Review Article

金属纳米颗粒:对抗利什曼病的新前沿

卷 29, 期 26, 2022

发表于: 10 May, 2022

页: [4547 - 4573] 页: 27

弟呕挨: 10.2174/0929867329666220225111052

价格: $65

摘要

利什曼病是一种由利什曼原虫属原生动物引起的皮肤、粘膜或内脏寄生虫病,每年造成约2 -4万人死亡,其中巴西、印度和非洲某些国家受影响最严重。除了寄生虫能够逃避宿主的免疫系统外,媒介的发病率、不同宿主的基因和几起死亡事件都归因于有限的传统治疗,这些治疗具有高毒性、低有效性和长时间的治疗方案。因此,发展新的替代治疗策略仍然是必要的。金属纳米颗粒,如金、银、氧化锌和二氧化钛,由于易于制备和化学修饰,具有广泛的作用谱和低毒性,并可产生活性氧和其他免疫反应,已显示出有前途的治疗工具。本文综述了利用金属纳米颗粒作为治疗利什曼病的新工具的进展,并讨论了阻碍开发安全有效的治疗这些感染的知识空白。

关键词: 利什曼病,纳米颗粒,纳米治疗,金属纳米颗粒,被忽视的疾病,治疗。

[1]
Burza, S.; Croft, S.L.; Boelaert, M. Leishmaniasis - Authors’ reply. Lancet, 2019, 393(10174), 872-873.
[http://dx.doi.org/10.1016/S0140-6736(18)33057-5] [PMID: 30837140]
[2]
Okwor, I.; Uzonna, J. Social and economic burden of human leishmaniasis. Am. J. Trop. Med. Hyg., 2016, 94(3), 489-493.
[http://dx.doi.org/10.4269/ajtmh.15-0408] [PMID: 26787156]
[3]
">World Health Organization. Leishmaniasis 2021. Available from: https://www.who.int/news-room/fact-sheets/detail/leishmaniasis (Accessed on: Jan 8, 2021).
[4]
Ministério da Saúde. Manual de vigilância e controle da leishmaniose visceral. 2020. Available from: https://www.paho.org/bra/index.php?option=com_docman&view=document&layout=default&alias=1462-manual-vigilancia-e-controle-da-leishmaniose-visceral-2&category_slug=leishmanioses-978&Itemid=965 (Accessed on: Sept 6, 2020).
[5]
Ministério da Saúde. Manual de Vigilância da Leishmaniose Tegumentar Americana. 2020. Available from: https://www.paho.org/bra/index.php?option=com_docman&view=document&layout=default&alias=1463-manual-vigilancia-da-leishmaniose-tegumentar-americana-3&category_slug=leishmanioses-978&Itemid=965 (Accessed on: Sept 6, 2020).
[6]
Anversa, L.; Tiburcio, M.G.S.; Richini-Pereira, V.B.; Ramirez, L.E. Human leishmaniasis in Brazil: A general review. Rev. Assoc. Med. Bras., 2018, 64(3), 281-289.
[http://dx.doi.org/10.1590/1806-9282.64.03.281] [PMID: 29641786]
[7]
Oliveira, L.F.; Schubach, A.O.; Martins, M.M.; Passos, S.L.; Oliveira, R.V.; Marzochi, M.C.; Andrade, C.A. Systematic review of the adverse effects of cutaneous leishmaniasis treatment in the New World. Acta Trop., 2011, 118(2), 87-96.
[http://dx.doi.org/10.1016/j.actatropica.2011.02.007] [PMID: 21420925]
[8]
Ponte-Sucre, A.; Gamarro, F.; Dujardin, J.C.; Barrett, M.P.; López-Vélez, R.; García-Hernández, R.; Pountain, A.W.; Mwenechanya, R.; Papadopoulou, B. Drug resistance and treatment failure in leishmaniasis: A 21st century challenge. PLoS Negl. Trop. Dis., 2017, 11(12), e0006052.
[http://dx.doi.org/10.1371/journal.pntd.0006052] [PMID: 29240765]
[9]
Rossi, M.; Fasel, N. How to master the host immune system? Leishmania parasites have the solutions! Int. Immunol., 2018, 30(3), 103-111.
[http://dx.doi.org/10.1093/intimm/dxx075] [PMID: 29294040]
[10]
Sundar, S.; Chakravarty, J.; Meena, L.P. Leishmaniasis: Treatment, drug resistance and emerging therapies. Expert Opin. Orphan Drugs, 2019, 7(1), 1-10.
[http://dx.doi.org/10.1080/21678707.2019.1552853]
[11]
Frézard, F.; Demicheli, C.; Ribeiro, R.R. Pentavalent antimonials: new perspectives for old drugs. Molecules, 2009, 14(7), 2317-2336.
[http://dx.doi.org/10.3390/molecules14072317] [PMID: 19633606]
[12]
Baranwal, A.; Chiranjivi, A.K.; Kumar, A.; Dubey, V.K.; Chandra, P. Design of commercially comparable nanotherapeutic agent against human disease-causing parasite, Leishmania. Sci. Rep., 2018, 8(1), 8814-8814.
[http://dx.doi.org/10.1038/s41598-018-27170-1] [PMID: 29891923]
[13]
Khan, I.; Saeed, K.; Khan, I. Nanoparticles: Properties, applications and toxicities. Arab. J. Chem., 2019, 12(7), 908-931.
[http://dx.doi.org/10.1016/j.arabjc.2017.05.011]
[14]
Saleem, K.; Khursheed, Z.; Hano, C.; Anjum, I.; Anjum, S. Applications of nanomaterials in leishmaniasis: A focus on recent advances and challenges. Nanomaterials (Basel), 2019, 9(12), 1749.
[http://dx.doi.org/10.3390/nano9121749] [PMID: 31818029]
[15]
Sánchez-López, E.; Gomes, D.; Esteruelas, G.; Bonilla, L.; Lopez-Machado, A.L.; Galindo, R.; Cano, A.; Espina, M.; Ettcheto, M.; Camins, A.; Silva, A.M.; Durazzo, A.; Santini, A.; Garcia, M.L.; Souto, E.B. Metal-based nanoparticles as antimicrobial agents: An overview. Nanomaterials (Basel), 2020, 10(2), 292.
[http://dx.doi.org/10.3390/nano10020292] [PMID: 32050443]
[16]
Jebali, A.; Kazemi, B. Nano-based antileishmanial agents: A toxicological study on nanoparticles for future treatment of cutaneous leishmaniasis. Toxicol. In Vitro, 2013, 27(6), 1896-1904.
[http://dx.doi.org/10.1016/j.tiv.2013.06.002] [PMID: 23806227]
[17]
Aderibigbe, B.A. Metal-based nanoparticles for the treatment of infectious diseases. Molecules, 2017, 22(8), 1370.
[http://dx.doi.org/10.3390/molecules22081370] [PMID: 28820471]
[18]
Dorostkar, R.; Ghalavand, M.; Nazarizadeh, A.; Tat, M.; Hashemzadeh, M.S. Anthelmintic effects of zinc oxide and iron oxide nanoparticles against Toxocara vitulorum. Int. Nano Lett., 2017, 7(2), 157-164.
[http://dx.doi.org/10.1007/s40089-016-0198-3]
[19]
Nazir, S.; Rabbani, A.; Mehmood, K.; Maqbool, F.; Shah, G.M.; Khan, M.F.; Sajid, M. Antileishmanial activity and cytotoxicity of ZnO-based nano-formulations. Int. J. Nanomed., 2019, 7809-7822.
[20]
Abbasi, B.A.; Iqbal, J.; Ahmad, R.; Zia, L.; Kanwal, S.; Mahmood, T.; Wang, C.; Chen, J.T. Bioactivities of Geranium wallichianum leaf extracts conjugated with Zinc Oxide nanoparticles. Biomolecules, 2019, 10(1), 38.
[http://dx.doi.org/10.3390/biom10010038] [PMID: 31888037]
[21]
Attarilar, S.; Yang, J.; Ebrahimi, M.; Wang, Q.; Liu, J.; Tang, Y.; Yang, J. The toxicity phenomenon and the related occurrence in metal and metal oxide nanoparticles: A brief review from the biomedical perspective. Front. Bioeng. Biotechnol., 2020, 8, 822.
[http://dx.doi.org/10.3389/fbioe.2020.00822] [PMID: 32766232]
[22]
Khan, S.T.; Musarrat, J.; Al-Khedhairy, A.A. Countering drug resistance, infectious diseases, and sepsis using metal and metal oxides nanoparticles: Current status. Colloids Surf. B Biointerfaces, 2016, 146, 70-83.
[http://dx.doi.org/10.1016/j.colsurfb.2016.05.046] [PMID: 27259161]
[23]
Natarajan, P.; Tomich, J.M. Understanding the influence of experimental factors on bio-interactions of nanoparticles: Towards improving correlation between in vitro and in vivo studies. Arch. Biochem. Biophys., 2020, 694, 108592.
[http://dx.doi.org/10.1016/j.abb.2020.108592] [PMID: 32971033]
[24]
Alti, D.; Veeramohan Rao, M.; Rao, D.N.; Maurya, R.; Kalangi, S.K. Gold-silver bimetallic nanoparticles reduced with herbal leaf extracts induce ros-mediated death in both promastigote and amastigote stages of Leishmania donovani. ACS Omega, 2020, 5(26), 16238-16245.
[http://dx.doi.org/10.1021/acsomega.0c02032] [PMID: 32656446]
[25]
FANTI, J.R.; Tomiotto-Pellissier, F.; Miranda-Sapla, M.M.; Cataneo, A.H.D.; Andrade, C.G.T.J.; Panis, C.; Rodrigues, J.H.S.; Wowk, P.F.; Kuczera, D.; Costa, I.N.; Nakamura, C.V.; Nakazato, G.; Durán, N.; Pavanelli, W.R.; Conchon-Costa, I. Biogenic silver nanoparticles inducing Leishmania amazonensis promastigote and amastigote death in vitro. Acta Trop., 2018, 178, 46-54.
[26]
Sumaira, ; Siddique Afridi, M.; Salman Hashmi, S.; Ali, G.S.; Zia, M.; Haider Abbasi, B. Comparative antileishmanial efficacy of the biosynthesised ZnO NPs from genus Verbena. IET Nanobiotechnol., 2018, 12(8), 1067-1073.
[http://dx.doi.org/10.1049/iet-nbt.2018.5076] [PMID: 30964015]
[27]
Sumaira, S.; Khan, T.; Abbasi, B.H.; Afridi, M.S.; Tanveer, F.; Ullah, I.; Bashir, S.; Hano, C.; Sumaira, ; Khan, T.; Abbasi, B.H.; Afridi, M.S.; Tanveer, F.; Ullah, I.; Bashir, S.; Hano, C Melatonin-enhanced biosynthesis of antimicrobial AgNPs by improving the phytochemical reducing potential of a callus culture of Ocimum basilicum L. var. thyrsiflora. RSC Advances, 2017, 7(61), 38699-38713.
[http://dx.doi.org/10.1039/C7RA05044E]
[28]
Allahverdiyev, A.M.; Abamor, E.S.; Bagirova, M.; Ustundag, C.B.; Kaya, C.; Kaya, F.; Rafailovich, M. Antileishmanial effect of silver nanoparticles and their enhanced antiparasitic activity under ultraviolet light. Int. J. Nanomedicine, 2011, 6, 2705-2714.
[http://dx.doi.org/10.2147/IJN.S23883] [PMID: 22114501]
[29]
Nadhman, A.; Nazir, S.; Khan, M.I.; Ayub, A.; Muhammad, B.; Khan, M.; Shams, D.F.; Yasinzai, M. Visible-light-responsive ZnCuO nanoparticles: Benign photodynamic killers of infectious protozoans. Int. J. Nanomedicine, 2015, 10, 6891-6903.
[PMID: 26604755]
[30]
Nadhman, A.; Khan, M.I.; Nazir, S.; Khan, M.; Shahnaz, G.; Raza, A.; Shams, D.F.; Yasinzai, M. Annihilation of Leishmania by daylight responsive ZnO nanoparticles: a temporal relationship of reactive oxygen species-induced lipid and protein oxidation. Int. J. Nanomedicine, 2016, 11, 2451-2461.
[http://dx.doi.org/10.2147/IJN.S105195] [PMID: 27330288]
[31]
Varshosaz, J.; Arbabi, B.; Pestehchian, N.; Saberi, S.; Delavari, M. Chitosan-titanium dioxide-Glucantime® nanoassemblies effects on promastigote and amastigote of Leishmania major. Int. J. Biol. Macromol., 2018, 107(Pt A), 212-221.
[32]
Batista, E.A.; Silva, A.C.A.; Lima, T.K.; Guimarães, E.V.; Silva, R.S.; Dantas, N.O. Effect of the location of Mn2+ ions in the optical and magnetic properties of ZnO nanocrystals. J. Alloys Compd., 2021, 850, 156611.
[http://dx.doi.org/10.1016/j.jallcom.2020.156611]
[33]
de Souza, G.L.; Moura, C.C.G.; Silva, A.C.A.; Marinho, J.Z.; Silva, T.R.; Dantas, N.O.; Bonvicini, J.F.S.; Turrioni, A.P. Effects of zinc oxide and calcium-doped zinc oxide nanocrystals on cytotoxicity and reactive oxygen species production in different cell culture models. Restor. Dent. Endod, 2020, 45(4), e54.
[http://dx.doi.org/10.5395/rde.2020.45.e54] [PMID: 33294419]
[34]
Nascimento, R.F.; Silva, A.C.A.; Sales, T.O.; Sonsin, A.F.; Fonseca, E.J.S.; Souza, S.T.; Oliveira, Y.M.; Abreu, F.C.; Dantas, N.O. Tuning the optical and electrical properties of rGO-CdSe/CdS ultrasmall quantum dot nanocomposites. J. Phys. Chem., 2021, 125(12), 6805-6811.
[35]
Duarte, C.A.; Goulart, L.R.; Filice, L.S.C.; Lima, I.L.; Campos-Fernández, E.; Dantas, N.O.; Silva, A.C.A.; Soares, M.B.P.; Santos, R.R.D.; Cardoso, C.M.A.; França, L.S.A.; Rocha, V.P.C.; Ribeiro, A.R.L.P.; Perez, G.; Carvalho, L.N.; Alonso-Goulart, V. Characterization of crystalline phase of TiO2 nanocrystals, cytotoxicity and cell internalization analysis on human adipose tissue-derived mesenchymal stem cells. Materials (Basel), 2020, 13(18), 4071.
[http://dx.doi.org/10.3390/ma13184071] [PMID: 32937776]
[36]
Silva, W.S.; Silva, A.C.A.; Dantas, N.O.; Silva, W.F.; Jacinto, C. Nd3+ doped TiO2 nanocrystals as self-referenced optical nanothermometer operating within the biological windows. Sens. Actuators A Phys., 2021, 317, 112445.
[http://dx.doi.org/10.1016/j.sna.2020.112445]
[37]
Souza, G.L.; Silva, A.C.A.; Dantas, N.O.; Turrioni, A.P.S.; Moura, C.C.G. Cytotoxicity and effects of a new calcium hydroxide nanoparticle material on production of reactive oxygen species by LPS-stimulated dental pulp cells. Iran. Endod. J., 2020, 15(4), 227-235.
[38]
Baranwal, A.; Srivastava, A.; Kumar, P.; Bajpai, V.K.; Maurya, P.K.; Chandra, P. Prospects of nanostructure materials and their composites as antimicrobial agents. Front. Microbiol., 2018, 9, 422.
[http://dx.doi.org/10.3389/fmicb.2018.00422] [PMID: 29593676]
[39]
Silva, A.C.A.; Zóia, M.A.P.; Correia, L.I.V.; Azevedo, F.V.P.V.; Paula, A.T.; Maia, L.P.; Carvalho, L.S.; Carvalho, L.N.; Costa, M.P.C.; Giaretta, L.C.; Rodrigues, R.S.; Ávila, V.M.; Goulart, L.R.; Dantas, N.O. Biocompatibility of Doped Semiconductors Nanocrystals and Nanocomposites. In: Cytotoxicity; Askin Celik, T., Ed.; IntechOpen, 2018; pp. 149-161.
[http://dx.doi.org/10.5772/intechopen.77197]
[40]
Hussain, I.; Singh, N.B.; Singh, A.; Singh, H.; Singh, S.C. Green synthesis of nanoparticles and its potential application. Biotechnol. Lett., 2016, 38(4), 545-560.
[http://dx.doi.org/10.1007/s10529-015-2026-7] [PMID: 26721237]
[41]
Iqbal, P.; Preece, J.A.; Mendes, P.M. Nanotechnology: The “Top-Down” and “Bottom-Up”. In: Supramolecular Chemistry: From Molecules to Nanomaterials; Wiley Online, 2012.
[42]
Sharma, V.K.; Filip, J.; Zboril, R.; Varma, R.S. Natural inorganic nanoparticles--formation, fate, and toxicity in the environment. Chem. Soc. Rev., 2015, 44(23), 8410-8423.
[http://dx.doi.org/10.1039/C5CS00236B] [PMID: 26435358]
[43]
Sengul, A.B.; Asmatulu, E. Toxicity of metal and metal oxide nanoparticles: A review. Environ. Chem. Lett., 2020, 18(5), 1659-1683.
[http://dx.doi.org/10.1007/s10311-020-01033-6]
[44]
Abdal Dayem, A.; Hossain, M.K.; Lee, S.B.; Kim, K.; Saha, S.K.; Yang, G.M.; Choi, H.Y.; Cho, S.G. The role of reactive oxygen species (ROS) in the biological activities of metallic nanoparticles. Int. J. Mol. Sci., 2017, 18(1), E120.
[http://dx.doi.org/10.3390/ijms18010120] [PMID: 28075405]
[45]
Norouzi, R.; Ataei, A.; Hejazy, M.; Noreddin, A.; El Zowalaty, M.E. Scolicidal effects of nanoparticles against hydatid cyst protoscolices in vitro. Int. J. Nanomedicine, 2020, 15, 1095-1100.
[http://dx.doi.org/10.2147/IJN.S228538] [PMID: 32110009]
[46]
Saleh, M.; Abdel-Baki, A.A.; Dkhil, M.A.; El-Matbouli, M.; Al-Quraishy, S. Antiprotozoal effects of metal nanoparticles against Ichthyophthirius multifiliis. Parasitology, 2017, 144(13), 1802-1810.
[http://dx.doi.org/10.1017/S0031182017001184] [PMID: 28697814]
[47]
Tee, J.K.; Ong, C.N.; Bay, B.H.; Ho, H.K.; Leong, D.T. Oxidative stress by inorganic nanoparticles. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2016, 8(3), 414-438.
[http://dx.doi.org/10.1002/wnan.1374] [PMID: 26359790]
[48]
Dukhinova, M.S.; Prilepskii, A.Y.; Shtil, A.A.; Vinogradov, V.V. Metal oxide nanoparticles in therapeutic regulation of macrophage functions. Nanomaterials (Basel), 2019, 9(11), E1631.
[http://dx.doi.org/10.3390/nano9111631] [PMID: 31744137]
[49]
Roy, R.; Parashar, V.; Chauhan, L.K.S.; Shanker, R.; Das, M.; Tripathi, A.; Dwivedi, P.D. Mechanism of uptake of ZnO nanoparticles and inflammatory responses in macrophages require PI3K mediated MAPKs signaling. Toxicol. In Vitro, 2014, 28(3), 457-467.
[http://dx.doi.org/10.1016/j.tiv.2013.12.004] [PMID: 24368203]
[50]
Kumar, P.; Shivam, P.; Mandal, S.; Prasanna, P.; Kumar, S.; Prasad, S.R.; Kumar, A.; Das, P.; Ali, V.; Singh, S.K.; Mandal, D. Synthesis, characterization, and mechanistic studies of a gold nanoparticle-amphotericin B covalent conjugate with enhanced antileishmanial efficacy and reduced cytotoxicity. Int. J. Nanomedicine, 2019, 14, 6073-6101.
[http://dx.doi.org/10.2147/IJN.S196421] [PMID: 31686803]
[51]
Wolfram, J.; Zhu, M.; Yang, Y.; Shen, J.; Gentile, E.; Paolino, D.; Fresta, M.; Nie, G.; Chen, C.; Shen, H.; Ferrari, M.; Zhao, Y. Safety of nanoparticles in medicine. Curr. Drug Targets, 2015, 16(14), 1671-1681.
[http://dx.doi.org/10.2174/1389450115666140804124808] [PMID: 26601723]
[52]
Długosz, O.; Szostak, K.; Staroń, A.; Pulit-Prociak, J.; Banach, M. Methods for reducing the toxicity of metal and metal oxide NPs as biomedicine. Materials (Basel), 2020, 13(2), E279.
[http://dx.doi.org/10.3390/ma13020279] [PMID: 31936311]
[53]
Xu, L.; Wang, Y.Y.; Huang, J.; Chen, C.Y.; Wang, Z.X.; Xie, H. Silver nanoparticles: Synthesis, medical applications and biosafety. Theranostics, 2020, 10(20), 8996-9031.
[http://dx.doi.org/10.7150/thno.45413] [PMID: 32802176]
[54]
Varghese Alex, K.; Tamil Pavai, P.; Rugmini, R.; Shiva Prasad, M.; Kamakshi, K.; Sekhar, K.C. Green synthesized Ag nanoparticles for bio-sensing and photocatalytic applications. ACS Omega, 2020, 5(22), 13123-13129.
[http://dx.doi.org/10.1021/acsomega.0c01136] [PMID: 32548498]
[55]
Gurunathan, S.; Park, J.H.; Han, J.W.; Kim, J.H. Comparative assessment of the apoptotic potential of silver nanoparticles synthesized by Bacillus tequilensis and Calocybe indica in MDA-MB-231 human breast cancer cells: Targeting p53 for anticancer therapy. Int. J. Nanomedicine, 2015, 10, 4203-4222.
[http://dx.doi.org/10.2147/IJN.S83953] [PMID: 26170659]
[56]
Gurunathan, S.; Qasim, M.; Choi, Y.; Do, J.T.; Park, C.; Hong, K.; Kim, J.H.; Song, H. Antiviral potential of nanoparticles-can nanoparticles fight against coronaviruses? Nanomaterials (Basel), 2020, 10(9), E1645.
[http://dx.doi.org/10.3390/nano10091645] [PMID: 32825737]
[57]
Jan, H.; Shah, M.; Usman, H.; Khan, M.A.; Zia, M.; Hano, C.; Abbasi, B.H. Biogenic synthesis and characterization of antimicrobial and anti-parasitic zinc oxide (ZnO) nanoparticles using aqueous extracts of the himalayan columbine (Aquilegia pubiflora). Front. Mater., 2020, 7, 249.
[http://dx.doi.org/10.3389/fmats.2020.00249]
[58]
Singh, R.; Nawale, L.; Arkile, M.; Wadhwani, S.; Shedbalkar, U.; Chopade, S.; Sarkar, D.; Chopade, B.A. Phytogenic silver, gold, and bimetallic nanoparticles as novel antitubercular agents. Int. J. Nanomedicine, 2016, 11, 1889-1897.
[PMID: 27217751]
[59]
Yuan, Y.G.; Peng, Q.L.; Gurunathan, S. Silver nanoparticles enhance the apoptotic potential of gemcitabine in human ovarian cancer cells: combination therapy for effective cancer treatment. Int. J. Nanomedicine, 2017, 12, 6487-6502.
[http://dx.doi.org/10.2147/IJN.S135482] [PMID: 28919750]
[60]
Nilforoushzadeh, M.A.; Shirani-Bidabadi, L.A.; Zolfaghari-Baghbaderani, A.; Jafari, R.; Heidari-Beni, M.; Siadat, A.H.; Ghahraman-Tabrizi, M. Topical effectiveness of different concentrations of nanosilver solution on Leishmania major lesions in Balb/c mice. J. Vector Borne Dis., 2012, 49(4), 249-253.
[PMID: 23428525]
[61]
Ullah, I.; Cosar, G.; Abamor, E.S.; Bagirova, M.; Shinwari, Z.K.; Allahverdiyev, A.M. Comparative study on the antileishmanial activities of chemically and biologically synthesized silver nanoparticles (AgNPs). 3 Biotech, 2018, 8(2), 1-8.
[62]
Bagirova, M.; Dinparvar, S.; Allahverdiyev, A.M.; Unal, K.; Abamor, E.S.; Novruzova, M. Investigation of antileshmanial activities of Cuminum cyminum based green silver nanoparticles on L. tropica promastigotes and amastigotes in vitro. Acta Trop., 2020, 208, 105498-105498.
[http://dx.doi.org/10.1016/j.actatropica.2020.105498] [PMID: 32428676]
[63]
Rossi-Bergmann, B.; Lima-Pacienza, W.; Marcato, P.D.; Conti, R.; Dúran, N. Therapeutic potential of biogenic silver nanoparticles in murine cutaneous leishmaniasis. J. Nano Res., 2012, 20, 89-97.
[http://dx.doi.org/10.4028/www.scientific.net/JNanoR.20.89]
[64]
El-Khadragy, M.; Alolayan, E.M.; Metwally, D.M.; El-Din, M.F.S.; Alobud, S.S.; Alsultan, N.I.; Alsaif, S.S.; Awad, M.A.; Abdel Moneim, A.E. Clinical efficacy associated with enhanced antioxidant enzyme activities of silver nanoparticles biosynthesized using Moringa oleifera leaf extract, against cutaneous leishmaniasis in a murine model of Leishmania major. Int. J. Environ. Res. Public Health, 2018, 15(5), E1037.
[http://dx.doi.org/10.3390/ijerph15051037] [PMID: 29786651]
[65]
Zahir, A.A.; Chauhan, I.S.; Bagavan, A.; Kamaraj, C.; Elango, G.; Shankar, J.; Arjaria, N.; Roopan, S.M.; Rahuman, A.A.; Singh, N. Green synthesis of silver and titanium dioxide nanoparticles using Euphorbia prostrata extract shows shift from apoptosis to g0/g1 arrest followed by necrotic cell death in Leishmania donovani. Antimicrob. Agents Chemother., 2015, 59(8), 4782-4799.
[http://dx.doi.org/10.1128/AAC.00098-15] [PMID: 26033724]
[66]
Gélvez, A.P.C.; Farias, L.H.S.; Pereira, V.S.; da Silva, I.C.M.; Costa, A.C.; Dias, C.G.B.T.; Costa, R.M.R.; da Silva, S.H.M.; Rodrigues, A.P.D. Biosynthesis, characterization and leishmanicidal activity of a biocomposite containing AgNPs-PVP-glucantime. Nanomedicine (Lond.), 2018, 13(4), 373-390.
[http://dx.doi.org/10.2217/nnm-2017-0285] [PMID: 29338557]
[67]
Lima, D.D.S.; Gullon, B.; Cardelle-Cobas, A.; Brito, L.M.; Rodrigues, K.A.F.; Quelemes, P.V.; Ramos-Jesus, J.; Arcanjo, D.D.R.; Plácido, A.; Batziou, K.; Quaresma, P.; Eaton, P.; Delerue-Matos, C.; Carvalho, F.A.A.; Silva, D.A.; Pintado, M.; Leite, J.R.S.A. Chitosan-based silver nanoparticles: A study of the antibacterial, antileishmanial and cytotoxic effects. J. Bioact. Compat. Polym., 2017, 32(4), 397-410.
[http://dx.doi.org/10.1177/0883911516681329]
[68]
Kalangi, S.K.; Dayakar, A.; Gangappa, D.; Sathyavathi, R.; Maurya, R.S.; Narayana Rao, D. Biocompatible silver nanoparticles reduced from Anethum graveolens leaf extract augments the antileishmanial efficacy of miltefosine. Exp. Parasitol., 2016, 170, 184-192.
[http://dx.doi.org/10.1016/j.exppara.2016.09.002] [PMID: 27622989]
[69]
Javed, B.; Mashwani, Z.U.R.; Sarwer, A.; Raja, N.I.; Nadhman, A. Synergistic response of physicochemical reaction parameters on biogenesis of silver nanoparticles and their action against colon cancer and leishmanial cells. Artif. Cells Nanomed. Biotechnol., 2020, 48(1), 1340-1353.
[http://dx.doi.org/10.1080/21691401.2020.1850467] [PMID: 33241944]
[70]
Ahmad, A.; Wei, Y.; Syed, F.; Khan, S.; Khan, G.M.; Tahir, K.; Khan, A.U.; Raza, M.; Khan, F.U.; Yuan, Q. Isatis tinctoria mediated synthesis of amphotericin B-bound silver nanoparticles with enhanced photoinduced antileishmanial activity: A novel green approach. J. Photochem. Photobiol. B, 2016, 161, 17-24.
[http://dx.doi.org/10.1016/j.jphotobiol.2016.05.003] [PMID: 27203567]
[71]
Isaac-Márquez, A.P.; Talamás-Rohana, P.; Galindo-Sevilla, N.; Gaitan-Puch, S.E.; Díaz-Díaz, N.A.; Hernández-Ballina, G.A.; Lezama-Dávila, C.M. Decanethiol functionalized silver nanoparticles are new powerful leishmanicidals in vitro. World J. Microbiol. Biotechnol., 2018, 34(3), 38.
[http://dx.doi.org/10.1007/s11274-018-2420-0] [PMID: 29460068]
[72]
Baiocco, P.; Ilari, A.; Ceci, P.; Orsini, S.; Gramiccia, M.; Di Muccio, T.; Colotti, G. Inhibitory effect of silver nanoparticles on trypanothione reductase activity and leishmania infantum proliferation. ACS Med. Chem. Lett., 2010, 2(3), 230-233.
[http://dx.doi.org/10.1021/ml1002629] [PMID: 24900299]
[73]
Mayelifar, K.; Taheri, A.R.; Rajabi, O.; Sazgarnia, A. Ultraviolet B efficacy in improving antileishmanial effects of silver nanoparticles. Iran. J. Basic Med. Sci., 2015, 18(7), 677-683.
[PMID: 26351559]
[74]
Dolat, E.; Rajabi, O.; Salarabadi, S.S.; Yadegari-Dehkordi, S.; Sazgarnia, A. Silver nanoparticles and electroporation: Their combinational effect on Leishmania major. Bioelectromagnetics, 2015, 36(8), 586-596.
[http://dx.doi.org/10.1002/bem.21945] [PMID: 26769083]
[75]
Maity, G.N.; Maity, P.; Choudhuri, I.; Sahoo, G.C.; Maity, N.; Ghosh, K.; Bhattacharyya, N.; Dalai, S.; Mondal, S. Green synthesis, characterization, antimicrobial and cytotoxic effect of silver nanoparticles using arabinoxylan isolated from Kalmegh. Int. J. Biol. Macromol., 2020, 162, 1025-1034.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.06.215] [PMID: 32599238]
[76]
Shavandi, Z.; Ghazanfari, T.; Moghaddam, K.N. In vitro toxicity of silver nanoparticles on murine peritoneal macrophages. Immunopharmacol. Immunotoxicol., 2011, 33(1), 135-140.
[http://dx.doi.org/10.3109/08923973.2010.487489] [PMID: 20507217]
[77]
Samberg, M.E.; Oldenburg, S.J.; Monteiro-Riviere, N.A. Evaluation of silver nanoparticle toxicity in skin in vivo and keratinocytes in vitro. Environ. Health Perspect., 2010, 118(3), 407-413.
[http://dx.doi.org/10.1289/ehp.0901398] [PMID: 20064793]
[78]
Wypij, M.; Jędrzejewski, T.; Ostrowski, M.; Trzcińska, J.; Rai, M.; Golińska, P. Biogenic silver nanoparticles: assessment of their cytotoxicity, genotoxicity and study of capping proteins. Molecules, 2020, 25(13), 3022.
[http://dx.doi.org/10.3390/molecules25133022] [PMID: 32630696]
[79]
Park, M.V.; Neigh, A.M.; Vermeulen, J.P.; de la Fonteyne, L.J.; Verharen, H.W.; Briedé, J.J.; van Loveren, H.; de Jong, W.H. The effect of particle size on the cytotoxicity, inflammation, developmental toxicity and genotoxicity of silver nanoparticles. Biomaterials, 2011, 32(36), 9810-9817.
[http://dx.doi.org/10.1016/j.biomaterials.2011.08.085] [PMID: 21944826]
[80]
Tian, J.; Wong, K.K.Y.; Ho, C.M.; Lok, C.N.; Yu, W.Y.; Che, C.M.; Chiu, J.F.; Tam, P.K.H. Topical delivery of silver nanoparticles promotes wound healing. ChemMedChem, 2007, 2(1), 129-136.
[http://dx.doi.org/10.1002/cmdc.200600171] [PMID: 17075952]
[81]
Ahmad, A.; Syed, F.; Shah, A.; Khan, Z.; Tahir, K.; Khan, A.U.; Yuan, Q. Silver and gold nanoparticles from Sargentodoxa cuneata: Synthesis, characterization and antileishmanial activity. RSC Advances, 2015, 5(90), 73793-73806.
[http://dx.doi.org/10.1039/C5RA13206A]
[82]
Lopes, L.C.S.; Brito, L. M.; Bezerra, T. T.; Gomes, K. N.; Carvalho, F. A. A.; Chaves, M. H.; Cantanhêde, W. Silver and gold nanoparticles from tannic acid: synthesis, characterization and evaluation of antileishmanial and cytotoxic activities. An Acad Bras Cienc, 2018, 90(03), 2679-2689.
[83]
Tan, Y.; Yan, B.; Xue, L.; Li, Y.; Luo, X.; Ji, P. Surface-enhanced Raman spectroscopy of blood serum based on gold nanoparticles for the diagnosis of the oral squamous cell carcinoma. Lipids Health Dis., 2017, 16(1), 73.
[http://dx.doi.org/10.1186/s12944-017-0465-y] [PMID: 28388900]
[84]
Boisselier, E.; Astruc, D. Gold nanoparticles in nanomedicine: Preparations, imaging, diagnostics, therapies and toxicity. Chem. Soc. Rev., 2009, 38(6), 1759-1782.
[http://dx.doi.org/10.1039/b806051g] [PMID: 19587967]
[85]
Boomi, P.; Ganesan, R.; Prabu Poorani, G.; Jegatheeswaran, S.; Balakumar, C.; Gurumallesh Prabu, H.; Anand, K.; Marimuthu Prabhu, N.; Jeyakanthan, J.; Saravanan, M. Phyto-engineered gold nanoparticles (AuNPs) with potential antibacterial, antioxidant, and wound healing activities under in vitro and in vivo conditions. Int. J. Nanomedicine, 2020, 15, 7553-7568.
[http://dx.doi.org/10.2147/IJN.S257499] [PMID: 33116487]
[86]
Ahmad, A.; Syed, F.; Imran, M.; Khan, A.U.; Tahir, K.; Yuan, Z.U. Phytosynthesis and antileishmanial activity of gold nanoparticles by Maytenus Royleanus. J. Food Biochem., 2016, 40(4), 420-427.
[http://dx.doi.org/10.1111/jfbc.12232]
[87]
Ahmad, A.; Wei, Y.; Ullah, S.; Shah, S.I.; Nasir, F.; Shah, A.; Iqbal, Z.; Tahir, K.; Khan, U.A.; Yuan, Q. Synthesis of phytochemicals-stabilized gold nanoparticles and their biological activities against bacteria and Leishmania. Microb. Pathog., 2017, 110, 304-312.
[http://dx.doi.org/10.1016/j.micpath.2017.07.009] [PMID: 28705747]
[88]
Staroverov, S.A.; Volkov, A.A.; Mezhenny, P.V.; Domnitsky, I.Y.; Fomin, A.S.; Kozlov, S.V.; Dykman, L.A.; Guliy, O.I. Prospects for the use of spherical gold nanoparticles in immunization. Appl. Microbiol. Biotechnol., 2019, 103(1), 437-447.
