Generic placeholder image

Protein & Peptide Letters

Editor-in-Chief

ISSN (Print): 0929-8665
ISSN (Online): 1875-5305

Review Article

An Overview of the Role of Membrane Proteins in Microbial Solvents Tolerance

Author(s): Lei Ai, Fangwei Mei and Ren Peng*

Volume 30, Issue 2, 2023

Published on: 13 January, 2023

Page: [137 - 145] Pages: 9

DOI: 10.2174/0929866530666221226100221

Price: $65

Abstract

Background: Solvent tolerance is a desired feature of microorganisms for their application in biotechnology. Organic solvent-tolerant microorganisms are able to thrive in the presence of organic solvents. Several mechanisms have been proposed to elucidate their intrinsic tolerance to organic solvents.

Objective: The present review aims to summarize the state of the art of the roles of membrane proteins in microbial organic solvent tolerance. Strategies and challenges for improving the protective function of membrane proteins in organic solvent stress are also proposed.

Results: Membrane proteins related to transporter, signal transduction, and material and energy metabolism are involved in solvent tolerance. Optimization of the expression level of membrane proteins and engineering of membrane proteins are utilized to tackle the toxicity caused by organic solvents.

Conclusions: Membrane proteins occupy a strikingly important position in microbial solvent tolerance. Further research on novel methods in membrane proteins, trade-offs among overexpression and toxicity of membrane proteins and solvent yield, and a direct relationship between signaling pathways and solvent tolerance will advance the utilization of organic solvent-tolerant microorganisms in biotechnology.

Graphical Abstract

[1]
Ting, C.N.W.; Wu, J.; Takahashi, K.; Endo, A.; Zhao, H. Screened butanol-tolerant Enterococcus faecium capable of butanol production. Appl. Biochem. Biotechnol., 2012, 168(6), 1672-1680.
[http://dx.doi.org/10.1007/s12010-012-9888-0] [PMID: 22961352]
[2]
de Carvalho, C.C.C.R.; da Fonseca, M.M.R. Maintenance of cell viability in the biotransformation of (−)-carveol with whole cells of Rhodococcus erythropolis. J. Mol. Catal., B Enzym., 2002, 19-20, 389-398.
[http://dx.doi.org/10.1016/S1381-1177(02)00190-X]
[3]
Kuang, S.; Fan, X.; Peng, R. Quantitative proteomic analysis of Rhodococcus ruber responsive to organic solvents. Biotechnol. Biotechnol. Equip., 2018, 32(6), 1418-1430.
[http://dx.doi.org/10.1080/13102818.2018.1533432]
[4]
Jiang, H.; Shu, Z.; Wu, J.; Huang, P.; Huang, J. Mechanisms for solvent tolerance and application of extremophile with organic solvent tolerance. Microbiology, 2009, 36(11), 1744-1749.
[5]
Segura, A.; Molina, L.; Fillet, S.; Krell, T.; Bernal, P.; Muñoz-Rojas, J.; Ramos, J.L. Solvent tolerance in Gram-negative bacteria. Curr. Opin. Biotechnol., 2012, 23(3), 415-421.
[http://dx.doi.org/10.1016/j.copbio.2011.11.015] [PMID: 22155018]
[6]
Inoue, A.; Horikoshi, K. A Pseudomonas thrives in high concentrations of toluene. Nature, 1989, 338(6212), 264-266.
[http://dx.doi.org/10.1038/338264a0]
[7]
Vallon, T.; Simon, O.; Rendgen-Heugle, B.; Frana, S.; Mückschel, B.; Broicher, A.; Siemann-Herzberg, M.; Pfannenstiel, J.; Hauer, B.; Huber, A.; Breuer, M.; Takors, R. Applying systems biology tools to study n-butanol degradation in Pseudomonas putida KT2440. Eng. Life Sci., 2015, 15(8), 760-771.
[http://dx.doi.org/10.1002/elsc.201400051]
[8]
Hun, C.J.; Rahman, R.N.Z.A.; Salleh, A.B.; Basri, M. A newly isolated organic solvent tolerant Bacillus sphaericus 205y producing organic solvent-stable lipase. Biochem. Eng. J., 2003, 15(2), 147-151.
[http://dx.doi.org/10.1016/S1369-703X(02)00185-7]
[9]
Yoneda, A.; Henson, W.R.; Goldner, N.K.; Park, K.J.; Forsberg, K.J.; Kim, S.J.; Pesesky, M.W.; Foston, M.; Dantas, G.; Moon, T.S. Comparative transcriptomics elucidates adaptive phenol tolerance and utilization in lipid-accumulating Rhodococcus opacus PD630. Nucleic Acids Res., 2016, 44(5), 2240-2254.
[http://dx.doi.org/10.1093/nar/gkw055] [PMID: 26837573]
[10]
Li, C.; Li, Y.; Cheng, X.; Feng, L.; Xi, C.; Zhang, Y. Immobilization of Rhodococcus rhodochrous BX2 (an acetonitrile-degrading bacterium) with biofilm-forming bacteria for wastewater treatment. Bioresour. Technol., 2013, 131, 390-396.
[http://dx.doi.org/10.1016/j.biortech.2012.12.140] [PMID: 23376196]
[11]
Altaee, N.; El-Hiti, G.A.; Fahdil, A.; Sudesh, K.; Yousif, E. Screening and evaluation of poly(3-hydroxybutyrate) with Rhodo-coccus equi using different carbon sources. Arab. J. Sci. Eng., 2017, 42(6), 2371-2379.
[http://dx.doi.org/10.1007/s13369-016-2327-8]
[12]
Liu, L.; Ma, X.; Bilal, M.; Wei, L.; Tang, S.; Luo, H.; Zhao, Y.; Duan, X. Mechanistic insight into phenolic compounds toxicity and state-of-the-art strategies for enhancing the tolerance of Esche-richia coli to phenolic compounds. Biotechnol. Bioprocess Eng.; BBE, 2022, 27(4), 533-542.
[http://dx.doi.org/10.1007/s12257-022-0019-7]
[13]
Mishra, S.; Singh, S.N.; Pande, V. Bacteria induced degradation of fluoranthene in minimal salt medium mediated by catabolic enzymes in vitro condition. Bioresour. Technol., 2014, 164, 299-308.
[http://dx.doi.org/10.1016/j.biortech.2014.04.076] [PMID: 24862007]
[14]
Chen, P.; Liu, H.; Xing, Z.; Wang, Y.; Zhang, X.; Zhao, T.; Zhang, Y. Cometabolic degradation mechanism and microbial network response of methanotrophic consortia to chlorinated hydrocarbon solvents. Ecotoxicol. Environ. Saf., 2022, 230, , 113110..
[http://dx.doi.org/10.1016/j.ecoenv.2021.113110] [PMID: 34971998]
[15]
Premnath, N.; Mohanrasu, K.; Guru Raj Rao, R.; Dinesh, G.H.; Prakash, G.S.; Ananthi, V.; Ponnuchamy, K.; Muthusamy, G.; Arun, A. A crucial review on polycyclic aromatic hydrocarbons-environmental occurrence and strategies for microbial degradation. Chemosphere, 2021, 280, , 130608..
[http://dx.doi.org/10.1016/j.chemosphere.2021.130608] [PMID: 33962296]
[16]
Fan, X.; Yuan, Y.; Zhang, F.; Ai, L.; Wu, Z.; Peng, R. Expression, rapid purification and functional analysis of DnaK from Rhodococcus ruber. Protein Pept. Lett., 2021, 28(9), 1023-1032.
[http://dx.doi.org/10.2174/0929866528666210301150421] [PMID: 33645471]
[17]
Wickner, S.; Nguyen, T.L.L.; Genest, O. The bacterial Hsp90 chaperone: cellular functions and mechanism of action. Annu. Rev. Microbiol., 2021, 75(1), 719-739.
[http://dx.doi.org/10.1146/annurev-micro-032421-035644] [PMID: 34375543]
[18]
Vasylkivska, M.; Patakova, P. Role of efflux in enhancing butanol tolerance of bacteria. J. Biotechnol., 2020, 320, 17-27.
[http://dx.doi.org/10.1016/j.jbiotec.2020.06.008] [PMID: 32553531]
[19]
de Carvalho, C.C.C.R.; Costa, S.S.; Fernandes, P.; Couto, I.; Viveiros, M. Membrane transport systems and the biodegradation potential and pathogenicity of genus Rhodococcus. Front. Physiol., 2014, 5, 133.
[http://dx.doi.org/10.3389/fphys.2014.00133] [PMID: 24772091]
[20]
Jones, C.M.; Hernández Lozada, N.J.; Pfleger, B.F. Efflux systems in bacteria and their metabolic engineering applications. Appl. Microbiol. Biotechnol., 2015, 99(22), 9381-9393.
[http://dx.doi.org/10.1007/s00253-015-6963-9] [PMID: 26363557]
[21]
Royce, L.A.; Liu, P.; Stebbins, M.J.; Hanson, B.C.; Jarboe, L.R. The damaging effects of short chain fatty acids on Escherichia coli membranes. Appl. Microbiol. Biotechnol., 2013, 97(18), 8317-8327.
[http://dx.doi.org/10.1007/s00253-013-5113-5] [PMID: 23912117]
[22]
Pinkart, H.C.; White, D.C. Phospholipid biosynthesis and solvent tolerance in Pseudomonas putida strains. J. Bacteriol., 1997, 179(13), 4219-4226.
[http://dx.doi.org/10.1128/jb.179.13.4219-4226.1997] [PMID: 9209036]
[23]
Raju, S.; Rao, G.; Patil, S.A.; Kelmani, C.R. Increase in cell size and acid tolerance response in a stepwise-adapted methicillin resistant Staphylococcus aureus mutant. World J. Microbiol. Biotechnol., 2007, 23(9), 1227-1232.
[http://dx.doi.org/10.1007/s11274-007-9352-4]
[24]
Veeranagouda, Y.; Karegoudar, T.B.; Neumann, G.; Heipieper, H.J. Enterobacter sp. VKGH12 growing with n-butanol as the sole carbon source and cells to which the alcohol is added as pure toxin show considerable differences in their adaptive responses. FEMS Microbiol. Lett., 2006, 254(1), 48-54.
[http://dx.doi.org/10.1111/j.1574-6968.2005.00017.x] [PMID: 16451178]
[25]
Pérez-Cruz, C.; Delgado, L.; López-Iglesias, C.; Mercade, E. Outer-inner membrane vesicles naturally secreted by gram-negative pathogenic bacteria. PLoS One, 2015, 10(1), , e0116896..
[http://dx.doi.org/10.1371/journal.pone.0116896] [PMID: 25581302]
[26]
Kobayashi, H.; Uematsu, K.; Hirayama, H.; Horikoshi, K. Novel toluene elimination system in a toluene-tolerant microorganism. J. Bacteriol., 2000, 182(22), 6451-6455.
[http://dx.doi.org/10.1128/JB.182.22.6451-6455.2000] [PMID: 11053390]
[27]
Pandey, A.; Shin, K.; Patterson, R.E.; Liu, X.Q.; Rainey, J.K. Current strategies for protein production and purification enabling membrane protein structural biology. Biochem. Cell Biol., 2016, 94(6), 507-527.
[http://dx.doi.org/10.1139/bcb-2015-0143] [PMID: 27010607]
[28]
Ramos, J.L.; Duque, E.; Gallegos, M.T.; Godoy, P.; Ramos-González, M.I.; Rojas, A.; Terán, W.; Segura, A. Mechanisms of solvent tolerance in gram-negative bacteria. Annu. Rev. Microbiol., 2002, 56(1), 743-768.
[http://dx.doi.org/10.1146/annurev.micro.56.012302.161038] [PMID: 12142492]
[29]
Mutanda, I.; Sun, J.; Jiang, J.; Zhu, D. Bacterial membrane transporter systems for aromatic compounds: Regulation, engineering, and biotechnological applications. Biotechnol. Adv., 2022, 59, , 107952..
[http://dx.doi.org/10.1016/j.biotechadv.2022.107952] [PMID: 35398204]
[30]
Blanco, P.; Hernando-Amado, S.; Reales-Calderon, J.; Corona, F.; Lira, F.; Alcalde-Rico, M.; Bernardini, A.; Sanchez, M.; Martinez, J. Bacterial multidrug efflux pumps: much more than antibiotic resistance determinants. Microorganisms, 2016, 4(1), 14.
[http://dx.doi.org/10.3390/microorganisms4010014] [PMID: 27681908]
[31]
Molina-Santiago, C.; Udaondo, Z.; Gómez-Lozano, M.; Molin, S.; Ramos, J.L. Global transcriptional response of solvent-sensitive and solvent-tolerant Pseudomonas putida strains exposed to toluene. Environ. Microbiol., 2017, 19(2), 645-658.
[http://dx.doi.org/10.1111/1462-2920.13585] [PMID: 27768818]
[32]
Zhang, D.F.; Li, H.; Lin, X.M.; Wang, S.Y.; Peng, X.X. Characterization of outer membrane proteins of Escherichia coli in response to phenol stress. Curr. Microbiol., 2011, 62(3), 777-783.
[http://dx.doi.org/10.1007/s00284-010-9786-z] [PMID: 20972790]
[33]
Asako, H.; Kobayashi, K.; Aono, R. Organic solvent tolerance of Escherichia coli is independent of OmpF levels in the membrane. Appl. Environ. Microbiol., 1999, 65(1), 294-296.
[http://dx.doi.org/10.1128/AEM.65.1.294-296.1999] [PMID: 9872794]
[34]
Zhang, D.; Ye, J.; Dai, H.; Lin, X.; Li, H.; Peng, X. Identification of ethanol tolerant outer membrane proteome reveals OmpC-dependent mechanism in a manner of EnvZ/OmpR regulation in Escherichia coli. J. Proteomics, 2018, 179, 92-99.
[http://dx.doi.org/10.1016/j.jprot.2018.03.005] [PMID: 29518576]
[35]
Aono, R.; Tsukagoshi, N.; Yamamoto, M. Involvement of outer membrane protein TolC, a possible member of the mar-sox regulon, in maintenance and improvement of organic solvent tolerance of Escherichia coli K-12. J. Bacteriol., 1998, 180(4), 938-944.
[http://dx.doi.org/10.1128/JB.180.4.938-944.1998] [PMID: 9473050]
[36]
Kawarai, T.; Ogihara, H.; Furukawa, S.; Aono, R.; Kishima, M.; Inagi, Y.; Irie, A.; Ida, A.; Yamasaki, M. High hydrostatic pressure treatment impairs AcrAB-TolC pump resulting in differential loss of deoxycholate tolerance in Escherichia coli. J. Biosci. Bioeng., 2005, 100(6), 613-616.
[http://dx.doi.org/10.1263/jbb.100.613] [PMID: 16473769]
[37]
Wang, C.; Yang, L.; Shah, A.A.; Choi, E.S.; Kim, S.W. Dynamic interplay of multidrug transporters with TolC for isoprenol tolerance in Escherichia coli. Sci. Rep., 2015, 5(1), 16505.
[http://dx.doi.org/10.1038/srep16505] [PMID: 26563610]
[38]
Perez-Silva, L.; Sanchez-Vicente, L.; Molina-Alcaide, E.; Marin, J.J.G.; Herraez, E. Evaluation of the promiscuous component of several bacterial export pumps TolC as a biomarker for toxic pollutants in feedstuffs. Chem. Biol. Interact., 2019, 305, 195-202.
[http://dx.doi.org/10.1016/j.cbi.2019.03.028] [PMID: 30940451]
[39]
Zhang, C.; Chen, X.; Stephanopoulos, G.; Too, H.P. Efflux transporter engineering markedly improves amorphadiene production in Escherichia coli. Biotechnol. Bioeng., 2016, 113(8), 1755-1763.
[http://dx.doi.org/10.1002/bit.25943] [PMID: 26804325]
[40]
Sun, X.; Dennis, J.J. A novel insertion sequence derepresses efflux pump expression and preadapts Pseudomonas putida S12 for extreme solvent stress. J. Bacteriol., 2009, 191(21), 6773-6777.
[http://dx.doi.org/10.1128/JB.00832-09] [PMID: 19717594]
[41]
Alsaker, K.V.; Paredes, C.; Papoutsakis, E.T. Metabolite stress and tolerance in the production of biofuels and chemicals: Geneexpression- based systems analysis of butanol, butyrate, and acetate stresses in the anaerobe Clostridium acetobutylicum. Biotechnol. Bioeng., 2010, 105(6), n/a.
[http://dx.doi.org/10.1002/bit.22628] [PMID: 19998280]
[42]
Goudreau, P.N.; Stock, A.M. Signal transduction in bacteria: molecular mechanisms of stimulus-response coupling. Curr. Opin. Microbiol., 1998, 1(2), 160-169.
[http://dx.doi.org/10.1016/S1369-5274(98)80006-4] [PMID: 10066483]
[43]
Hellingwerf, K.J.; Postma, P.W.; Tommassen, J.; Westerhoff, H.V. Signal transduction in bacteria: Phospho-neural network(s) in Escherichia coli? FEMS Microbiol. Rev., 1995, 16(4), 309-321.
[http://dx.doi.org/10.1111/j.1574-6976.1995.tb00178.x] [PMID: 7654406]
[44]
Wu, Z.; Peng, R. Fusion expression and functional analysis of histidine kinase from Rhodococcus ruber. Shipin Kexue, 2021, 42(22), 98-104.
[45]
Sun, L.; Li, X.; Shi, Y. Structural biology of intramembrane proteases: mechanistic insights from rhomboid and S2P to γ - secretase. Curr. Opin. Struct. Biol., 2016, 37, 97-107.
[http://dx.doi.org/10.1016/j.sbi.2015.12.008] [PMID: 26811996]
[46]
Makinoshima, H.; Glickman, M.S. Site-2 proteases in prokaryotes: regulated intramembrane proteolysis expands to microbial pathogenesis. Microbes Infect., 2006, 8(7), 1882-1888.
[http://dx.doi.org/10.1016/j.micinf.2006.02.021] [PMID: 16731018]
[47]
Screening of the substrate of site-2 protease like protein from Rhodococcus ruber and its functional characterization and transcriptomic analysis. Thesis, Jiangxi Normal University: Nanchang, May 2021.
[48]
Jenal, U.; Reinders, A.; Lori, C. Cyclic di-GMP: Second messenger extraordinaire. Nat. Rev. Microbiol., 2017, 15(5), 271-284.
[http://dx.doi.org/10.1038/nrmicro.2016.190] [PMID: 28163311]
[49]
Kuang, S.; Yuan, Y.; Wu, Z.; Peng, R. Expression, purification and characterization of diguanylate cyclase from Rhodococcus ruber. Protein Expr. Purif., 2019, 163, , 105441..
[http://dx.doi.org/10.1016/j.pep.2019.06.001] [PMID: 31195084]
[50]
Yuan, Y.; Zhang, F.; Ai, L.; Huang, Y.; Peng, R. Insight into the role of a novel c-di-GMP effector protein in Rhodococcus ruber. Biochem. Biophys. Res. Commun., 2022, 608, 177-182.
[http://dx.doi.org/10.1016/j.bbrc.2022.03.131] [PMID: 35427895]
[51]
Tan, Z.; Khakbaz, P.; Chen, Y.; Lombardo, J.; Yoon, J.M.; Shanks, J.V.; Klauda, J.B.; Jarboe, L.R. Engineering Escherichia coli membrane phospholipid head distribution improves tolerance and production of biorenewables. Metab. Eng., 2017, 44, 1-12.
[http://dx.doi.org/10.1016/j.ymben.2017.08.006] [PMID: 28867349]
[52]
Aguilera, F.; Peinado, R.A.; Millán, C.; Ortega, J.M.; Mauricio, J.C. Relationship between ethanol tolerance, H+-ATPase activity and the lipid composition of the plasma membrane in different wine yeast strains. Int. J. Food Microbiol., 2006, 110(1), 34-42.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2006.02.002] [PMID: 16690148]
[53]
Ling, H.; Chen, B.; Kang, A.; Lee, J.M.; Chang, M.W. Transcriptome response to alkane biofuels in Saccharomyces cerevisiae: identification of efflux pumps involved in alkane tolerance. Biotechnol. Biofuels, 2013, 6(1), 95.
[http://dx.doi.org/10.1186/1754-6834-6-95] [PMID: 23826995]
[54]
Kieboom, J.; Dennis, J.J.; de Bont, J.A.M.; Zylstra, G.J. Identification and molecular characterization of an efflux pump involved in Pseudomonas putida S12 solvent tolerance. J. Biol. Chem., 1998, 273(1), 85-91.
[http://dx.doi.org/10.1074/jbc.273.1.85] [PMID: 9417051]
[55]
Yao, X.; Tao, F.; Zhang, K.; Tang, H.; Xu, P. Multiple roles for two efflux pumps in the polycyclic aromatic hydrocarbon-degrading Pseudomonas putida strain B6-2 (DSM 28064). Appl. Environ. Microbiol., 2017, 83(24), e01882-e17.
[http://dx.doi.org/10.1128/AEM.01882-17] [PMID: 29030440]
[56]
Mingardon, F.; Clement, C.; Hirano, K.; Nhan, M.; Luning, E.G.; Chanal, A.; Mukhopadhyay, A. Improving olefin tolerance and production in E. coli using native and evolved AcrB. Biotechnol. Bioeng., 2015, 112(5), 879-888.
[http://dx.doi.org/10.1002/bit.25511] [PMID: 25450012]
[57]
Zhang, Y.; Dong, R.; Zhang, M.; Gao, H. Native efflux pumps of Escherichia coli responsible for short and medium chain alcohol. Biochem. Eng. J., 2018, 133, 149-156.
[http://dx.doi.org/10.1016/j.bej.2018.02.009]
[58]
Kurgan, G.; Panyon, L.A.; Rodriguez-Sanchez, Y.; Pacheco, E.; Nieves, L.M.; Mann, R.; Nielsen, D.R.; Wang, X. Bioprospecting of native efflux pumps to enhance furfural tolerance in ethanologenic Escherichia coli. Appl. Environ. Microbiol., 2019, 85(6), e02985-e18.
[http://dx.doi.org/10.1128/AEM.02985-18] [PMID: 30635383]
[59]
Aso, Y.; Miyamoto, Y.; Mine Harada, K.; Momma, K.; Kawai, S.; Hashimoto, W.; Mikami, B.; Murata, K. Engineered membrane superchannel improves bioremediation potential of dioxin-degrading bacteria. Nat. Biotechnol., 2006, 24(2), 188-189.
[http://dx.doi.org/10.1038/nbt1181] [PMID: 16415854]
[60]
Nishida, N.; Ozato, N.; Matsui, K.; Kuroda, K.; Ueda, M. ABC transporters and cell wall proteins involved in organic solvent tolerance in Saccharomyces cerevisiae. J. Biotechnol., 2013, 165(2), 145-152.
[http://dx.doi.org/10.1016/j.jbiotec.2013.03.003] [PMID: 23523622]
[61]
Li, X.Z.; Zhang, L.; Poole, K. Role of the multidrug efflux systems of Pseudomonas aeruginosa in organic solvent tolerance. J. Bacteriol., 1998, 180(11), 2987-2991.
[http://dx.doi.org/10.1128/JB.180.11.2987-2991.1998] [PMID: 9603892]
[62]
Lee, J.O.; Cho, K.S.; Kim, O.B. Overproduction of AcrR increases organic solvent tolerance mediated by modulation of SoxS regulon in Escherichia coli. Appl. Microbiol. Biotechnol., 2014, 98(20), 8763-8773.
[http://dx.doi.org/10.1007/s00253-014-6024-9] [PMID: 25176444]
[63]
Yao, X.; Tao, F.; Tang, H.; Hu, H.; Wang, W.; Xu, P. Unique regulator SrpR mediates crosstalk between efflux pumps TtgABC and SrpABC in Pseudomonas putida B6‐2 (DSM 28064). Mol. Microbiol., 2021, 115(1), 131-141.
[http://dx.doi.org/10.1111/mmi.14605] [PMID: 32945019]
[64]
Shah, A.A.; Wang, C.; Chung, Y.R.; Kim, J.Y.; Choi, E.S.; Kim, S.W. Enhancement of geraniol resistance of Escherichia coli by MarA overexpression. J. Biosci. Bioeng., 2013, 115(3), 253-258.
[http://dx.doi.org/10.1016/j.jbiosc.2012.10.009] [PMID: 23168261]
[65]
Boyarskiy, S.; Davis López, S.; Kong, N.; Tullman-Ercek, D. Transcriptional feedback regulation of efflux protein expression for increased tolerance to and production of n-butanol. Metab. Eng., 2016, 33, 130-137.
[http://dx.doi.org/10.1016/j.ymben.2015.11.005] [PMID: 26656942]
[66]
Chong, H.; Yeow, J.; Wang, I.; Song, H.; Jiang, R. Improving acetate tolerance of Escherichia coli by rewiring its global regulator cAMP receptor protein (CRP). PLoS One, 2013, 8(10), , e77422..
[http://dx.doi.org/10.1371/journal.pone.0077422] [PMID: 24124618]
[67]
Foo, J.; Leong, S. Directed evolution of an E. coli inner membrane transporter for improved efflux of biofuel molecules. Biotechnol. Biofuels, 2013, 6(1), 81.
[http://dx.doi.org/10.1186/1754-6834-6-81] [PMID: 23693002]
[68]
Fisher, M.A.; Boyarskiy, S.; Yamada, M.R.; Kong, N.; Bauer, S.; Tullman-Ercek, D. Enhancing tolerance to short-chain alcohols by engineering the Escherichia coli AcrB efflux pump to secrete the non-native substrate n-butanol. ACS Synth. Biol., 2014, 3(1), 30-40.
[http://dx.doi.org/10.1021/sb400065q] [PMID: 23991711]
[69]
Boyarskiy, S.; Tullman-Ercek, D. Getting pumped: Membrane efflux transporters for enhanced biomolecule production. Curr. Opin. Chem. Biol., 2015, 28, 15-19.
[http://dx.doi.org/10.1016/j.cbpa.2015.05.019] [PMID: 26056950]
[70]
Sligar, S.G.; Denisov, I.G. Nanodiscs: A toolkit for membrane protein science. Protein Sci., 2021, 30(2), 297-315.
[http://dx.doi.org/10.1002/pro.3994] [PMID: 33165998]
[71]
Orädd, F.; Andersson, M. Tracking membrane protein dynamics in real time. J. Membr. Biol., 2021, 254(1), 51-64.
[http://dx.doi.org/10.1007/s00232-020-00165-8] [PMID: 33409541]
[72]
Schubeis, T.; Le Marchand, T.; Daday, C.; Kopec, W.; Tekwani Movellan, K.; Stanek, J.; Schwarzer, T.S.; Castiglione, K.; de Groot, B.L.; Pintacuda, G.; Andreas, L.B. A β-barrel for oil transport through lipid membranes: Dynamic NMR structures of AlkL. Proc. Natl. Acad. Sci. USA, 2020, 117(35), 21014-21021.
[http://dx.doi.org/10.1073/pnas.2002598117] [PMID: 32817429]
[73]
Wagner, S.; Baars, L.; Ytterberg, A.J.; Klussmeier, A.; Wagner, C.S.; Nord, O.; Nygren, P.Å.; van Wijk, K.J.; de Gier, J.W. Consequences of membrane protein overexpression in Escherichia coli. Mol. Cell. Proteomics, 2007, 6(9), 1527-1550.
[http://dx.doi.org/10.1074/mcp.M600431-MCP200] [PMID: 17446557]
[74]
Bradley, R.W.; Buck, M.; Wang, B. Recognizing and engineering digital-like logic gates and switches in gene regulatory networks. Curr. Opin. Microbiol., 2016, 33, 74-82.
[http://dx.doi.org/10.1016/j.mib.2016.07.004] [PMID: 27450541]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy