Generic placeholder image

Current Cancer Drug Targets

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Research Article

Systematic Analysis of the Expression Profile and Prognostic Significance of the IGF2BP Family in Lung Adenocarcinoma

Author(s): Zimo Zhou, Tiantong Zhu, Senxiang Chen, Sen Qin, Ying Huang* and Da Liu*

Volume 22, Issue 4, 2022

Published on: 30 March, 2022

Page: [340 - 350] Pages: 11

DOI: 10.2174/1568009622666220301145013

Price: $65

Abstract

Background: Lung adenocarcinoma (LUAD), the most common type of lung cancer associated with poor prognosis, has become a major health problem. IGF2BPs are types of N6-methyladenosine reader proteins, comprising IGF2BP1, IGF2BP2, and IGF2BP3, that promote LUAD progression. However, the expression profiles and prognostic value of IGF2BPs in LUAD remain unclear.

Objective: This study aimed to analyze the expression profiles and prognostic significance of the IGF2BP family in lung adenocarcinoma.

Methods: In this study, we included tissue data of LUAD patients and normal or para-carcinoma from the TCGA database and the GTEx project. Using survival analysis, Kaplan-Meier curves, and Cox proportional hazards model, we analyzed the expression profiles and prognostic significance of the IGF2BP family.

Results: Patients with high expression levels of IGF2BPs showed a significant association with poor overall survival (p < 0.05). Moreover, the somatic mutation rates of IGF2BP1, IGF2BP2, and IGF2BP3 were determined as 2.65, 1.59, and 1.76%, respectively, by investigating the genetic mutation. In addition, there were significant associations between TMB and IGF2BP family expression profiles, which positively correlated with the expression of PD-1 (p < 0.05). Cox proportional hazard model for LUAD showed the risk score for IGF2BP1, p-TNM stage, and so forth, all independent prognostic indicators for LUAD patients. Finally, the co-expression genes were obtained to build a PPI network and analyze the hub genes of the IGF2BP family.

Conclusion: Our study provides further insights into the role of the IGF2BP family in LUAD and identifies 10 genes that may be associated with IGF2BPs in LUAD patients.

Keywords: Bioinformatics, IGF2BPs, expression profile, prognostic significance, lung adenocarcinoma, biomarkers.

« Previous
Graphical Abstract

[1]
The genotype-tissue expression (GTEx) project. Nat. Genet., 2013, 45(6), 580-585.
[http://dx.doi.org/10.1038/ng.2653] [PMID: 23715323]
[2]
Bell, J.L.; Wächter, K.; Mühleck, B.; Pazaitis, N.; Köhn, M.; Lederer, M.; Hüttelmaier, S. Insulin-like growth factor 2 mRNA-binding proteins (IGF2BPs): Post-transcriptional drivers of cancer progression? Cell. Mol. Life Sci., 2013, 70(15), 2657-2675.
[http://dx.doi.org/10.1007/s00018-012-1186-z] [PMID: 23069990]
[3]
Blum, A.; Wang, P.; Zenklusen, J.C. SnapShot: TCGA-analyzed tumors. Cell, 2018, 173(2), 530.
[http://dx.doi.org/10.1016/j.cell.2018.03.059] [PMID: 29625059]
[4]
Brouwer-Visser, J.; Huang, G.S. IGF2 signaling and regulation in cancer. Cytokine Growth Factor Rev., 2015, 26(3), 371-377.
[http://dx.doi.org/10.1016/j.cytogfr.2015.01.002] [PMID: 25704323]
[5]
Budczies, J.; Allgäuer, M.; Litchfield, K.; Rempel, E.; Christopoulos, P.; Kazdal, D.; Endris, V.; Thomas, M.; Fröhling, S.; Peters, S.; Swanton, C.; Schirmacher, P.; Stenzinger, A. Optimizing panel-based Tumor Mutational Burden (TMB) measurement. Ann. Oncol., 2019, 30(9), 1496-1506.
[http://dx.doi.org/10.1093/annonc/mdz205] [PMID: 31268125]
[6]
Chae, Y.K.; Davis, A.A.; Agte, S.; Pan, A.; Simon, N.I.; Iams, W.T.; Cruz, M.R.; Tamragouri, K.; Rhee, K.; Mohindra, N.; Villaflor, V.; Park, W.; Lopes, G.; Giles, F.J. Clinical implications of circulating tumor DNA tumor mutational burden (ctDNA TMB) in non-small cell lung cancer. Oncologist, 2019, 24(6), 820-828.
[http://dx.doi.org/10.1634/theoncologist.2018-0433] [PMID: 30867242]
[7]
Chalmers, Z.R.; Connelly, C.F.; Fabrizio, D.; Gay, L.; Ali, S.M.; Ennis, R.; Schrock, A.; Campbell, B.; Shlien, A.; Chmielecki, J.; Huang, F.; He, Y.; Sun, J.; Tabori, U.; Kennedy, M.; Lieber, D.S.; Roels, S.; White, J.; Otto, G.A.; Ross, J.S.; Garraway, L.; Miller, V.A.; Stephens, P.J.; Frampton, G.M. Analysis of 100,000 human cancer genomes reveals the landscape of tumor mutational burden. Genome Med., 2017, 9(1), 34.
[http://dx.doi.org/10.1186/s13073-017-0424-2] [PMID: 28420421]
[8]
Chen, C.; Chen, H.; Zhang, Y.; Thomas, H.R.; Frank, M.H.; He, Y.; Xia, R. TBtools: An integrative toolkit developed for interactive analyses of big biological data. Mol. Plant, 2020, 13(8), 1194-1202.
[http://dx.doi.org/10.1016/j.molp.2020.06.009] [PMID: 32585190]
[9]
Cuylen, S.; Blaukopf, C.; Politi, A.Z.; Müller-Reichert, T.; Neumann, B.; Poser, I.; Ellenberg, J.; Hyman, A.A.; Gerlich, D.W. Ki-67 acts as a biological surfactant to disperse mitotic chromosomes. Nature, 2016, 535(7611), 308-312.
[http://dx.doi.org/10.1038/nature18610] [PMID: 27362226]
[10]
Deng, X.; Jiang, Q.; Liu, Z.; Chen, W. Clinical significance of an m6A reader gene, IGF2BP2, in head and neck squamous cell carcinoma. Front. Mol. Biosci., 2020, 7, 68.
[http://dx.doi.org/10.3389/fmolb.2020.00068] [PMID: 32391379]
[11]
Devarakonda, S.; Morgensztern, D.; Govindan, R. Genomic alterations in lung adenocarcinoma. Lancet Oncol., 2015, 16(7), e342-e351.
[http://dx.doi.org/10.1016/S1470-2045(15)00077-7] [PMID: 26149886]
[12]
Fisher, L.D.; Lin, D.Y. Time-dependent covariates in the Cox proportional-hazards regression model. Annu. Rev. Public Health, 1999, 20, 145-157.
[http://dx.doi.org/10.1146/annurev.publhealth.20.1.145] [PMID: 10352854]
[13]
Glaß, M.; Michl, P.; Hüttelmaier, A.S. RNA binding proteins as drivers and therapeutic target candidates in pancreatic ductal adenocarcinoma. Int. J. Mol. Sci., 2020, 21(11) ,E4190.
[http://dx.doi.org/10.3390/ijms21114190] [PMID: 32545414]
[14]
Guo, K.; Zhao, C.; Lang, B.; Wang, H.; Zheng, H.; Zhang, F. Regulator of chromosome condensation 2 modulates cell cycle progression, tumorigenesis, and therapeutic resistance. Front. Mol. Biosci., 2021, 7 ,620973.
[http://dx.doi.org/10.3389/fmolb.2020.620973] [PMID: 33521058]
[15]
Huang, W.; Sherman, B.T.; Lempicki, R.A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc., 2009, 4(1), 44-57.
[http://dx.doi.org/10.1038/nprot.2008.211] [PMID: 19131956]
[16]
Jeng, Y.M.; Chang, C.C.; Hu, F.C.; Chou, H.Y.; Kao, H.L.; Wang, T.H.; Hsu, H.C. RNA-binding protein insulin-like growth factor II mRNA-binding protein 3 expression promotes tumor invasion and predicts early recurrence and poor prognosis in hepatocellular carcinoma. Hepatology, 2008, 48(4), 1118-1127.
[http://dx.doi.org/10.1002/hep.22459] [PMID: 18802962]
[17]
Jia, P.; Zhao, Z. Impacts of somatic mutations on gene expression: An association perspective. Brief. Bioinform., 2017, 18(3), 413-425.
[PMID: 27127206]
[18]
Lederer, M.; Bley, N.; Schleifer, C.; Hüttelmaier, S. The role of the oncofetal IGF2 mRNA-binding protein 3 (IGF2BP3) in cancer. Semin. Cancer Biol., 2014, 29, 3-12.
[http://dx.doi.org/10.1016/j.semcancer.2014.07.006] [PMID: 25068994]
[19]
Li, B.; Zhu, L.; Lu, C.; Wang, C.; Wang, H.; Jin, H.; Ma, X.; Cheng, Z.; Yu, C.; Wang, S.; Zuo, Q.; Zhou, Y.; Wang, J.; Yang, C.; Lv, Y.; Jiang, L.; Qin, W. circNDUFB2 inhibits non-small cell lung cancer progression via destabilizing IGF2BPs and activating anti-tumor immunity. Nat. Commun., 2021, 12(1), 295.
[http://dx.doi.org/10.1038/s41467-020-20527-z] [PMID: 33436560]
[20]
Li, F.; Huang, Q.; Luster, T.A.; Hu, H.; Zhang, H.; Ng, W.L.; Khodadadi-Jamayran, A.; Wang, W.; Chen, T.; Deng, J.; Ranieri, M.; Fang, Z.; Pyon, V.; Dowling, C.M.; Bagdatlioglu, E.; Almonte, C.; Labbe, K.; Silver, H.; Rabin, A.R.; Jani, K.; Tsirigos, A.; Papagiannakopoulos, T.; Hammerman, P.S.; Velcheti, V.; Freeman, G.J.; Qi, J.; Miller, G.; Wong, K.K. In vivo epigenetic CRISPR screen identifies Asf1a as an immunotherapeutic target in Kras-mutant lung adenocarcinoma. Cancer Discov., 2020, 10(2), 270-287.
[http://dx.doi.org/10.1158/2159-8290.CD-19-0780] [PMID: 31744829]
[21]
Li, W.; Li, N.; Gao, L.; You, C. Integrated analysis of the roles and prognostic value of RNA binding proteins in lung adenocarcinoma. PeerJ, 2020, 8 ,e8509.
[http://dx.doi.org/10.7717/peerj.8509] [PMID: 32071816]
[22]
Liu, G.; Zhu, T.; Cui, Y.; Liu, J.; Liu, J.; Zhao, Q.; Zhang, K.; Zhao, R. Correlation between IGF2BP2 gene polymorphism and the risk of breast cancer in Chinese Han women. Biomed. Pharmacother., 2015, 69, 297-300.
[http://dx.doi.org/10.1016/j.biopha.2014.12.017] [PMID: 25661373]
[23]
Liu, H.; Zeng, Z.; Afsharpad, M.; Lin, C.; Wang, S.; Yang, H.; Liu, S.; Kelemen, L.E.; Xu, W.; Ma, W.; Xiang, Q.; Mastriani, E.; Wang, P.; Wang, J.; Liu, S.L.; Johnston, R.N.; Köbel, M. Overexpression of IGF2BP3 as a potential oncogene in ovarian clear cell carcinoma. Front. Oncol., 2020, 9, 1570.
[http://dx.doi.org/10.3389/fonc.2019.01570] [PMID: 32083017]
[24]
Ma, S.; Chen, C.; Ji, X.; Liu, J.; Zhou, Q.; Wang, G.; Yuan, W.; Kan, Q.; Sun, Z. The interplay between m6A RNA methylation and noncoding RNA in cancer. J. Hematol. Oncol., 2019, 12(1), 121.
[http://dx.doi.org/10.1186/s13045-019-0805-7] [PMID: 31757221]
[25]
Mayakonda, A.; Lin, D.C.; Assenov, Y.; Plass, C.; Koeffler, H.P. Maftools: Efficient and comprehensive analysis of somatic variants in cancer. Genome Res., 2018, 28(11), 1747-1756.
[http://dx.doi.org/10.1101/gr.239244.118] [PMID: 30341162]
[26]
Merino, D.M.; McShane, L.M.; Fabrizio, D.; Funari, V.; Chen, S.J.; White, J.R.; Wenz, P.; Baden, J.; Barrett, J.C.; Chaudhary, R.; Chen, L.; Chen, W.S.; Cheng, J.H.; Cyanam, D.; Dickey, J.S.; Gupta, V.; Hellmann, M.; Helman, E.; Li, Y.; Maas, J.; Papin, A.; Patidar, R.; Quinn, K.J.; Rizvi, N.; Tae, H.; Ward, C.; Xie, M.; Zehir, A.; Zhao, C.; Dietel, M.; Stenzinger, A.; Stewart, M.; Allen, J. TMB Harmonization Consortium.Establishing guidelines to harmonize tumor mutational burden (TMB): In silico assessment of variation in TMB quantification across diagnostic platforms: Phase I of the Friends of Cancer Research TMB Harmonization Project. J. Immunother. Cancer, 2020, 8(1) ,e000147.
[http://dx.doi.org/10.1136/jitc-2019-000147] [PMID: 32217756]
[27]
Müller, S.; Glaß, M.; Singh, A.K.; Haase, J.; Bley, N.; Fuchs, T.; Lederer, M.; Dahl, A.; Huang, H.; Chen, J.; Posern, G.; Hüttelmaier, S. IGF2BP1 promotes SRF-dependent transcription in cancer in a m6A- and miRNA-dependent manner. Nucleic Acids Res., 2019, 47(1), 375-390.
[http://dx.doi.org/10.1093/nar/gky1012] [PMID: 30371874]
[28]
Nielsen, J.; Christiansen, J.; Lykke-Andersen, J.; Johnsen, A.H.; Wewer, U.M.; Nielsen, F.C. A family of insulin-like growth factor II mRNA-binding proteins represses translation in late development. Mol. Cell. Biol., 1999, 19(2), 1262-1270.
[http://dx.doi.org/10.1128/MCB.19.2.1262] [PMID: 9891060]
[29]
Nordin, A.; Larsson, E.; Holmberg, M. The defective splicing caused by the ISCU intron mutation in patients with myopathy with lactic acidosis is repressed by PTBP1 but can be derepressed by IGF2BP1. Hum. Mutat., 2012, 33(3), 467-470.
[http://dx.doi.org/10.1002/humu.22002] [PMID: 22125086]
[30]
Rhodes, D.R.; Yu, J.; Shanker, K.; Deshpande, N.; Varambally, R.; Ghosh, D.; Barrette, T.; Pandey, A.; Chinnaiyan, A.M. ONCOMINE: A cancer microarray database and integrated data-mining platform. Neoplasia, 2004, 6(1), 1-6.
[http://dx.doi.org/10.1016/S1476-5586(04)80047-2] [PMID: 15068665]
[31]
Rizvi, H.; Sanchez-Vega, F.; La, K.; Chatila, W.; Jonsson, P.; Halpenny, D.; Plodkowski, A.; Long, N.; Sauter, J.L.; Rekhtman, N.; Hollmann, T.; Schalper, K.A.; Gainor, J.F.; Shen, R.; Ni, A.; Arbour, K.C.; Merghoub, T.; Wolchok, J.; Snyder, A.; Chaft, J.E.; Kris, M.G.; Rudin, C.M.; Socci, N.D.; Berger, M.F.; Taylor, B.S.; Zehir, A.; Solit, D.B.; Arcila, M.E.; Ladanyi, M.; Riely, G.J.; Schultz, N.; Hellmann, M.D. Molecular determinants of response to anti-programmed cell death (PD)-1 and anti-programmed death-ligand 1 (PD-L1) blockade in patients with non-small-cell lung cancer profiled with targeted next-generation sequencing. J. Clin. Oncol., 2018, 36(7), 633-641.
[http://dx.doi.org/10.1200/JCO.2017.75.3384] [PMID: 29337640]
[32]
Shang, Y. LncRNA THOR acts as a retinoblastoma promoter through enhancing the combination of c-myc mRNA and IGF2BP1 protein. Biomed. Pharmacother., 2018, 106, 1243-1249.
[http://dx.doi.org/10.1016/j.biopha.2018.07.052] [PMID: 30119193]
[33]
Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res., 2003, 13(11), 2498-2504.
[http://dx.doi.org/10.1101/gr.1239303] [PMID: 14597658]
[34]
Song, Q.; Shang, J.; Yang, Z.; Zhang, L.; Zhang, C.; Chen, J.; Wu, X. Identification of an immune signature predicting prognosis risk of patients in lung adenocarcinoma. J. Transl. Med., 2019, 17(1), 70.
[http://dx.doi.org/10.1186/s12967-019-1824-4] [PMID: 30832680]
[35]
Szklarczyk, D.; Gable, A.L.; Lyon, D.; Junge, A.; Wyder, S.; Huerta-Cepas, J.; Simonovic, M.; Doncheva, N.T.; Morris, J.H.; Bork, P.; Jensen, L.J.; Mering, C.V. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res., 2019, 47(D1), D607-D613.
[http://dx.doi.org/10.1093/nar/gky1131] [PMID: 30476243]
[36]
Tang, W.; Chen, S.; Liu, J.; Liu, C.; Wang, Y.; Kang, M. Investigation of IGF1, IGF2BP2, and IGFBP3 variants with lymph node status and esophagogastric junction adenocarcinoma risk. J. Cell. Biochem., 2019, 120(4), 5510-5518.
[http://dx.doi.org/10.1002/jcb.27834] [PMID: 30335898]
[37]
Wang, T.; Kong, S.; Tao, M.; Ju, S. The potential role of RNA N6-methyladenosine in Cancer progression. Mol. Cancer, 2020, 19(1), 88.
[http://dx.doi.org/10.1186/s12943-020-01204-7] [PMID: 32398132]
[38]
Wang, Y.; He, R.; Ma, L. Characterization of lncRNA-associated ceRNA network to reveal potential prognostic biomarkers in lung adenocarcinoma. Front. Bioeng. Biotechnol., 2020, 8, 266.
[http://dx.doi.org/10.3389/fbioe.2020.00266] [PMID: 32426332]
[39]
Wang, Y.; Lu, J.H.; Wu, Q.N.; Jin, Y.; Wang, D.S.; Chen, Y.X.; Liu, J.; Luo, X.J.; Meng, Q.; Pu, H.Y.; Wang, Y.N.; Hu, P.S.; Liu, Z.X.; Zeng, Z.L.; Zhao, Q.; Deng, R.; Zhu, X.F.; Ju, H.Q.; Xu, R.H. LncRNA LINRIS stabilizes IGF2BP2 and promotes the aerobic glycolysis in colorectal cancer. Mol. Cancer, 2019, 18(1), 174.
[http://dx.doi.org/10.1186/s12943-019-1105-0] [PMID: 31791342]
[40]
Wang, Y.; Ren, F.; Song, Z.; Wang, X.; Ma, X. Multiomics profile and prognostic gene signature of m6A regulators in uterine corpus endometrial carcinoma. J. Cancer, 2020, 11(21), 6390-6401.
[http://dx.doi.org/10.7150/jca.46386] [PMID: 33033522]
[41]
Wu, H.; Dong, H.; Fu, Y.; Tang, Y.; Dai, M.; Chen, Y.; Wang, G.; Wu, Y. Expressions of m6A RNA methylation regulators and their clinical predictive value in cervical squamous cell carcinoma and endometrial adenocarcinoma. Clin. Exp. Pharmacol. Physiol., 2021, 48(2), 270-278.
[http://dx.doi.org/10.1111/1440-1681.13412] [PMID: 33006785]
[42]
Xiong, Y.; Yuan, L.; Xiong, J.; Xu, H.; Luo, Y.; Wang, G.; Ju, L.; Xiao, Y.; Wang, X. An outcome model for human bladder cancer: A comprehensive study based on weighted gene co-expression network analysis. J. Cell. Mol. Med., 2020, 24(3), 2342-2355.
[http://dx.doi.org/10.1111/jcmm.14918] [PMID: 31883309]
[43]
Xu, X.; Yu, Y.; Zong, K.; Lv, P.; Gu, Y. Up-regulation of IGF2BP2 by multiple mechanisms in pancreatic cancer promotes cancer proliferation by activating the PI3K/Akt signaling pathway. J. Exp. Clin. Cancer Res., 2019, 38(1), 497.
[http://dx.doi.org/10.1186/s13046-019-1470-y] [PMID: 31852504]
[44]
Yao, Y.; Zhang, T.; Qi, L.; Liu, R.; Liu, G.; Wang, J.; Song, Q.; Sun, C. Comprehensive analysis of prognostic biomarkers in lung adenocarcinoma based on aberrant lncRNA-miRNA-mRNA networks and Cox regression models. Biosci. Rep., 2020, 40(1) ,BSR20191554.
[http://dx.doi.org/10.1042/BSR20191554] [PMID: 31950990]
[45]
Yu, G.; Wang, L.G.; Han, Y.; He, Q.Y. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS, 2012, 16(5), 284-287.
[http://dx.doi.org/10.1089/omi.2011.0118] [PMID: 22455463]
[46]
Zeng, H.; Chen, W.; Zheng, R.; Zhang, S.; Ji, J.S.; Zou, X.; Xia, C.; Sun, K.; Yang, Z.; Li, H.; Wang, N.; Han, R.; Liu, S.; Li, H.; Mu, H.; He, Y.; Xu, Y.; Fu, Z.; Zhou, Y.; Jiang, J.; Yang, Y.; Chen, J.; Wei, K.; Fan, D.; Wang, J.; Fu, F.; Zhao, D.; Song, G.; Chen, J.; Jiang, C.; Zhou, X.; Gu, X.; Jin, F.; Li, Q.; Li, Y.; Wu, T.; Yan, C.; Dong, J.; Hua, Z.; Baade, P.; Bray, F.; Jemal, A.; Yu, X.Q.; He, J. Changing cancer survival in China during 2003-15: a pooled analysis of 17 population-based cancer registries. Lancet Glob. Health, 2018, 6(5), e555-e567.
[http://dx.doi.org/10.1016/S2214-109X(18)30127-X] [PMID: 29653628]
[47]
Zhang, X.; Zhong, L.; Zou, Z.; Liang, G.; Tang, Z.; Li, K.; Tan, S.; Huang, Y.; Zhu, X. Clinical and prognostic pan-cancer analysis of n6-methyladenosine regulators in two types of hematological malignancies: A retrospective study based on TCGA and GTEx databases. Front. Oncol., 2021, 11 ,623170.
[http://dx.doi.org/10.3389/fonc.2021.623170] [PMID: 33816257]
[48]
Zhang, Z.; Lin, E.; Zhuang, H.; Xie, L.; Feng, X.; Liu, J.; Yu, Y. Construction of a novel gene-based model for prognosis prediction of clear cell renal cell carcinoma. Cancer Cell Int., 2020, 20, 27.
[http://dx.doi.org/10.1186/s12935-020-1113-6] [PMID: 32002016]
[49]
Zhao, W.; Qi, X.; Liu, L.; Ma, S.; Liu, J.; Wu, J. Epigenetic regulation of m6a modifications in human cancer. Mol. Ther. Nucleic Acids, 2020, 19, 405-412.
[http://dx.doi.org/10.1016/j.omtn.2019.11.022] [PMID: 31887551]
[50]
Zhao, Y.; Shi, Y.; Shen, H.; Xie, W. m6A-binding proteins: the emerging crucial performers in epigenetics. J. Hematol. Oncol., 2020, 13(1), 35.
[http://dx.doi.org/10.1186/s13045-020-00872-8] [PMID: 32276589]
[51]
Zhou, Y.; Huang, T.; Siu, H.L.; Wong, C.C.; Dong, Y.; Wu, F.; Zhang, B.; Wu, W.K.; Cheng, A.S.; Yu, J.; To, K.F.; Kang, W. IGF2BP3 functions as a potential oncogene and is a crucial target of miR-34a in gastric carcinogenesis. Mol. Cancer, 2017, 16(1), 77.
[http://dx.doi.org/10.1186/s12943-017-0647-2] [PMID: 28399871]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy