effect of silver nanoparticles in Pseudomonas aeruginosa. Nanotechnol. Sci. Appl., 2017, 10, 115-121.
[http://dx.doi.org/10.2147/NSA.S133415] [PMID: 28721025]
[130]
Whitehead, K.; Vaidya, M.; Liauw, C.; Brownson, D.; Ramalingam, P.; Kamieniak, J.; Rowley-Neale, S.; Tetlow, L.; Wilson-Nieuwenhuis, J.; Brown, D.; McBain, A.J.; Kulandaivel, J.; Banks, C.E. Antimicrobial activity of graphene oxide-metal hybrids. Int. Biodeterior. Biodegradation, 2017, 123, 182-190.
[http://dx.doi.org/10.1016/j.ibiod.2017.06.020]
[131]
Tang, X-Z.; Mu, C.; Zhu, W.; Yan, X.; Hu, X.; Yang, J. Flexible polyurethane composites prepared by incorporation of polyethylenimine-modified slightly reduced graphene oxide. Carbon, 2016, 98, 432-440.
[http://dx.doi.org/10.1016/j.carbon.2015.11.030]
[132]
Sun, H.; Gao, N.; Dong, K.; Ren, J.; Qu, X. Graphene quantum dots-band-aids used for wound disinfection. ACS Nano, 2014, 8(6), 6202-6210.
[http://dx.doi.org/10.1021/nn501640q] [PMID: 24870970]
[133]
Roursgaard, M.; Poulsen, S.S.; Kepley, C.L.; Hammer, M.; Nielsen, G.D.; Larsen, S.T. Polyhydroxylated C60 fullerene (fullerenol) attenuates neutrophilic lung inflammation in mice. Basic Clin. Pharmacol. Toxicol., 2008, 103(4), 386-388.
[http://dx.doi.org/10.1111/j.1742-7843.2008.00315.x] [PMID: 18793270]
[134]
Goodarzi, S.; Da Ros, T.; Conde, J.; Sefat, F.; Mozafari, M. Fullerene: Biomedical engineers get to revisit an old friend. Mater. Today, 2017, 20(8), 460-480.
[http://dx.doi.org/10.1016/j.mattod.2017.03.017]
[135]
Montellano, A.; Da Ros, T.; Bianco, A.; Prato, M. Fullerene C60 as a multifunctional system for drug and gene delivery. Nanoscale, 2011, 3(10), 4035-4041.
[http://dx.doi.org/10.1039/c1nr10783f] [PMID: 21897967]
[136]
Rondags, A.; Yuen, W.Y.; Jonkman, M.F.; Horváth, B. Fullerene C60 with cytoprotective and cytotoxic potential: Prospects as a novel treatment agent in dermatology? Exp. Dermatol., 2017, 26(3), 220-224.
[http://dx.doi.org/10.1111/exd.13172] [PMID: 27541937]
[137]
Kazemzadeh, H.; Mozafari, M. Fullerene-based delivery systems. Drug Discov. Today, 2019, 24(3), 898-905.
[http://dx.doi.org/10.1016/j.drudis.2019.01.013] [PMID: 30703542]
[138]
Gao, J.; Wang, H-L.; Iyer, R. Suppression of proinflammatory cytokines in functionalized fullerene-exposed dermal keratinocytes. J. Nanomater., 2010, 2010, Article ID 416408.
[http://dx.doi.org/10.1155/2010/416408]
[139]
Xiao, L.; Takada, H.; Gan, X.; Miwa, N. The water-soluble fullerene derivative “Radical Sponge” exerts cytoprotective action against UVA irradiation but not visible-light-catalyzed cytotoxicity in human skin keratinocytes. Bioorg. Med. Chem. Lett., 2006, 16(6), 1590-1595.
[http://dx.doi.org/10.1016/j.bmcl.2005.12.011] [PMID: 16439118]
[140]
Kato, S.; Aoshima, H.; Saitoh, Y.; Miwa, N. Fullerene-C60 derivatives prevent UV-irradiation/TiO2-induced cytotoxicity on keratinocytes and 3D-skin tissues through antioxidant actions. J. Nanosci. Nanotechnol., 2014, 14(5), 3285-3291.
[http://dx.doi.org/10.1166/jnn.2014.8719] [PMID: 24734542]
[141]
Indeglia, P.A.; Georgieva, A.T.; Krishna, V.B.; Martyniuk, C.J.; Bonzongo, J.J. Toxicity of functionalized fullerene and fullerene synthesis chemicals. Chemosphere, 2018, 207, 1-9.
[http://dx.doi.org/10.1016/j.chemosphere.2018.05.023] [PMID: 29763761]
[142]
Alekseeva, O.; Bagrovskaya, N.; Noskov, A. Structure and Properties of the Polystyrene/Fullerene Composite Films. In: Chemical Engineering of Polymers: Prpduction of Functional and Flexible Materials; Mukbaniani, O.V.; Abadie, M.J.M.; Tatrishvili, T.N., Eds.; Apple Academic Press: USA, 2017; pp. 87-103.
[143]
Ballatore, M.B.; Durantini, J.; Gsponer, N.S.; Suarez, M.B.; Gervaldo, M.; Otero, L.; Spesia, M.B.; Milanesio, M.E.; Durantini, E.N. Photodynamic inactivation of bacteria using novel electrogenerated porphyrin-fullerene C60 polymeric films. Environ. Sci. Technol., 2015, 49(12), 7456-7463.
[http://dx.doi.org/10.1021/acs.est.5b01407] [PMID: 25984839]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy