Generic placeholder image

Current Medical Imaging

Editor-in-Chief

ISSN (Print): 1573-4056
ISSN (Online): 1875-6603

Research Article

Microwave 3D Imaging System Featuring the Phase Coherence Factor for Improved Beamforming

Author(s): Rasammal Rasappan, Nik Syarim Nik Anwar, Tareq Faisal Zanoon, Tiang Sew Sun, Mohd. Fadzil Ain and Mohd. Zaid Abdullah*

Volume 18, Issue 9, 2022

Published on: 12 April, 2022

Article ID: e040322201683 Pages: 13

DOI: 10.2174/1573405618666220304093447

Price: $65

Abstract

Background: This paper presents an improved radar-based imaging system for breast cancer detection that features p-slot ultrawideband antennae in a 32-array set-up. The improved reconstruction algorithm incorporates the phase coherence factor (PCF) into the conventional delay and sum (DAS) beamforming algorithm, thus effectively suppressing noise arising from the side- and gratinglobe interferences.

Methods: The system is tested by using several breast models fabricated from chemical mixtures formulated on the basis of realistic human tissues. Each model is placed in a hemispherical breast radome that was fabricated from polylactide material and surrounded by 32 p-slot antennae mounted in four concentric layers. These antennae are connected to an 8.5 GHz vector network analyser through two 16-channel multiplexers that automatically switch different combinations of transmitter and receiver pairs in a sequential manner.

Results: The system can accurately detect 5 mm tumours in a complex and homogeneously dense 3D breast model with an average signal-to-clutter ratio and full-width half-maximum of 7.0 dB and 2.3 mm, respectively. These values are more competitive than the values of other beamforming algorithms, even with contrasts as low as 1:2.

Conclusion: The proposed PCF-weighted DAS is the best-performing algorithm amongst the tested beamforming techniques. This research paves the way for a clinical trial involving human subjects. Our laboratory is planning such a trial as part of future work.

Keywords: Breast cancer detection, ultrawideband, phase coherence factor, beamforming, delay and sum, side-lobe noise.

Graphical Abstract

[1]
DeSantis CE, Ma J, Gaudet MM, et al. Breast cancer statistics, 2019. CA Cancer J Clin 2019; 69(6): 438-51.
[http://dx.doi.org/10.3322/caac.21583] [PMID: 31577379]
[2]
Bray F. Transitions in human development and the global cancer burden. World Cancer Report 2014; 4(15): 54-68.
[3]
Gøtzsche PC, Jørgensen KJ. Screening for breast cancer with mammography. Cochrane Database Syst Rev 2013; 1(6): CD001877.
[PMID: 23737396]
[4]
Autier P, Boniol M. Mammography screening: A major issue in medicine. Eur J Cancer 2018; 90: 34-62.
[http://dx.doi.org/10.1016/j.ejca.2017.11.002] [PMID: 29272783]
[5]
Modiri A, Goudreau S, Rahimi A, Kiasaleh K. Review of breast screening: Toward clinical realization of microwave imaging. Med Phys 2017; 44(12): e446-58.
[http://dx.doi.org/10.1002/mp.12611] [PMID: 28976568]
[6]
van den Ende C, Oordt-Speets AM, Vroling H, van Agt HME. Benefits and harms of breast cancer screening with mammography in women aged 40-49 years: A systematic review. Int J Cancer 2017; 141(7): 1295-306.
[http://dx.doi.org/10.1002/ijc.30794] [PMID: 28542784]
[7]
Houssami N, Nehmat H. Overdiagnosis of breast cancer in population screening: Does it make breast screening worthless? Cancer Biol Med 2017; 14(1): 1-8.
[http://dx.doi.org/10.20892/j.issn.2095-3941.2016.0050] [PMID: 28443199]
[8]
Diacon AH, Pym A, Grobusch M, et al. The diarylquinoline TMC207 for multidrug-resistant tuberculosis. N Engl J Med 2009; 360(23): 2397-405.
[9]
Fear EC, Hagness SC, Meaney PM, Okoniewski M, Stuchly MA. Enhancing breast tumor detection with near-field imaging. IEEE Microw Mag 2002; 3(1): 48-56.
[http://dx.doi.org/10.1109/6668.990683]
[10]
Fear EC, Meaney PM, Stuchly MA. Microwaves for breast cancer detection? IEEE Potentials 2003; 22(1): 12-8.
[http://dx.doi.org/10.1109/MP.2003.1180933]
[11]
Fear EC, Li X, Hagness SC, Stuchly MA. Confocal microwave imaging for breast cancer detection: Localization of tumors in three dimen-sions. IEEE Trans Biomed Eng 2002; 49(8): 812-22.
[http://dx.doi.org/10.1109/TBME.2002.800759] [PMID: 12148820]
[12]
Xie Y, Guo B, Xu L, Li J, Stoica P. Multistatic adaptive microwave imaging for early breast cancer detection. IEEE Trans Biomed Eng 2006; 53(8): 1647-57.
[http://dx.doi.org/10.1109/TBME.2006.878058] [PMID: 16916099]
[13]
Guo B, Wang Y, Li J, Stoica P, Wu R. Microwave imaging via adaptive beam forming methods for breast cancer detection. J Electromagn Waves Appl 2006; 20(1): 53-63.
[http://dx.doi.org/10.1163/156939306775777350]
[14]
Li X, Hagness SC. A confocal microwave imaging algorithm for breast cancer detection. IEEE Microw Wirel Compon Lett 2001; 11(3): 130-2.
[http://dx.doi.org/10.1109/7260.915627]
[15]
Li Y, Porter E, Coates M. Imaging-based classification algorithms on clinical trial data with injected tumour responses. In: 2015 9th European Conference on Antennas and Propagation (EuCAP); 2015. Apr 13-17; Lisbon, Portugal; pp. 1-5.
[16]
Hagness SC, Taflove A, Bridges JE. Two-dimensional FDTD analysis of a pulsed microwave confocal system for breast cancer detection: Fixed-focus and antenna-array sensors. IEEE Trans Biomed Eng 1998; 45(12): 1470-9.
[http://dx.doi.org/10.1109/10.730440] [PMID: 9835195]
[17]
Aldhaeebi MA, Alzoubi K, Almoneef TS, Bamatraf SM, Attia HM, Ramahi O. Review of microwaves techniques for breast cancer detec-tion. Sensors (Basel) 2020; 20(8): 1-38.
[http://dx.doi.org/10.3390/s20082390] [PMID: 32331443]
[18]
Elahi MA, O’Loughlin D, Lavoie BR, et al. Evaluation of image reconstruction algorithms for confocal microwave imaging: Application to patient data. Sensors (Basel) 2018; 18(6): E1678.
[http://dx.doi.org/10.3390/s18061678] [PMID: 29882893]
[19]
Lim HB, Nhung NTT, Li EP, Thang ND. Confocal microwave imaging for breast cancer detection: Delay-multiply-and-sum image recon-struction algorithm. IEEE Trans Biomed Eng 2008; 55(6): 1697-704.
[http://dx.doi.org/10.1109/TBME.2008.919716] [PMID: 18714833]
[20]
Mozaffarzadeh M, Mahloojifar A, Orooji M, Adabi S, Nasiriavanaki M. Double-stage delay multiply and sum beamforming algorithm: Ap-plication to linear-array photoacoustic imaging. IEEE Trans Biomed Eng 2018; 65(1): 31-42.
[http://dx.doi.org/10.1109/TBME.2017.2690959] [PMID: 28391187]
[21]
Hollman KW, Rigby KW, O’donnell M. Coherence factor of speckle from a multi-row probe. In: 1999 IEEE Ultrasonics Symposium Proceedings International Symposium (Cat No 99CH37027); 1999. Oct 17-20; Tahoe, NV, USA; pp.1257-60.
[http://dx.doi.org/10.1109/ULTSYM.1999.849225]
[22]
Tiang SS, Hathal MS, Anwar NS, Ain MF, Abdullah MZ. Development of a compact wide-slot antenna for early stage breast cancer detec-tion featuring circular array full-view geometry. Int J Antennas Propag 2014; 2014: 309321.
[http://dx.doi.org/10.1155/2014/309321]
[23]
Nilsen CIC, Holm S. Wiener beamforming and the coherence factor in ultrasound imaging. IEEE Trans Ultrason Ferroelectr Freq Control 2010; 57(6): 1329-46.
[http://dx.doi.org/10.1109/TUFFC.2010.1553] [PMID: 20529709]
[24]
Mozumi M, Hasegawa H. Adaptive beamformer combined with phase coherence weighting applied to ultrafast ultrasound. Appl Sci (Basel) 2017; 8(2): 204-9.
[http://dx.doi.org/10.3390/app8020204]
[25]
Nilavalan R, Gbedemah A, Craddock IJ, Li X, Hagness SC. Numerical investigation of breast tumour detection using multi-static radar. Electron Lett 2003; 39(25): 8-9.
[http://dx.doi.org/10.1049/el:20031183]
[26]
Panduro MA, Reyna A, Covarrubias DH. Non-uniform concentric rings design for ultra-wideband arrays. Sensors (Basel) 2019; 19(10): 2262.
[http://dx.doi.org/10.3390/s19102262] [PMID: 31100825]
[27]
Bianchi D, Genovesi S, Monorchio A. Constrained pareto optimization of wide band and steerable concentric ring arrays. IEEE Trans Antenn Propag 2012; 60(7): 3195-204.
[http://dx.doi.org/10.1109/TAP.2012.2196909]
[28]
Dietrich CB Jr. Antenna Arrays and Beamforming 2000.
[29]
Camacho J, Parrilla M, Fritsch C. Phase coherence imaging. IEEE Trans Ultrason Ferroelectr Freq Control 2009; 56(5): 958-74.
[30]
Hahn SL. Hilbert transforms in signal processing. Boston: Artech House 1996; Vol. 2
[31]
Shbat M, Ordaz-Salazar FC, González-Salas JS. Introductory chapter: Smart antennas and beam-formation. In: Shbat M, Ed. Antenna Arrays and Beam-formation. London: IntechOpen 2017; 1.
[32]
Rummel S. Tumor within the breast: Does tumour site has prognostic ability? Ecancermedicalscience 2015; 2015: 9.
[33]
Porter E, Fakhoury J, Oprisor R, Coates M. Popović M. Improved tissue phantoms for experimental validation of microwave breast cancer detection. In: Proceedings of the Fourth European Conference on Antennas and Propagation. 2010 Apr 12-16; Barcelona, Spain. 1-5.
[34]
Tiang SS, Ain MF, Abdullah MZ. Compact and wideband wide-slot antenna for microwave imaging system In: 2011 IEEE International RF & Microwave Conference; 2011. Dec 12-14; Seremban, Malaysia; pp. 63-6.
[http://dx.doi.org/10.1109/RFM.2011.6168696]
[35]
Kwon S, Lee S. Recent advances in microwave imaging for breast cancer detection. Int J Biomed Imaging 2016; 2016: 5054912.
[http://dx.doi.org/10.1155/2016/5054912] [PMID: 28096808]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy