Generic placeholder image

Coronaviruses

Editor-in-Chief

ISSN (Print): 2666-7967
ISSN (Online): 2666-7975

Review Article

Recent Advances in Understanding SARS-CoV-2 Infection and Updates on Potential Diagnostic and Therapeutics for COVID-19

Author(s): Damini Verma, Amit K. Yadav, Navneet Chaudhary, Maumita D. Mukherjee*, Pramod Kumar, Anil Kumar* and Pratima R. Solanki*

Volume 3, Issue 4, 2022

Published on: 20 May, 2022

Article ID: e020322201607 Pages: 18

DOI: 10.2174/2666796703666220302143102

Abstract

A more focused approach is needed to understand the SARS-CoV-2 virulence, structure, and genomics to devise more effective diagnostic and treatment interventions as this virus can evade the immune attack and causes life-threatening complications such as cytokine storm. The spread of the virus is still amplifying and causing thousands of new cases worldwide. It is essential to review current diagnostics and treatment approaches to pave the way to correct or modify our current practices to make more effective interventions against COVID-19. COVID-19 vaccine development has moved at a breakneck pace since the outbreak began, utilizing practically all possible platforms or tactics to ensure the success of vaccines. A total of 42 vaccine candidates have already entered clinical trials, including promising results from numerous vaccine candidates in phase 1 or phase 2 trials. Further, many existing drugs are being explored on broad-spectrum antiviral medications for their use in clinical recovery against COVID- 19. The present review attempts to re-examine the SARS-CoV-2 structure, its viral life cycle, clinical symptoms and pathogenesis, mode of transmission, diagnostics, and treatment strategies that may be useful for resorting to more effective approaches for controlling COVID-19. Various antiviral drugs and vaccination strategies with their strengths and weaknesses are also discussed in the paper to augment our understanding of COVID-19 management.

Keywords: Coronavirus, COVID-19, diagnostic kits, SARS-CoV-2, therapeutic drugs, vaccines.

[1]
Yadav AK, Verma D, Kumar A, Kumar P, Solanki PR. The perspectives of biomarker-based electro-chemical immunosensors, artificial intelligence and the internet of medical things toward COVID-19 diagnosis and management. Mater Today Chem 2021; 20: 100443.
[http://dx.doi.org/10.1016/j.mtchem.2021.100443] [PMID: 33615086]
[2]
Bogoch II, Watts A, Thomas-Bachli A, Huber C, Kraemer MU, Khan K. Pneumonia of unknown eti-ology in wuhan, china: Potential for international spread via commercial air travel. J Travel Med 2020; 27(2): taaa008.
[http://dx.doi.org/10.1093/jtm/taaa008]
[3]
Lu H, Stratton CW, Tang YW. Outbreak of pneumonia of unknown etiology in Wuhan China: The mystery and the miracle. J Med Virol 2020; 92(4): 401-2.
[http://dx.doi.org/10.1002/jmv.25678]
[4]
Singhal T. A review of coronavirus disease-2019 (COVID-19). Indian J Pediatr 2020; 87(4): 281-6.
[http://dx.doi.org/10.1007/s12098-020-03263-6] [PMID: 32166607]
[5]
Organization WH. Novel Coronavirus ( 2019-nCoV) : Situation Report. 2020; 3. Available from: https://apps.who.int/iris/handle/10665/330762
[6]
Chan JFW, To KKW, Tse H, Jin DY, Yuen KY. Interspecies transmission and emergence of novel vi-ruses: Lessons from bats and birds. Trends Microbiol 2013; 21(10): 544-55.
[http://dx.doi.org/10.1016/j.tim.2013.05.005] [PMID: 23770275]
[7]
Zhu N, Zhang D, Wang W, et al. A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med 2020; 382(8): 727-33.
[http://dx.doi.org/10.1056/NEJMoa2001017] [PMID: 31978945]
[8]
Corman VM, Ithete NL, Richards LR, et al. Rooting the phylogenetic tree of middle East respiratory syndrome coronavirus by characterization of a conspecific virus from an African bat. J Virol 2014; 88(19): 11297-303.
[http://dx.doi.org/10.1128/JVI.01498-14] [PMID: 25031349]
[9]
Cui J, Li F, Shi ZL. Origin and evolution of pathogenic coronaviruses. Nat Rev Microbiol 2019; 17(3): 181-92.
[http://dx.doi.org/10.1038/s41579-018-0118-9] [PMID: 30531947]
[10]
Rahman A, Sarkar A. Risk factors for fatal middle east respiratory syndrome coronavirus infections in Saudi Arabia: Analysis of the WHO line list, 2013-2018. Am J Public Health 2019; 109(9): 1288-93.
[http://dx.doi.org/10.2105/AJPH.2019.305186] [PMID: 31318592]
[11]
Memish ZA, Zumla AI, Assiri A. Middle East respiratory syndrome coronavirus infections in health care workers. N Engl J Med 2013; 369(9): 884-6.
[http://dx.doi.org/10.1056/NEJMc1308698] [PMID: 23923992]
[12]
Coronaviridae Study Group of the International Committee on Taxonomy of Viruses. The species se-vere acute respiratory syndrome-related coronavirus: Classifying 2019-nCoV and naming it SARS-CoV-2. Nat Microbiol 2020; 5(4): 536-44.
[http://dx.doi.org/10.1038/s41564-020-0695-z] [PMID: 32123347]
[13]
Kupferschmidt K, Cohen J. Will novel virus go pandemic or be contained? Science 2020; 367(6478): 610-1.
[http://dx.doi.org/10.1126/science.367.6478.610]
[14]
Mishra A, Nair N, Yadav AK, Solanki P, Majeed J, Tripathi V. Coronavirus Disease 2019 (COVID-19): Origin, impact, and drug development. (Ed), SARS-CoV-2 Origin and COVID-19 Pandemic Across the Globe. Intech Open 2021.
[http://dx.doi.org/10.5772/intechopen.98358]
[15]
Liu Y, Wang K, Massoud TF, Paulmurugan R. SARS-CoV-2 vaccine development: An overview and perspectives. ACS Pharmacol Transl Sci 2020; 3(5): 844-58.
[http://dx.doi.org/10.1021/acsptsci.0c00109] [PMID: 33062951]
[16]
Poland GA, Ovsyannikova IG, Crooke SN, Kennedy RB. Eds SARS-CoV-2 vaccine development: Current status. Mayo Clin Proc 2020; 95(10): 2172-88.
[http://dx.doi.org/10.1016/j.mayocp.2020.07.021]
[17]
Seow J, Graham C, Merrick B, Acors S, Pickering S, Steel KJ. Longitudinal evaluation and decline of antibody responses in SARS-CoV-2 infection. Nat Microbiol 2020; 5(12): 1598.
[http://dx.doi.org/10.1038/s41564-020-00813-8] [PMID: 33106674]
[18]
Wang K, Long QX, Deng HJ, et al. Longitudinal dynamics of the neutralizing antibody response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Clin Infect Dis 2021; 73(3): e531-9.
[http://dx.doi.org/10.1093/cid/ciaa1143] [PMID: 32745196]
[19]
To K, Hung I, Ip JD, Chu A, Chan WM, Tam AR, et al. COVID-19 re-infection by a phylogenetical-ly distinct SARS-coronavirus-2 strain confirmed by whole genome sequencing. Clin Infect Dis 2021; 73(9): e2946-51.
[http://dx.doi.org/10.1093/cid/ciaa1275] [PMID: 32840608]
[20]
Venkat Kumar G, Jeyanthi V, Ramakrishnan S. A short review on antibody therapy for COVID-19. New Microbes New Infect 2020; 35: 100682.
[http://dx.doi.org/10.1016/j.nmni.2020.100682] [PMID: 32313660]
[21]
Woo PC, Huang Y, Lau SK, Yuen K-Y. Coronavirus genomics and bioinformatics analysis. Viruses 2010; 2(8): 1804-20.
[http://dx.doi.org/10.3390/v2081803] [PMID: 21994708]
[22]
Jalandra R, Yadav AK, Verma D, et al. Strategies and perspectives to develop SARS-CoV-2 detec-tion methods and diagnostics. Biomed Pharmacother 2020; 129: 110446.
[http://dx.doi.org/10.1016/j.biopha.2020.110446] [PMID: 32768943]
[23]
Sajadi MM, Habibzadeh P, Vintzileos A, Shokouhi S, Miralles-Wilhelm F, Amoroso A. Temperature, humidity and latitude analysis to predict potential spread and seasonality for COVID-19. SSRN 2020; 3550308.
[http://dx.doi.org/10.2139/ssrn.3550308] [PMID: 32714105]
[24]
Casanova LM, Jeon S, Rutala WA, Weber DJ, Sobsey MD. Effects of air temperature and relative humidity on coronavirus survival on surfaces. Appl Environ Microbiol 2010; 76(9): 2712-7.
[http://dx.doi.org/10.1128/AEM.02291-09] [PMID: 20228108]
[25]
Gaunt ER, Hardie A, Claas EC, Simmonds P, Templeton KE. Epidemiology and clinical presenta-tions of the four human coronaviruses 229E, HKU1, NL63, and OC43 detected over 3 years using a novel multiplex real-time PCR method. J Clin Microbiol 2010; 48(8): 2940-7.
[http://dx.doi.org/10.1128/JCM.00636-10] [PMID: 20554810]
[26]
Sardar R, Satish D, Birla S, Gupta D. Comparative analyses of SAR-CoV-2 genomes from different geographical locations and other coronavirus family genomes reveals unique features potentially con-sequential to host-virus interaction and pathogenesis. bioRxiv 2020.
[http://dx.doi.org/10.1101/2020.03.21.001586]
[27]
Li Q, Guan X, Wu P, et al. Early transmission dynamics in Wuhan, China, of novel coronavirus–infected pneumonia. N Engl J Med 2020; 382(13): 1199-207.
[http://dx.doi.org/10.1056/NEJMoa2001316] [PMID: 31995857]
[28]
Wang W, Tang J, Wei F. Updated understanding of the outbreak of 2019 novel coronavirus (2019-nCoV) in Wuhan, China. J Med Virol 2020; 92(4): 441-7.
[http://dx.doi.org/10.1002/jmv.25689] [PMID: 31994742]
[29]
Zeng LK, Tao XW, Yuan WH, Wang J, Liu X, Liu ZS. First case of neonate infected with novel coronavirus pneumonia in China. Zhonghua Er Ke Za Zhi 2020; 58(0): E009.
[PMID: 32065520]
[30]
To KKW, Tsang OTY, Yip CCY, et al. Consistent detection of 2019 novel coronavirus in saliva. Clin Infect Dis 2020; 71(15): 841-3.
[http://dx.doi.org/10.1093/cid/ciaa149] [PMID: 32047895]
[31]
Bhadra S, Jiang YS, Kumar MR, Johnson RF, Hensley LE, Ellington AD. Real-time sequence-validated loop-mediated isothermal amplification assays for detection of Middle East respiratory syn-drome coronavirus (MERS-CoV). PLoS One 2015; 10(4): e0123126.
[http://dx.doi.org/10.1371/journal.pone.0123126] [PMID: 25856093]
[32]
Chan JFW, Choi GKY, Tsang AKL, et al. Development and evaluation of novel real-time reverse transcription-PCR assays with locked nucleic acid probes targeting leader sequences of human-pathogenic coronaviruses. J Clin Microbiol 2015; 53(8): 2722-6.
[http://dx.doi.org/10.1128/JCM.01224-15] [PMID: 26019210]
[33]
Huang P, Liu T, Huang L, et al. Use of chest CT in combination with negative RT-PCR assay for the 2019 novel coronavirus but high clinical suspicion. Radiology 2020; 295(1): 22-3.
[http://dx.doi.org/10.1148/radiol.2020200330] [PMID: 32049600]
[34]
Chu DKW, Pan Y, Cheng SMS, et al. Molecular diagnosis of a novel coronavirus (2019-nCoV) caus-ing an outbreak of pneumonia. Clin Chem 2020; 66(4): 549-55.
[http://dx.doi.org/10.1093/clinchem/hvaa029] [PMID: 32031583]
[35]
Chan JFW, Yip CCY, To KKW, et al. Improved molecular diagnosis of COVID-19 by the novel, highly sensitive and specific COVID-19-RdRp/Hel real-time reverse transcription-PCR assay validat-ed in vitro and with clinical specimens. J Clin Microbiol 2020; 58(5): e00310-20.
[http://dx.doi.org/10.1128/JCM.00310-20] [PMID: 32132196]
[36]
Cobb B, Simon CO, Stramer SL, et al. The Cobas® 6800/8800 System: A new era of automation in molecular diagnostics. Expert Rev Mol Diagn 2017; 17(2): 167-80.
[http://dx.doi.org/10.1080/14737159.2017.1275962] [PMID: 28043179]
[37]
Marlowe EM, Hardy D, Krevolin M, et al. High-throughput testing of urogenital and extragenital specimens for detection of Chlamydia trachomatis and Neisseria gonorrhoeae with Cobas® CT/NG. Eur J Microbiol Immunol (Bp) 2017; 7(3): 176-86.
[http://dx.doi.org/10.1556/1886.2017.00018] [PMID: 29034107]
[38]
Greub G, Sahli R, Brouillet R, Jaton K. Ten years of R&D and full automation in molecular diagnosis. Future Microbiol 2016; 11(3): 403-25.
[http://dx.doi.org/10.2217/fmb.15.152] [PMID: 27028061]
[39]
Eigner U, Reucher S, Hefner N, et al. Clinical evaluation of multiplex RT-PCR assays for the detec-tion of influenza A/B and respiratory syncytial virus using a high throughput system. J Virol Methods 2019; 269: 49-54.
[http://dx.doi.org/10.1016/j.jviromet.2019.03.015] [PMID: 30946852]
[40]
Pfefferle S, Reucher S, Nörz D, Lütgehetmann M. Evaluation of a quantitative RT-PCR assay for the detection of the emerging coronavirus SARS-CoV-2 using a high throughput system. Euro Surveill 2020; 25(9): 2000152.
[http://dx.doi.org/10.2807/1560-7917.ES.2020.25.9.2000152] [PMID: 32156329]
[41]
Xie X, Zhong Z, Zhao W, Zheng C, Wang F, Liu J. Chest CT for typical 2019-nCoV pneumonia: Re-lationship to negative RT-PCR testing. Radiology 2020; 296(2): E41-5.
[http://dx.doi.org/10.1148/radiol.2020200343]
[42]
Green K, Graziadio S, Turner P, Fanshawe T, Allen J. Molecular and antibody point-of-care tests to support the screening, diagnosis and monitoring of COVID-19 The Centre for Evidence-Based Med-icine 2020. https://www.cebm.net/covid-19/molecular-and-antibody-point-of-care-tests-to-support-the-screening-diagnosis-and-monitoring-of-covid-19/
[43]
Chen N, Zhou M, Dong X, et al. Epidemiological and clinical characteristics of 99 cases of 2019 nov-el coronavirus pneumonia in Wuhan, China: A descriptive study. Lancet 2020; 395(10223): 507-13.
[http://dx.doi.org/10.1016/S0140-6736(20)30211-7] [PMID: 32007143]
[44]
Expert consensus on chloroquine phosphate for the treatment of novel coronavirus pneumonia. Zhonghua Jie He He Hu Xi Za Zhi 2020; 43(3): 185-8.
[PMID: 32164085]
[45]
Jin YH, Cai L, Cheng ZS, et al. A rapid advice guideline for the diagnosis and treatment of 2019 novel coronavirus (2019-nCoV) infected pneumonia (standard version). Mil Med Res 2020; 7(1): 4.
[http://dx.doi.org/10.1186/s40779-020-0233-6] [PMID: 32029004]
[46]
Zhang L, Liu Y. Potential interventions for novel coronavirus in China: A systematic review. J Med Virol 2020; 92(5): 479-90.
[http://dx.doi.org/10.1002/jmv.25707] [PMID: 32052466]
[47]
Liu C, Zhou Q, Li Y, et al. Research and development on therapeutic agents and vaccines for COVID-19 and related human coronavirus diseases.ACS Cent Sci 2020; 6(3): 315-.
[http://dx.doi.org/10.1021/acscentsci.0c00272]
[48]
Sheahan TP, Sims AC, Leist SR, et al. Comparative therapeutic efficacy of remdesivir and combina-tion lopinavir, ritonavir, and interferon beta against MERS-CoV. Nat Commun 2020; 11(1): 222.
[http://dx.doi.org/10.1038/s41467-019-13940-6] [PMID: 31924756]
[49]
Maxmen A. More than 80 clinical trials launch to test coronavirus treatments. Nature 2020; 578(7795): 347-8.
[http://dx.doi.org/10.1038/d41586-020-00444-3] [PMID: 32071447]
[50]
Kadam RU, Wilson IA. Structural basis of influenza virus fusion inhibition by the antiviral drug Ar-bidol. Proc Natl Acad Sci USA 2017; 114(2): 206-14.
[http://dx.doi.org/10.1073/pnas.1617020114] [PMID: 28003465]
[51]
Qiu R, Wei X, Zhao M, Zhong C, Zhao C, Hu J, et al. Outcome reporting from protocols of clinical trials of corona-virus disease 2019 2020.(COVID-19): A review medRxiv
[http://dx.doi.org/10.1101/2020.03.04.20031401]
[52]
Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 2020; 181(2): 271-280.e8.
[http://dx.doi.org/10.1016/j.cell.2020.02.052] [PMID: 32142651]
[53]
Morse JS, Lalonde T, Xu S, Liu WR. Learning from the past: Possible urgent prevention and treat-ment options for severe acute respiratory infections caused by 2019‐nCoV. ChemBioChem 2020; 21(5): 730-8.
[http://dx.doi.org/10.1002/cbic.202000047] [PMID: 32022370]
[54]
Guo D. Old weapon for new enemy: Drug repurposing for treatment of newly emerging viral diseas-es. Virol Sin 2020; 35(3): 253-5.
[http://dx.doi.org/10.1007/s12250-020-00204-7] [PMID: 32048130]
[55]
Arabi YM, Mandourah Y, Al-Hameed F, et al. Corticosteroid therapy for critically ill patients with Middle East respiratory syndrome. Am J Respir Crit Care Med 2018; 197(6): 757-67.
[http://dx.doi.org/10.1164/rccm.201706-1172OC] [PMID: 29161116]
[56]
Wang Q, Mu F, Xie J, Cheng J, Fu Y, Jiang D. A single ssRNA segment encoding RdRp is sufficient for replication, infection, and transmission of ourmia-like virus in fungi. Front Microbiol 2020; 11: 379.
[http://dx.doi.org/10.3389/fmicb.2020.00379] [PMID: 32256466]
[57]
Samuel CE. Antiviral actions of interferons. Clin Microbiol Rev 2001; 14(4): 778-809.
[http://dx.doi.org/10.1128/CMR.14.4.778-809.2001] [PMID: 11585785]
[58]
Falzarano D, de Wit E, Rasmussen AL, et al. Treatment with interferon-α2b and ribavirin improves outcome in MERS-CoV-infected rhesus macaques. Nat Med 2013; 19(10): 1313-7.
[http://dx.doi.org/10.1038/nm.3362] [PMID: 24013700]
[59]
Yamamoto N, Yang R, Yoshinaka Y, et al. HIV protease inhibitor nelfinavir inhibits replication of SARS-associated coronavirus. Biochem Biophys Res Commun 2004; 318(3): 719-25.
[http://dx.doi.org/10.1016/j.bbrc.2004.04.083] [PMID: 15144898]
[60]
Elfiky AA. Anti-HCV, nucleotide inhibitors, repurposing against COVID-19. Life Sci 2020; 248: 117477.
[http://dx.doi.org/10.1016/j.lfs.2020.117477] [PMID: 32119961]
[61]
So LK, Lau AC, Yam LY, et al. Development of a standard treatment protocol for severe acute res-piratory syndrome. Lancet 2003; 361(9369): 1615-7.
[http://dx.doi.org/10.1016/S0140-6736(03)13265-5] [PMID: 12747883]
[62]
Morgenstern B, Michaelis M, Baer PC, Doerr HW, Cinatl J Jr. Ribavirin and interferon-β synergisti-cally inhibit SARS-associated coronavirus replication in animal and human cell lines. Biochem Biophys Res Commun 2005; 326(4): 905-8.
[http://dx.doi.org/10.1016/j.bbrc.2004.11.128] [PMID: 15607755]
[63]
Zumla A, Chan JF, Azhar EI, Hui DS, Yuen K-Y. Coronaviruses - drug discovery and therapeutic options. Nat Rev Drug Discov 2016; 15(5): 327-47.
[http://dx.doi.org/10.1038/nrd.2015.37] [PMID: 26868298]
[64]
Tchesnokov EP, Feng JY, Porter DP, Götte M. Mechanism of inhibition of Ebola virus RNA-dependent RNA polymerase by remdesivir. Viruses 2019; 11(4): 326.
[http://dx.doi.org/10.3390/v11040326] [PMID: 30987343]
[65]
Mulangu S, Dodd LE, Davey RT Jr, et al. A randomized, controlled trial of Ebola virus disease thera-peutics. N Engl J Med 2019; 381(24): 2293-303.
[http://dx.doi.org/10.1056/NEJMoa1910993] [PMID: 31774950]
[66]
Wang Z, Chen X, Lu Y, Chen F, Zhang W. Clinical characteristics and therapeutic procedure for four cases with 2019 novel coronavirus pneumonia receiving combined Chinese and Western medicine treatment. Biosci Trends 2020; 14(1): 64-8.
[http://dx.doi.org/10.5582/bst.2020.01030] [PMID: 32037389]
[67]
Holshue ML, DeBolt C, Lindquist S, et al. First case of 2019 novel coronavirus in the United States. N Engl J Med 2020; 382(10): 929-36.
[http://dx.doi.org/10.1056/NEJMoa2001191] [PMID: 32004427]
[68]
Coronavirus F. Update: FDA Issues Emergency Use Authorization for Potential COVID-19 Treat-ment. Press Announc. 2020. Available from: https://www.fda.gov/news-events/press-announcements/coronavirus-covid-19-update-fda-issues-emergency-use-authorization-potential-covid-19-treatment
[69]
Musa A, Warbasse E, Baron DA, et al. Addendum to systematic review of remdesivir for the treat-ment of COVID-19. West J Emerg Med 2020; 21(4): 742-3.
[http://dx.doi.org/10.5811/westjem.2020.5.48121] [PMID: 32726231]
[70]
Williamson BN, Feldmann F, Schwarz B, et al. Clinical benefit of remdesivir in rhesus macaques in-fected with SARS-CoV-2. Nature 2020; 585(7824): 273-6.
[http://dx.doi.org/10.1038/s41586-020-2423-5] [PMID: 32516797]
[71]
Richardson P, Griffin I, Tucker C, et al. Baricitinib as potential treatment for 2019-nCoV acute res-piratory disease. Lancet 2020; 395(10223): e30-1.
[http://dx.doi.org/10.1016/S0140-6736(20)30304-4] [PMID: 32032529]
[72]
Mifsud EJ, Hayden FG, Hurt AC. Antivirals targeting the polymerase complex of influenza viruses. Antiviral Res 2019; 169: 104545.
[http://dx.doi.org/10.1016/j.antiviral.2019.104545] [PMID: 31247246]
[73]
Gleumark Pharmaceutical Ltd. Clinical trials on antiviral drug Favipiravir for COVID-19 patients in India 2019.
[74]
Sultana J, Cutroneo PM, Crisafulli S, Puglisi G, Caramori G, Trifirò G. Azithromycin in COVID-19 patients: Pharmacological mechanism, clinical evidence and prescribing guidelines. Drug Saf 2020; 43(8): 691-8.
[http://dx.doi.org/10.1007/s40264-020-00976-7] [PMID: 32696429]
[75]
Gautret P, Lagier JC, Parola P, et al. Hydroxychloroquine and azithromycin as a treatment of COVID-19: Results of an open-label non-randomized clinical trial. Int J Antimicrob Agents 2020; 56(1): 105949.
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105949] [PMID: 32205204]
[76]
González Canga A, Sahagún Prieto AM, Diez Liébana MJ, Fernández Martínez N, Sierra Vega M, García Vieitez JJ. The pharmacokinetics and interactions of ivermectin in humans--a mini-review. AAPS J 2008; 10(1): 42-6.
[http://dx.doi.org/10.1208/s12248-007-9000-9] [PMID: 18446504]
[77]
Tay MY, Fraser JE, Chan WK, et al. Nuclear localization of dengue virus (DENV) 1-4 non-structural protein 5; protection against all 4 DENV serotypes by the inhibitor ivermectin. Antiviral Res 2013; 99(3): 301-6.
[http://dx.doi.org/10.1016/j.antiviral.2013.06.002] [PMID: 23769930]
[78]
Caly L, Druce JD, Catton MG, Jans DA, Wagstaff KM. The FDA-approved drug ivermectin inhibits the replication of SARS-CoV-2 in vitro. Antiviral Res 2020; 178: 104787.
[http://dx.doi.org/10.1016/j.antiviral.2020.104787] [PMID: 32251768]
[79]
Zeldin RK, Petruschke RA. Pharmacological and therapeutic properties of ritonavir-boosted protease inhibitor therapy in HIV-infected patients. J Antimicrob Chemother 2004; 53(1): 4-9.
[http://dx.doi.org/10.1093/jac/dkh029] [PMID: 14657084]
[80]
Wang M, Cao R, Zhang L, et al. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res 2020; 30(3): 269-71.
[http://dx.doi.org/10.1038/s41422-020-0282-0] [PMID: 32020029]
[81]
Warren TK, Wells J, Panchal RG, et al. Protection against filovirus diseases by a novel broad-spectrum nucleoside analogue BCX4430. Nature 2014; 508(7496): 402-5.
[http://dx.doi.org/10.1038/nature13027] [PMID: 24590073]
[82]
Sahu KK, Mishra AK, Lal A. Comprehensive update on current outbreak of novel coronavirus infec-tion (2019-nCoV). Ann Transl Med 2020; 8(6): 393.
[http://dx.doi.org/10.21037/atm.2020.02.92] [PMID: 32355837]
[83]
Tang B, Li S, Xiong Y, et al. Coronavirus disease 2019 (COVID-19) pneumonia in a hemodialysis patient. Kidney Med 2020; 2(3): 354-8.
[PMID: 32292904]
[84]
Pang J, Wang MX, Ang IYH, et al. Potential rapid diagnostics, vaccine and therapeutics for 2019 novel coronavirus (2019-nCoV): A systematic review. J Clin Med 2020; 9(3): 623.
[http://dx.doi.org/10.3390/jcm9030623] [PMID: 32110875]
[85]
Chau TN, Lee KC, Yao H, et al. SARS-associated viral hepatitis caused by a novel coronavirus: Re-port of three cases. Hepatology 2004; 39(2): 302-10.
[http://dx.doi.org/10.1002/hep.20111] [PMID: 14767982]
[86]
Coleman CM, Sisk JM, Mingo RM, Nelson EA, White JM, Frieman MB. Abelson kinase inhibitors are potent inhibitors of severe acute respiratory syndrome coronavirus and Middle East respiratory syndrome coronavirus fusion. J Virol 2016; 90(19): 8924-33.
[http://dx.doi.org/10.1128/JVI.01429-16] [PMID: 27466418]
[87]
Park HY. Primary registry of the WHO International clinical trial registry platform: Clinical Research Information Service (CRIS). J Korean Med Assoc 2011; 54(1): 92-7.
[http://dx.doi.org/10.5124/jkma.2011.54.1.92]
[88]
Cong Y, Hart BJ, Gross R, et al. MERS-CoV pathogenesis and antiviral efficacy of licensed drugs in human monocyte-derived antigen-presenting cells. PLoS One 2018; 13(3): e0194868.
[http://dx.doi.org/10.1371/journal.pone.0194868] [PMID: 29566060]
[89]
Kindrachuk J. Selective inhibition of host cell signaling for rotavirus antivirals: PI3K/Akt/mTOR-mediated rotavirus pathogenesis. Virulence 2018; 9(1): 5-8.
[http://dx.doi.org/10.1080/21505594.2017.1356539] [PMID: 28723236]
[90]
Al Ghamdi M, Alghamdi KM, Ghandoora Y, et al. Treatment outcomes for patients with Middle Eastern Respiratory Syndrome coronavirus (MERS CoV) infection at a coronavirus referral center in the Kingdom of Saudi Arabia. BMC Infect Dis 2016; 16(1): 174.
[http://dx.doi.org/10.1186/s12879-016-1492-4] [PMID: 27097824]
[91]
Arabi YM, Shalhoub S, Mandourah Y, et al. Ribavirin and interferon therapy for critically Ill patients with middle East respiratory syndrome: A multicenter observational study. Clin Infect Dis 2020; 70(9): 1837-44.
[http://dx.doi.org/10.1093/cid/ciz544] [PMID: 31925415]
[92]
Arabi YM, Alothman A, Balkhy HH, et al. Treatment of Middle East respiratory syndrome with a combination of lopinavir-ritonavir and interferon-β1b (MIRACLE trial): Study protocol for a random-ized controlled trial. Trials 2018; 19(1): 81.
[http://dx.doi.org/10.1186/s13063-017-2427-0] [PMID: 29382391]
[93]
Chu H, Zhou J, Wong BHY, et al. Middle East respiratory syndrome coronavirus efficiently infects human primary T lymphocytes and activates the extrinsic and intrinsic apoptosis pathways. J Infect Dis 2016; 213(6): 904-14.
[http://dx.doi.org/10.1093/infdis/jiv380] [PMID: 26203058]
[94]
Lyssenko V, Jonsson A, Almgren P, et al. Clinical risk factors, DNA variants, and the development of type 2 diabetes. N Engl J Med 2008; 359(21): 2220-32.
[http://dx.doi.org/10.1056/NEJMoa0801869] [PMID: 19020324]
[95]
Cai Q, Yang M, Liu D, et al. Experimental treatment with favipiravir for COVID-19: An open-label control study. Engineering (Beijing) 2020; 6(10): 1192-8.
[http://dx.doi.org/10.1016/j.eng.2020.03.007] [PMID: 32346491]
[96]
Boltz D, Peng X, Muzzio M, Dash P, Thomas PG, Margitich V. Activity of enisamium, an isonicotin-ic acid derivative, against influenza viruses in differentiated normal human bronchial epithelial cells. Antivir Chem Chemother 2018; 26: 2040206618811416.
[http://dx.doi.org/10.1177/2040206618811416] [PMID: 30466301]
[97]
Cocking D, Cinatl J, Boltz DA, et al. Antiviral effect of a derivative of isonicotinic acid enisamium iodide (FAV00A) against influenza virus. Acta Virol 2018; 62(2): 191-5.
[http://dx.doi.org/10.4149/av_2018_211] [PMID: 29895160]
[98]
Rosa SGV, Santos WC. Clinical trials on drug repositioning for COVID-19 treatment. Rev Panam Salud Publica 2020; 44: e40.
[http://dx.doi.org/10.26633/RPSP.2020.40] [PMID: 32256547]
[99]
Qin C, Zhou L, Hu Z, et al. Dysregulation of immune response in patients with COVID-19 in Wuhan, China. Clin Infect Dis 2020 Jul 28; 71(15): 762-8.
[http://dx.doi.org/10.1093/cid/ciaa248] [PMID: 32161940]
[100]
Colson P, Rolain JM, Lagier JC, Brouqui P, Raoult D. Chloroquine and hydroxychloroquine as available weapons to fight COVID-19. Int J Antimicrob Agents 2020; 55(4): 105932.
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105932] [PMID: 32145363]
[101]
Lawes-Wickwar S, Ghio D, Tang MY, et al. A rapid systematic review of public responses to health messages encouraging vaccination against infectious diseases in a pandemic or epidemic. Vaccines (Basel) 2021; 9(2): 72.
[http://dx.doi.org/10.3390/vaccines9020072] [PMID: 33498395]
[102]
Doroftei B, Ciobica A, Ilie OD, Maftei R, Ilea C. Mini-review discussing the reliability and efficien-cy of COVID-19 vaccines. Diagnostics (Basel) 2021; 11(4): 579.
[http://dx.doi.org/10.3390/diagnostics11040579] [PMID: 33804914]
[103]
Carvalho T, Krammer F, Iwasaki A. The first 12 months of COVID-19: A timeline of immunological insights. Nat Rev Immunol 2021; 21(4): 245-56.
[http://dx.doi.org/10.1038/s41577-021-00522-1] [PMID: 33723416]
[104]
Kim JH, Marks F, Clemens JD. Looking beyond COVID-19 vaccine phase 3 trials. Nat Med 2021; 27(2): 205-11.
[http://dx.doi.org/10.1038/s41591-021-01230-y] [PMID: 33469205]
[105]
Koirala A, Joo YJ, Khatami A, Chiu C, Britton PN. Vaccines for COVID-19: The current state of play. Paediatr Respir Rev 2020; 35: 43-9.
[PMID: 32653463]
[106]
Acharya KP, Ghimire TR, Subramanya SH. Access to and equitable distribution of COVID-19 vac-cine in low-income countries. NPJ Vaccines (Basel) 2021; 6(1): 54.
[PMID: 33854072]
[107]
Venkadapathi J, Govindarajan VK, Sekaran S, Venkatapathy S. A minireview of the promising drugs and vaccines in pipeline for the treatment of COVID-19 and current update on clinical trials. Front Mol Biosci 2021; 8: 637378.
[http://dx.doi.org/10.3389/fmolb.2021.637378] [PMID: 34179072]
[108]
Baden LR, El Sahly HM, Essink B, et al. Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine. N Engl J Med 2021; 384(5): 403-16.
[http://dx.doi.org/10.1056/NEJMoa2035389] [PMID: 33378609]
[109]
Jones I, Roy P. Sputnik V. COVID-19 vaccine candidate appears safe and effective. Lancet 2021; 397(10275): 642-3.
[http://dx.doi.org/10.1016/S0140-6736(21)00191-4] [PMID: 33545098]

© 2024 Bentham Science Publishers | Privacy Policy