[http://dx.doi.org/10.1007/s00253-018-9476-5] [PMID: 30402771]
[89]
Boraschi, D.; Italiani, P.; Palomba, R.; Decuzzi, P.; Duschl, A.; Fadeel, B.; Moghimi, S.M. Nanoparticles and innate immunity: New perspectives on host defence. Semin. Immunol., 2017, 34, 33-51.
[http://dx.doi.org/10.1016/j.smim.2017.08.013] [PMID: 28869063]
[90]
Jabir, M.S.; Taha, A.A.; Sahib, U.I. Linalool loaded on glutathione-modified gold nanoparticles: A drug delivery system for a successful antimicrobial therapy. Artif. Cells Nanomed. Biotechnol., 2018, 46(sup2), 345-355.
[http://dx.doi.org/10.1080/21691401.2018.1457535]
[91]
Pereira, I.A.G.; Mendonça, D.V.C.; Tavares, G.S.V.; Lage, D.P.; Ramos, F.F.; Oliveira-da-Silva, J.A.; Antinarelli, L.M.R.; Machado, A.S.; Carvalho, L.M.; Carvalho, A.M.R.S.; Salustiano, I.V.; Reis, T.A.R.; Bandeira, R.S.; Silva, A.M.; Martins, V.T.; Chávez-Fumagalli, M.A.; Humbert, M.V.; Roatt, B.M.; Duarte, M.C.; Menezes-Souza, D.; Coimbra, E.S.; Leite, J.P.V.; Coelho, E.A.F.; Gonçalves, D.U. Parasitological and immunological evaluation of a novel chemotherapeutic agent against visceral leishmaniasis. Parasite Immunol., 2020, 42(12), e12784.
[http://dx.doi.org/10.1111/pim.12784] [PMID: 32772379]
[92]
Islamuddin, M.; Chouhan, G.; Farooque, A.; Dwarakanath, B.S.; Sahal, D.; Afrin, F. Th1-biased immunomodulation and therapeutic potential of Artemisia annua in murine visceral leishmaniasis. PLoS Negl. Trop. Dis., 2015, 9(1), e3321.
[http://dx.doi.org/10.1371/journal.pntd.0003321] [PMID: 25568967]
[93]
Das, S.; Halder, A.; Mandal, S.; Mazumder, M.A.J.; Bera, T.; Mukherjee, A.; Roy, P. Andrographolide engineered gold nanoparticle to overcome drug resistant visceral leishmaniasis. Artif Cells Nanomed Biotechnol, 2018, 46(sup1), 751-762.
[http://dx.doi.org/10.1080/21691401.2018.1435549]
[94]
Das, S.; Roy, P.; Mondal, S.; Bera, T.; Mukherjee, A. One pot synthesis of gold nanoparticles and application in chemotherapy of wild and resistant type visceral leishmaniasis. Colloids Surf. B Biointerfaces, 2013, 107, 27-34.
[http://dx.doi.org/10.1016/j.colsurfb.2013.01.061] [PMID: 23466539]
[95]
Halder, A.; Das, S.; Bera, T.; Mukherjee, A. Rapid synthesis for monodispersed gold nanoparticles in kaempferol and anti-leishmanial efficacy against wild and drug resistant strains. RSC Advances, 2017, 7(23), 14159-14167.
[http://dx.doi.org/10.1039/C6RA28632A]
[96]
Barboza-Filho, C.G.; Cabrera, F.C.; Dos Santos, R.J.; De Saja Saez, J.A.; Job, A.E. The influence of natural rubber/Au nanoparticle membranes on the physiology of Leishmania brasiliensis. Exp. Parasitol., 2012, 130(2), 152-158.
[http://dx.doi.org/10.1016/j.exppara.2011.10.015] [PMID: 22101110]
[97]
Krupp, T.; Dos Santos, B.D.; Gama, L.A.; Silva, J.R.; Arrais-Silva, W.W.; de Souza, N.C.; Américo, M.F.; de Souza Souto, P.C. Natural rubber-propolis membrane improves wound healing in second-degree burning model. Int. J. Biol. Macromol., 2019, 131, 980-988.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.03.147] [PMID: 30910673]
[98]
Jebali, A.; Anvari-Tafti, M.H. Hybridization of different antisense oligonucleotides on the surface of gold nanoparticles to silence zinc metalloproteinase gene after uptake by Leishmania major. Colloids Surf. B Biointerfaces, 2015, 129, 107-113.
[http://dx.doi.org/10.1016/j.colsurfb.2015.03.029] [PMID: 25835145]
[99]
Sazgarnia, A.; Taheri, A.R.; Soudmand, S.; Parizi, A.J.; Rajabi, O.; Darbandi, M.S. Antiparasitic effects of gold nanoparticles with microwave radiation on promastigots and amastigotes of Leishmania major. Int. J. Hyperthermia, 2013, 29(1), 79-86.
[http://dx.doi.org/10.3109/02656736.2012.758875] [PMID: 23311381]
[100]
Nawaz, A.; Wong, T.W. Microwave as skin permeation enhancer for transdermal drug delivery of chitosan-5-fluorouracil nanoparticles. Carbohydr. Polym., 2017, 157, 906-919.
[http://dx.doi.org/10.1016/j.carbpol.2016.09.080] [PMID: 27988008]
[101]
Harun, M.S.; Wong, T.W.; Fong, C.W. Advancing skin delivery of α-tocopherol and γ-tocotrienol for dermatitis treatment via nanotechnology and microwave technology. Int. J. Pharm., 2021, 593, 120099.
[http://dx.doi.org/10.1016/j.ijpharm.2020.120099] [PMID: 33259902]
[102]
Amina, S.J.; Guo, B. A review on the synthesis and functionalization of gold nanoparticles as a drug delivery vehicle. Int. J. Nanomedicine, 2020, 15, 9823-9857.
[http://dx.doi.org/10.2147/IJN.S279094] [PMID: 33324054]
[103]
Alex, S.; Tiwari, A. Functionalized gold nanoparticles: Synthesis, properties and applications—a review. J. Nanosci. Nanotechnol., 2015, 15(3), 1869-1894.
[http://dx.doi.org/10.1166/jnn.2015.9718] [PMID: 26413604]
[104]
Singh, P.; Pandit, S.; Mokkapati, V.R.S.S.; Garg, A.; Ravikumar, V.; Mijakovic, I. Gold nanoparticles in diagnostics and therapeutics for human cancer. Int. J. Mol. Sci., 2018, 19(7), 1979.
[http://dx.doi.org/10.3390/ijms19071979] [PMID: 29986450]
[105]
Delavari, M.; Dalimi, A.; Ghaffarifar, F.; Sadraei, J. In vitro study on cytotoxic effects of ZnO nanoparticles on promastigote and amastigote forms of leishmania major (MRHO/IR/75/ER). Iran. J. Parasitol., 2014, 9(1), 6-13.
[PMID: 25642254]
[106]
do Carmo Neto, J.R.; Guerra, R.O.; Machado, J.R.; Silva, A.C.A.; da Silva, M.V. Antiprotozoal and anthelmintic activity of zinc oxide nanoparticles. Curr. Med. Chem., 2021, 28
[http://dx.doi.org/10.2174/0929867328666210709105850] [PMID: 34254904]
[107]
Ali, A.; Ambreen, S.; Javed, R.; Tabassum, S.; Ul Haq, I.; Zia, M. ZnO nanostructure fabrication in different solvents transforms physio-chemical, biological and photodegradable properties. Mater. Sci. Eng. C, 2017, 74, 137-145.
[http://dx.doi.org/10.1016/j.msec.2017.01.004] [PMID: 28254278]
[108]
Naqvi, Q.U.; Kanwal, A.; Qaseem, S.; Naeem, M.; Ali, S.R.; Shaffique, M.; Maqbool, M. Size-dependent inhibition of bacterial growth by chemically engineered spherical ZnO nanoparticles. J. Biol. Phys., 2019, 45(2), 147-159.
[http://dx.doi.org/10.1007/s10867-019-9520-4] [PMID: 30721424]
[109]
Hameed, S.; Khalil, A.T.; Ali, M.; Numan, M.; Khamlich, S.; Shinwari, Z.K.; Maaza, M. Greener synthesis of ZnO and Ag-ZnO nanoparticles using Silybum marianum for diverse biomedical applications. Nanomedicine (Lond.), 2019, 14(6), 655-673.
[http://dx.doi.org/10.2217/nnm-2018-0279] [PMID: 30714480]
[110]
Talari, M.K.; Abdul Majeed, A.B.; Tripathi, D.K.; Tripathy, M. Synthesis, characterization and antimicrobial investigation of mechanochemically processed silver doped ZnO nanoparticles. Chem. Pharm. Bull. (Tokyo), 2012, 60(7), 818-824.
[http://dx.doi.org/10.1248/cpb.c110479] [PMID: 22790812]
[111]
Khatami, M.; Khatami, S.; Mosazade, F.; Raisi, M.; Haghighat, M.; Sabaghan, M.; Yaghoubi, S.; Sarani, M.; Bamorovat, M.; Malekian, L.; Naroi, A.; Varma, S.R. Greener synthesis of Rod Shaped Zinc Oxide Nanoparticles using Lilium ledebourii tuber and evaluation of their Leishmanicidal activity. Iran. J. Biotechnol., 2020, 18(1), e2196.
[PMID: 32884950]
[112]
Talebian, N.; Amininezhad, S.M.; Doudi, M. Controllable synthesis of ZnO nanoparticles and their morphology-dependent antibacterial and optical properties. J. Photochem. Photobiol. B, 2013, 120, 66-73.
[http://dx.doi.org/10.1016/j.jphotobiol.2013.01.004] [PMID: 23428888]
[113]
Nadhman, A.; Nazir, S.; Khan, M.I.; Arooj, S.; Bakhtiar, M.; Shahnaz, G.; Yasinzai, M. PEGylated silver doped zinc oxide nanoparticles as novel photosensitizers for photodynamic therapy against Leishmania. Free Radic. Biol. Med., 2014, 77, 230-238.
[http://dx.doi.org/10.1016/j.freeradbiomed.2014.09.005] [PMID: 25266330]
[114]
Nadhman, A.; Sirajuddin, M.; Nazir, S.; Yasinzai, M. Photo-induced Leishmania DNA degradation by silver-doped zinc oxide nanoparticle: An in-vitro approach. IET Nanobiotechnol., 2015, 10, 129-133.
[PMID: 27256892]
[115]
Chilakamarthi, U.; Giribabu, L. Photodynamic therapy: Past, present and future. Chem. Rec., 2017, 17(8), 775-802.
[http://dx.doi.org/10.1002/tcr.201600121] [PMID: 28042681]
[116]
Saravanan, M.; Gopinath, V.; Chaurasia, M.K.; Syed, A.; Ameen, F.; Purushothaman, N. Green synthesis of anisotropic zinc oxide nanoparticles with antibacterial and cytofriendly properties. Microb. Pathog., 2018, 115, 57-63.
[http://dx.doi.org/10.1016/j.micpath.2017.12.039] [PMID: 29248514]
[117]
Mahamuni-Badiger, P.P.; Patil, P.M.; Badiger, M.V.; Patel, P.R.; Thorat-Gadgil, B.S.; Pandit, A.; Bohara, R.A. Biofilm formation to inhibition: Role of zinc oxide-based nanoparticles. Mater. Sci. Eng. C, 2020, 108, 110319.
[http://dx.doi.org/10.1016/j.msec.2019.110319] [PMID: 31923962]
[118]
Dréno, B.; Alexis, A.; Chuberre, B.; Marinovich, M. Safety of titanium dioxide nanoparticles in cosmetics. J. Eur. Acad. Dermatol. Venereol., 2019, 33(S7)(Suppl. 7), 34-46.
[http://dx.doi.org/10.1111/jdv.15943] [PMID: 31588611]
[119]
Musial, J.; Krakowiak, R.; Mlynarczyk, D.T.; Goslinski, T.; Stanisz, B.J. Titanium dioxide nanoparticles in food and personal care products-what do we know about their safety? Nanomaterials (Basel), 2020, 10(6), E1110.
[http://dx.doi.org/10.3390/nano10061110] [PMID: 32512703]
[120]
Abamor, E.S.; Allahverdiyev, A.M.; Bagirova, M.; Rafailovich, M. Meglumine antımoniate-TiO2@Ag nanoparticle combinations reduce toxicity of the drug while enhancing its antileishmanial effect. Acta Trop., 2017, 169, 30-42.
[http://dx.doi.org/10.1016/j.actatropica.2017.01.005] [PMID: 28111133]
[121]
Lopera, A.A.; Velásquez, A.M.A.; Clementino, L.C.; Robledo, S.; Montoya, A.; de Freitas, L.M.; Bezzon, V.D.N.; Fontana, C.R.; Garcia, C.; Graminha, M.A.S. Solution-combustion synthesis of doped TiO2 compounds and its potential antileishmanial activity mediated by photodynamic therapy. J. Photochem. Photobiol. B, 2018, 183, 64-74.
[http://dx.doi.org/10.1016/j.jphotobiol.2018.04.017] [PMID: 29689488]
[122]
Saleh, A.H. Potential role of titanium dioxide (TiO2) nanoparticles against the toxicity of Leishmania Tropica in adult albino male rats. JGPT, 2019, 11(3), 453-457.
[123]
Abamor, E.S.; Allahverdiyev, A.M. A nanotechnology based new approach for chemotherapy of Cutaneous Leishmaniasis: TIO2@AG nanoparticles - Nigella sativa oil combinations. Exp. Parasitol., 2016, 166, 150-163.
[http://dx.doi.org/10.1016/j.exppara.2016.04.008] [PMID: 27109311]
[124]
Dilika, F.; Bremner, P.D.; Meyer, J.J.M. Antibacterial activity of linoleic and oleic acids isolated from Helichrysum pedunculatum: A plant used during circumcision rites. Fitoterapia, 2000, 71(4), 450-452.
[http://dx.doi.org/10.1016/S0367-326X(00)00150-7] [PMID: 10925024]
[125]
Zheng, C.J.; Yoo, J.S.; Lee, T.G.; Cho, H.Y.; Kim, Y.H.; Kim, W.G. Fatty acid synthesis is a target for antibacterial activity of unsaturated fatty acids. FEBS Lett., 2005, 579(23), 5157-5162.
[http://dx.doi.org/10.1016/j.febslet.2005.08.028] [PMID: 16146629]
[126]
Mahmoudvand, H.; Tavakoli, R.; Sharififar, F.; Minaie, K.; Ezatpour, B.; Jahanbakhsh, S.; Sharifi, I. Leishmanicidal and cytotoxic activities of Nigella sativa and its active principle, thymoquinone. Pharm. Biol., 2015, 53(7), 1052-1057.
[http://dx.doi.org/10.3109/13880209.2014.957784] [PMID: 25471014]
[127]
Forouzanfar, F.; Bazzaz, B.S.F.; Hosseinzadeh, H. Black cumin (Nigella sativa) and its constituent (thymoquinone): A review on antimicrobial effects. Iran. J. Basic Med. Sci., 2014, 17(12), 929-938.
[PMID: 25859296]
[128]
Sepúlveda, A.A.L.; Arenas Velásquez, A.M.; Patiño Linares, I.A.; de Almeida, L.; Fontana, C.R.; Garcia, C.; Graminha, M.A.S. Efficacy of photodynamic therapy using TiO2 nanoparticles doped with Zn and hypericin in the treatment of cutaneous Leishmaniasis caused by Leishmania amazonensis. Photodiagn. Photodyn. Ther., 2020, 30, 101676.
[http://dx.doi.org/10.1016/j.pdpdt.2020.101676] [PMID: 32001331]
[129]
Allahverdiyev, A.M.; Abamor, E.S.; Bagirova, M.; Baydar, S.Y.; Ates, S.C.; Kaya, F.; Kaya, C.; Rafailovich, M. Investigation of antileishmanial activities of Tio2@Ag nanoparticles on biological properties of L. tropica and L. infantum parasites, in vitro. Exp. Parasitol., 2013, 135(1), 55-63.
[http://dx.doi.org/10.1016/j.exppara.2013.06.001] [PMID: 23792003]
[130]
Dolat, E.; Salarabadi, S.S.; Layegh, P.; Jaafari, M.R.; Sazgarnia, S.; Sazgarnia, A. The effect of UV radiation in the presence of TiO2-NPs on Leishmania major promastigotes. Biochim. Biophys. Acta, Gen. Subj., 2020, 1864(6), 129558.
[http://dx.doi.org/10.1016/j.bbagen.2020.129558] [PMID: 32061714]
[131]
Caridha, D.; Vesely, B.; van Bocxlaer, K.; Arana, B.; Mowbray, C.E.; Rafati, S.; Uliana, S.; Reguera, R.; Kreishman-Deitrick, M.; Sciotti, R.; Buffet, P.; Croft, S.L. Route map for the discovery and pre-clinical development of new drugs and treatments for cutaneous leishmaniasis. Int. J. Parasitol. Drugs Drug Resist., 2019, 11, 106-117.
[http://dx.doi.org/10.1016/j.ijpddr.2019.06.003] [PMID: 31320296]
[132]
Jebali, A.; Hekmatimoghaddam, S.; Kazemi, B.; Allaveisie, A.; Masoudi, A.; Daliri, K.; Sedighi, N.; Ranjbari, J. Lectin coated MgO nanoparticle: Its toxicity, antileishmanial activity, and macrophage activation. Drug Chem. Toxicol., 2014, 37(4), 400-409.
[http://dx.doi.org/10.3109/01480545.2013.870192] [PMID: 24393043]
[133]
Khatami, M.; Alijani, H.; Sharifi, I.; Sharifi, F.; Pourseyedi, S.; Kharazi, S.; Lima Nobre, M.A.; Khatami, M. Leishmanicidal activity of biogenic Fe3O4 nanoparticles. Sci. Pharm., 2017, 85(4), 36.
[http://dx.doi.org/10.3390/scipharm85040036] [PMID: 29156612]
[134]
Hassan, D.; Khalil, A.T.; Saleem, J.; Diallo, A.; Khamlich, S.; Shinwari, Z. K.; Maaza, M. Biosynthesis of pure hematite phase magnetic iron oxide nanoparticles using floral extracts of Callistemon viminalis (bottlebrush): Their physical properties and novel biological applications. Artif. Cells Nanomed. Biotechnol., 2018, 46(sup1), 693-707.
[135]
Kumar, R.; Pandey, K.; Sahoo, G.C.; Das, S.; Das, V.; Topno, R.K.; Das, P. Development of high efficacy peptide coated iron oxide nanoparticles encapsulated amphotericin B drug delivery system against visceral leishmaniasis. Mater. Sci. Eng. C, 2017, 75, 1465-1471.
[http://dx.doi.org/10.1016/j.msec.2017.02.145] [PMID: 28415438]
[136]
Abbasi, B.A.; Iqbal, J.; Mahmood, T.; Ahmad, R.; Kanwal, S.; Afridi, S. Plant-mediated synthesis of nickel oxide nanoparticles (nio) via Geranium wallichianum: characterization and different biological applications. Mater. Res. Express, 2019, 6(8), 0850a7.
[137]
Khalil, A.T.; Ovais, M.; Ullah, I.; Ali, M.; Shinwari, Z.K.; Hassan, D.; Maaza, M. Sageretia thea (Osbeck.) modulated biosynthesis of NiO nanoparticles and their in vitro pharmacognostic, antioxidant and cytotoxic potential. Artif. Cells Nanomed. Biotechnol., 2018, 46(4), 838-852.
[http://dx.doi.org/10.1080/21691401.2017.1345928] [PMID: 28687045]
[138]
Iqbal, J.; Abbasi, B.A.; Batool, R.; Khalil, A.T.; Hameed, S.; Kanwal, S.; Ullah, I.; Mahmood, T. Biogenic synthesis of green and cost effective cobalt oxide nanoparticles using Geranium wallichianum leaves extract and evaluation of in vitro antioxidant, antimicrobial, cytotoxic and enzyme inhibition properties. Mater. Res. Express, 2019, 6(11), 115407.
[http://dx.doi.org/10.1088/2053-1591/ab4f04]
[139]
Alarifi, S.; Ali, D.; y, A.O.; Ahamed, M.; Siddiqui, M.A.; Al-Khedhairy, A.A. Oxidative stress contributes to cobalt oxide nanoparticles-induced cytotoxicity and DNA damage in human hepatocarcinoma cells. Int. J. Nanomedicine, 2013, 8, 189-199.
[PMID: 23326189]
[140]
De Carli, R.F.; Chaves, D.D.S.; Cardozo, T.R.; de Souza, A.P.; Seeber, A.; Flores, W.H.; Honatel, K.F.; Lehmann, M.; Dihl, R.R. Evaluation of the genotoxic properties of nickel oxide nanoparticles in vitro and in vivo. MRGTEM, 2018, 836(Pt B), 47-53.
[http://dx.doi.org/10.1016/j.mrgentox.2018.06.003] [PMID: 30442345]
[141]
Tavakoli, P.; Ghaffarifar, F.; Delavari, H.; Shahpari, N. Efficacy of manganese oxide (Mn2O3) nanoparticles against Leishmania major in vitro and in vivo. J. Trace Elem. Med. Biol., 2019, 56, 162-168.
[http://dx.doi.org/10.1016/j.jtemb.2019.08.003] [PMID: 31473559]
[142]
Abo-Zeid, Y.; Williams, G.R. The potential anti-infective applications of metal oxide nanoparticles: A systematic review. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2020, 12(2), e1592.
[http://dx.doi.org/10.1002/wnan.1592] [PMID: 31595709]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy