Generic placeholder image

Nanoscience & Nanotechnology-Asia

Editor-in-Chief

ISSN (Print): 2210-6812
ISSN (Online): 2210-6820

Review Article

Preparation and Chemical/Physical Characterization of Individual Nanoscaled Fibrils

Author(s): Praveetha Senthilkumar, Sharmila Chandran, Alexey Kartsev, Vladimir Shavrov, Petr Lega and Ramesh Subramani*

Volume 12, Issue 2, 2022

Published on: 26 April, 2022

Article ID: e170222201234 Pages: 10

DOI: 10.2174/2210681212666220217121830

Price: $65

Abstract

Polymer-based nanofibril finds its application in various fields including tissue engineering, environmental monitoring, food packaging, and micro/nanoelectromechanical systems. These nanofibrils are subjected to chemical treatment and constant stress, which may cause permanent deformation to the fibrils when it is used. Therefore, the synthesis of well-defined nanofibrils and characterization techniques are key elements in identifying desired chemical and physical properties for suitable applications. Many methods have been developed to prepare individual nanofibrils, including electrospinning, phase separation, template synthesis, and self-assembly. Among all, self-assembly offers simple, efficient, and lowcost strategies that produce high-ordered nanofibrils using noncovalent interactions including hydrogen bonding, electrostatic interactions, π-π interactions, and hydrophobic interactions. The first part of the review provides detailed molecular interactions and simulations that can be controlled to achieve the formation of well-defined individual nanofibrils. The second part of the review describes the various existing tools to characterize the chemical and physical properties of single nanofibrils including atomic force microscopy. In the final part of the review, recently developed novel nanotools that measure the mechanical properties of nanofibrils are described. By bridging the gap between molecular interactions and resulting nanoscale fibirls, physical and chemical properties may lead to the construction of novel nanomaterials in the area of nanoscience and nanotechnology.

Keywords: Nanofibrils, electrostatic interactions, self-assembly, mechanical measurement, atomic force microscopy, nano tweezers.

Graphical Abstract

[1]
Iwamoto, S.; Kai, W.; Isogai, A.; Iwata, T. Elastic modulus of single cellulose microfibrils from tunicate measured by atomic force mi-croscopy. Biomacromolecules, 2009, 10(9), 2571-2576.
[http://dx.doi.org/10.1021/bm900520n] [PMID: 19645441]
[2]
Varga, M. Self-assembly of nanobiomaterials.Fabrication and Self-Assembly of Nanobiomaterials: Applications of Nanobiomaterials; Elsevier Inc., 2016, pp. 57-90.
[http://dx.doi.org/10.1016/B978-0-323-41533-0.00003-9]
[3]
Cote, Y.; Fu, I.W.; Dobson, E.T.; Goldberger, J.E.; Nguyen, H.D.; Shen, J.K. Mechanism of the pH-controlled self-assembly of nanofibers from peptide amphiphiles. J. Phys. Chem. C, 2014, 118(29), 16272-16278.
[http://dx.doi.org/10.1021/jp5048024] [PMID: 25089166]
[4]
Rho, J.Y.; Cox, H.; Mansfield, E.D.H.; Ellacott, S.H.; Peltier, R.; Brendel, J.C.; Hartlieb, M.; Waigh, T.A.; Perrier, S. Dual self-assembly of supramolecular peptide nanotubes to provide stabilisation in water. Nat. Commun., 2019, 10(1), 4708.
[http://dx.doi.org/10.1038/s41467-019-12586-8] [PMID: 31624265]
[5]
Liu, Y.; Zhang, L.; Wei, W. Effect of noncovalent interaction on the self-assembly of a designed peptide and its potential use as a carrier for controlled bFGF release. Int. J. Nanomedicine, 2017, 12, 659-670.
[http://dx.doi.org/10.2147/IJN.S124523] [PMID: 28176898]
[6]
Niece, K.L.; Hartgerink, J.D.; Donners, J.J.J.M.; Stupp, S.I. Self-assembly combining two bioactive peptide-amphiphile molecules into nanofibers by electrostatic attraction. J. Am. Chem. Soc., 2003, 125(24), 7146-7147.
[http://dx.doi.org/10.1021/ja028215r] [PMID: 12797766]
[7]
Hong, Y.; Legge, R.L.; Zhang, S.; Chen, P. Effect of amino acid sequence and pH on nanofiber formation of self-assembling peptides EAK16-II and EAK16-IV. Biomacromolecules, 2003, 4(5), 1433-1442.
[http://dx.doi.org/10.1021/bm0341374] [PMID: 12959616]
[8]
Kattamuri, S.B.K.; Potti, L.; Vinukonda, A. Nanofibers in pharmaceuticals- a review.. 2012, 2, 187-212.
[9]
Zhang, X.; Elsayed, I.; Navarathna, C.; Schueneman, G.T.; Hassan, E.B. Biohybrid hydrogel and aerogel from self-assembled nanocellu-lose and nanochitin as a high-efficiency adsorbent for water purification. ACS Appl. Mater. Interfaces, 2019, 11(50), 46714-46725.
[http://dx.doi.org/10.1021/acsami.9b15139] [PMID: 31741369]
[10]
Ferstl, M.; Strasser, A.; Wittmann, H.J.; Drechsler, M.; Rischer, M.; Engel, J.; Goepferich, A. Nanofibers resulting from cooperative elec-trostatic and hydrophobic interactions between peptides and polyelectrolytes of opposite charge. Langmuir, 2011, 27(23), 14450-14459.
[http://dx.doi.org/10.1021/la202252m] [PMID: 21999929]
[11]
Banerjee, S.; Bhattacharya, S. Food gels: Gelling process and new applications. Crit. Rev. Food Sci. Nutr., 2012, 52(4), 334-346.
[http://dx.doi.org/10.1080/10408398.2010.500234] [PMID: 22332597]
[12]
Liao, H.S.; Lin, J.; Liu, Y.; Huang, P.; Jin, A.; Chen, X. Self-assembly mechanisms of nanofibers from peptide amphiphiles in solution and on substrate surfaces. Nanoscale, 2016, 8(31), 14814-14820.
[http://dx.doi.org/10.1039/C6NR04672J] [PMID: 27447093]
[13]
Cafferty, B.J.; Avirah, R.R.; Schuster, G.B.; Hud, N.V. Ultra-sensitive pH control of supramolecular polymers and hydrogels: PKa match-ing of biomimetic monomers. Chem. Sci. (Camb.), 2014, 5(12), 4681-4686.
[http://dx.doi.org/10.1039/C4SC02182G]
[14]
Kayaci, F.; Ertas, Y.; Uyar, T. Enhanced thermal stability of eugenol by cyclodextrin inclusion complex encapsulated in electrospun pol-ymeric nanofibers. J. Agric. Food Chem., 2013, 61(34), 8156-8165.
[http://dx.doi.org/10.1021/jf402923c] [PMID: 23898890]
[15]
Dahlin, R.L.; Kasper, F.K.; Mikos, A.G. Polymeric nanofibers in tissue engineering. Tissue Eng. Part B Rev., 2011, 17(5), 349-364.
[http://dx.doi.org/10.1089/ten.teb.2011.0238] [PMID: 21699434]
[16]
Roodbar Shojaei, T.; Hajalilou, A.; Tabatabaei, M.; Mobli, H.; Aghbashlo, M. Characterization and evaluation of nanofiber materials.Handbook of Nanofibers; Springer, 2019, pp. 491-522.
[http://dx.doi.org/10.1007/978-3-319-53655-2_15]
[17]
Bürck, J.; Heissler, S.; Geckle, U.; Ardakani, M.F.; Schneider, R.; Ulrich, A.S.; Kazanci, M. Resemblance of electrospun collagen nano-fibers to their native structure. Langmuir, 2013, 29(5), 1562-1572.
[http://dx.doi.org/10.1021/la3033258] [PMID: 23256459]
[18]
Aman Mohammadi, M.; Rostami, M.R.; Raeisi, M.; Tabibi Azar, M. Production of electrospun nanofibers from food proteins and poly-saccharides and their applications in food and drug sciences. Jorjani Biomed J., 2018, 6(4), 62-77.
[http://dx.doi.org/10.29252/jorjanibiomedj.6.4.62]
[19]
Yang, J.; Li, P.; Zhao, B.; Pan, K.; Deng, J. Electrospinning chiral fluorescent nanofibers from helical polyacetylene: Preparation and enan-tioselective recognition ability. Nanoscale Adv., 2020, 2(3), 1301-1308.
[http://dx.doi.org/10.1039/D0NA00127A]
[20]
Kumbar, S.G.; James, R.; Nukavarapu, S.P.; Laurencin, C.T. Electrospun nanofiber scaffolds: Engineering soft tissues. Biomed. Mater., 2008, 3(3), 034002.
[http://dx.doi.org/10.1088/1748-6041/3/3/034002] [PMID: 18689924]
[21]
Ewaldz, E.; Brettmann, B. Molecular interactions in electrospinning: from polymer mixtures to supramolecular assemblies. ACS Appl. Polym. Mater., 2019, 1(3), 298-308.
[http://dx.doi.org/10.1021/acsapm.8b00073]
[22]
Almetwally, A.A.; El-Sakhawy, M.; Elshakankery, M.; Kasem, M.H. Technology of nano-fibers: Production techniques and properties - critical review. J. Textile Associat., 2017, 8(1), 5-14.
[23]
Padil, V.V.T.; Nguyen, N.H.A.; Ševcu˚, A.; Černík, M. Fabrication, characterization, and antibacterial properties of electrospun membrane composed of gum karaya, polyvinyl alcohol, and silver nanoparticles. J. Nanomater., 2015, 2015, 750726.
[24]
Haciosmanoğlu, S.K.; Buerck, J.; Kazanci, M. Production of collagen nanofibers and unfolding of the structure. Biol. Chem. Res., 2018, 2018, 41-47.
[25]
Carrick, L.M.; Aggeli, A.; Boden, N.; Fisher, J.; Ingham, E.; Waigh, T.A. Effect of ionic strength on the self-assembly, morphology and gelation of pH responsive β-sheet tape-forming peptides. Tetrahedron, 2007, 63(31), 7457-7467.
[http://dx.doi.org/10.1016/j.tet.2007.05.036]
[26]
Regalado, C.; Pérez-Pérez, C. Lara-Cortés, -Almendarez G. Whey protein based edible food packaging films and coatings. Res Signpost., 2006, 37661(2), 237-261.
[27]
Materials, N. Electrospun nanofibers for food packaging applications. Int. Conf. Nat. Fibers, 2013, 2013, p. 269313.
[28]
Sullivan, S.T.; Tang, C.; Kennedy, A.; Talwar, S.; Khan, S.A. Electrospinning and heat treatment of whey protein nanofibers. Food Hydrocoll., 2014, 35, 36-50.
[http://dx.doi.org/10.1016/j.foodhyd.2013.07.023]
[29]
Liang, F.C.; Kuo, C.C.; Chen, B.Y.; Cho, C.J.; Hung, C.C.; Chen, W.C.; Borsali, R. RGB-switchable porous electrospun nanofiber chemo-probe-filter prepared from multifunctional copolymers for versatile sensing of ph and heavy metals. ACS Appl. Mater. Interfaces, 2017, 9(19), 16381-16396.
[http://dx.doi.org/10.1021/acsami.7b00970] [PMID: 28441012]
[30]
Mandal, D.; Nasrolahi Shirazi, A.; Parang, K. Self-assembly of peptides to nanostructures. Org. Biomol. Chem., 2014, 12(22), 3544-3561.
[http://dx.doi.org/10.1039/C4OB00447G] [PMID: 24756480]
[31]
Rouse, J.G.; Van Dyke, M.E. A review of keratin-based biomaterials for biomedical applications. Materials (Basel), 2010, 3(2), 999-1014.
[http://dx.doi.org/10.3390/ma3020999]
[32]
Alghoraibi, I.; Alomari, S. Handbook of Nanofibers; Springer, 2019.
[33]
Zhang, B.; Yan, X.; Xu, Y.; Zhao, H.S.; Yu, M.; Long, Y.Z. Measurement of adhesion of in situ electrospun nanofibers on different sub-strates by a direct pulling method. Adv. Mater. Sci. Eng., 2020, 2020, 7517109.
[http://dx.doi.org/10.1155/2020/7517109]
[34]
Dave, A.C.; Loveday, S.M.; Anema, S.G.; Loo, T.S.; Norris, G.E.; Jameson, G.B.; Singh, H. B-lactoglobulin self-assembly: Structural changes in early stages and disulfide bonding in fibrils. J. Agric. Food Chem., 2013, 61(32), 7817-7828.
[http://dx.doi.org/10.1021/jf401084f] [PMID: 23848407]
[35]
Jia, X.W.; Qin, Z.Y.; Xu, J.X.; Kong, B.H.; Liu, Q.; Wang, H. Preparation and characterization of pea protein isolate-pullulan blend electro-spun nanofiber films. Int. J. Biol. Macromol., 2020, 157, 641-647.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.11.216] [PMID: 31786299]
[36]
Adewuyi, S.; Ondigo, D.A.; Zugle, R.; Tshentu, Z.; Nyokong, T.; Torto, N. A highly selective and sensitive pyridylazo-2-naphthol-poly(acrylic acid) functionalized electrospun nanofiber fluorescence “turn-off” chemosensory system for Ni 2+. Anal. Methods, 2012, 4(6), 1729-1735.
[http://dx.doi.org/10.1039/c2ay25182e]
[37]
Ong, K.; Yun, M.; White, J. New biomaterials for orthopedic implants. Orthop. Res. Rev., 2015, 107.
[http://dx.doi.org/10.2147/ORR.S63437]
[38]
Iscen, A.; Schatz, G.C. Hofmeister effects on peptide amphiphile nanofiber self-assembly. J. Phys. Chem. B, 2019, 123(32), 7006-7013.
[http://dx.doi.org/10.1021/acs.jpcb.9b05532] [PMID: 31337221]
[39]
Sikder, A.; Ghosh, S. Hydrogen-bonding regulated assembly of molecular and macromolecular amphiphiles. Mater. Chem. Front., 2019, 2019, 2602-2616.
[http://dx.doi.org/10.1039/C9QM00473D]
[40]
Insuasty, A.; Atienza, C.; López, J.L.; Martín, N. Supramolecular pentapeptide-based fullerene nanofibers: Effect of molecular chirality. Chem. Commun. (Camb.), 2015, 51(52), 10506-10509.
[http://dx.doi.org/10.1039/C5CC01991E] [PMID: 26037709]
[41]
Wang, J.; Liu, K.; Xing, R.; Yan, X. Peptide self-assembly: Thermodynamics and kinetics. Chem. Soc. Rev., 2016, 45(20), 5589-5604.
[http://dx.doi.org/10.1039/C6CS00176A] [PMID: 27487936]
[42]
Han, S.; Cao, S.; Wang, Y.; Wang, J.; Xia, D.; Xu, H.; Zhao, X.; Lu, J.R. Self-assembly of short peptide amphiphiles: The cooperative ef-fect of hydrophobic interaction and hydrogen bonding. Chemistry, 2011, 17(46), 13095-13102.
[http://dx.doi.org/10.1002/chem.201101970] [PMID: 21956759]
[43]
Martins, J.T.; Bourbon, A.I.; Pinheiro, A.C.; Fasolin, L.H.; Vicente, A.A. Protein-based structures for food applications: From macro to nanoscale. Front. Sustain. Food Syst., 2018, 2, 1-18.
[http://dx.doi.org/10.3389/fsufs.2018.00077]
[44]
Ghosh, A.; Haverick, M.; Stump, K.; Yang, X.; Tweedle, M.F.; Goldberger, J.E. Fine-tuning the pH trigger of self-assembly. J. Am. Chem. Soc., 2012, 134(8), 3647-3650.
[http://dx.doi.org/10.1021/ja211113n] [PMID: 22309293]
[45]
Qiao, Y.; Lin, Y.; Yang, Z.; Chen, H.; Zhang, S.; Yan, Y.; Huang, J. Unique temperature-dependent supramolecular self-assembly: From hierarchical 1D nanostructures to super hydrogel. J. Phys. Chem. B, 2010, 114(36), 11725-11730.
[http://dx.doi.org/10.1021/jp1047369] [PMID: 20722403]
[46]
Fiedler, S.L.; Izvekov, S.; Violi, A. The effect of temperature on nanoparticle clustering. Carbon N Y., 2007, 45(9), 1786-1794.
[http://dx.doi.org/10.1016/j.carbon.2007.05.001]
[47]
Kamada, A.; Mittal, N.; Söderberg, L.D.; Ingverud, T.; Ohm, W.; Roth, S.V. Flow-assisted assembly of nanostructured protein microfibers. Proc. Natl. Acad. Sci. USA, 2017, 114(6), 1232-1237.
[http://dx.doi.org/10.1073/pnas.1617260114]
[48]
Wang, L.; Gong, C.; Yuan, X.; Wei, G. Controlling the self-assembly of biomolecules into functional nanomaterials through internal inter-actions and external stimulations: A review. Nanomaterials (Basel), 2019, 9(2), E285.
[http://dx.doi.org/10.3390/nano9020285] [PMID: 30781679]
[49]
Nieminen, R.M. From atomistic simulation towards multiscale modelling of materials. J. Phys. Condens. Matter, 2002, 14(11), 2859-2876.
[http://dx.doi.org/10.1088/0953-8984/14/11/306]
[50]
Lega, P.; Kartsev, A.; Nedospasov, I.; Lv, S.; Lv, X.; Tabachkova, N. Blocking of the martensitic transition at the nanoscale in a Ti2NiCu wedge. Phys. Rev. B, 2020, 101(21), 1-9.
[http://dx.doi.org/10.1103/PhysRevB.101.214111]
[51]
Ling, S.; Kaplan, D.L.; Buehler, M.J. Nanofibrils in nature and materials engineering. Nat. Rev. Mater., 2018, 3(4), 1-15.
[http://dx.doi.org/10.1038/natrevmats.2018.16] [PMID: 34168896]
[52]
Gryn’ova, G.; Nicolaï, A.; Prlj, A.; Ollitrault, P.; Andrienko, D.; Corminboeuf, C. Charge transport in highly ordered organic nanofibrils: Lessons from modelling. J. Mater. Chem. C Mater. Opt. Electron. Devices, 2017, 5(2), 350-361.
[http://dx.doi.org/10.1039/C6TC04463H]
[53]
Zhu, P.Z.; Hu, Y.Z.; Ma, T.B.; Wang, H. Study of AFM-based nanometric cutting process using molecular dynamics. Appl. Surf. Sci., 2010, 256(23), 7160-7165.
[http://dx.doi.org/10.1016/j.apsusc.2010.05.044]
[54]
Pagano, A.; Iaccarino, N.; Abdelhamid, M.A.S.; Brancaccio, D.; Garzarella, E.U.; Di Porzio, A.; Novellino, E.; Waller, Z.A.E.; Pagano, B.; Amato, J.; Randazzo, A. Common G-quadruplex binding agents found to interact with i-motif-forming DNA: Unexpected multi-target-directed compounds. Front Chem., 2018, 6, 281.
[http://dx.doi.org/10.3389/fchem.2018.00281] [PMID: 30137743]
[55]
Miles, A.J.; Janes, R.W.; Wallace, B.A. Tools and methods for circular dichroism spectroscopy of proteins: A tutorial review. Chem. Soc. Rev., 2021, 50(15), 8400-8413.
[http://dx.doi.org/10.1039/D0CS00558D] [PMID: 34132259]
[56]
Xu, F.; Yu, J.; Tesso, T.; Dowell, F.; Wang, D. Qualitative and quantitative analysis of lignocellulosic biomass using infrared techniques: A mini-review. Appl. Energy, 2013, 104, 801-809.
[http://dx.doi.org/10.1016/j.apenergy.2012.12.019]
[57]
Khalil, A.M.; Schäfer, A.I. Cross-linked β-cyclodextrin nanofiber composite membrane for steroid hormone micropollutant removal from water. J. Membr. Sci., 2021, 618, 118228.
[http://dx.doi.org/10.1016/j.memsci.2020.118228]
[58]
Fathi, M.; Nasrabadi, M.N.; Varshosaz, J. Characteristics of vitamin E-loaded nanofibres from dextran. Int. J. Food Prop., 2017, 20(11), 2665-2674.
[http://dx.doi.org/10.1080/10942912.2016.1247365]
[59]
Yue, T.T.; Li, X.; Wang, X.X.; Yan, X.; Yu, M.; Ma, J.W.; Zhou, Y.; Ramakrishna, S.; Long, Y.Z. Electrospinning of carboxymethyl chi-tosan/polyoxyethylene oxide nanofibers for fruit fresh-keeping. Nanoscale Res. Lett., 2018, 13(1), 239.
[http://dx.doi.org/10.1186/s11671-018-2642-y] [PMID: 30112698]
[60]
Silva, S.C.M.; Fuzatto, R.H.S.; Botrel, D.A.; Ugucioni, J.C.; Oliveira, J.E. Development of zein nanofibers for controlled delivery of essen-tial aminoacids for fish nutrition. SN Appl Sci., 2020, 2(11), 1783.
[http://dx.doi.org/10.1007/s42452-020-03616-y]
[61]
Moreno-Cortez, I.E.; Romero-García, J.; González-González, V.; García-Gutierrez, D.I.; Garza-Navarro, M.A.; Cruz-Silva, R. Encapsula-tion and immobilization of papain in electrospun nanofibrous membranes of PVA cross-linked with glutaraldehyde vapor. Mater. Sci. Eng. C, 2015, 52, 306-314.
[http://dx.doi.org/10.1016/j.msec.2015.03.049] [PMID: 25953572]
[62]
Rezaei, F.; Planckaert, T.; Vercruysse, C.; Verjans, J.; Van Der Voort, P.; Declercq, H. The influence of pre-electrospinning plasma treat-ment on physicochemical characteristics of PLA nanofibers. Macromol. Mater. Eng., 2019, 304(11), 1-16.
[http://dx.doi.org/10.1002/mame.201970032]
[63]
Zhang, W.; Chen, M.; Diao, G. Electrospinning β-cyclodextrin/poly(vinyl alcohol) nanofibrous membrane for molecular capture. Carbohydr. Polym., 2011, 86(3), 1410-1416.
[http://dx.doi.org/10.1016/j.carbpol.2011.06.062]
[64]
Stevi, F.A.; Donley, C.L. Introduction to X-ray photoelectron spectroscopy. J. Vac. Sci. Technol., 2020, 38(6), 063204.
[http://dx.doi.org/10.1116/6.0000412]
[65]
Srikanth, M.; Asmatulu, R.; Cluff, K.; Yao, L. Material characterization and bioanalysis of hybrid scaffolds of carbon nanomaterial and polymer nanofibers. ACS Omega, 2019, 4(3), 5044-5051.
[http://dx.doi.org/10.1021/acsomega.9b00197] [PMID: 30949614]
[66]
Szewczyk, P.K.; Ura, D.P.; Metwally, S.; Knapczyk-Korczak, J.; Gajek, M.; Marzec, M.M.; Bernasik, A.; Stachewicz, U. Roughness and fiber fraction dominated wetting of electrospun fiber-based porous meshes. Polymers (Basel), 2018, 11(1), E34.
[http://dx.doi.org/10.3390/polym11010034] [PMID: 30960018]
[67]
He, Z.; Rault, F.; Lewandowski, M.; Mohsenzadeh, E.; Salaün, F. Electrospun PVDF nanofibers for piezoelectric applications: A review of the influence of electrospinning parameters on the β phase and crystallinity enhancement. Polymers (Basel), 2021, 13(2), 1-23.
[http://dx.doi.org/10.3390/polym13020174] [PMID: 33418962]
[68]
Vu, D.; Li, X.; Wang, C. Efficient adsorption of As(V) on poly(acrylo-amidino ethylene amine) nanofiber membranes. Chin. Sci. Bull., 2013, 58(14), 1702-1707.
[http://dx.doi.org/10.1007/s11434-013-5717-2]
[69]
Dugdale, T.M.; Dagastine, R.; Chiovitti, A.; Mulvaney, P.; Wetherbee, R. Single adhesive nanofibers from a live diatom have the signature fingerprint of modular proteins. Biophys. J., 2005, 89(6), 4252-4260.
[http://dx.doi.org/10.1529/biophysj.105.062489] [PMID: 16169972]
[70]
Hobzov, R.; Sirc, J.; Kostina, N.; Munzarov, M.; Jukl, M.; Zaj, A. Morphological characterization of nanofibers : Methods and application in practice. J. Nanomater., 2012, 2012, 327369.
[71]
Kamoun, E.A.; Abu-Elreesh, G.M.; El-Fakharany, E.M.; Abd-El-Haleem, D. A novel bacterial polymeric silk-like protein from a petrole-um origin bacillus sp. strain ne: Isolation and characterization. J. Polym. Environ., 2019, 27(8), 1629-1641.
[http://dx.doi.org/10.1007/s10924-019-01459-2]
[72]
Sun, S.; Su, Z.; Wei, G. Self-assembly formation of peptide and protein nanofibers on surfaces and at interfaces.Artificial Protein and Peptide Nanofibers; Elsevier Ltd., 2020, pp. 23-39.
[http://dx.doi.org/10.1016/B978-0-08-102850-6.00002-4]
[73]
Zhang, J.; Cohn, C.; Qiu, W.; Zha, Z.; Dai, Z.; Wu, X. Atomic force microscopy of electrospun organic-inorganic lipid nanofibers. Appl. Phys. Lett., 2011, 99(10), 103702-1037023.
[http://dx.doi.org/10.1063/1.3635783] [PMID: 21990942]
[74]
Marx, D.T.; Khor, E.K.; Policandriotes, T. Application of fractals to the contact of carbon-carbon surfaces. J. Appl. Phys., 2006, 100(12), 2404793.
[http://dx.doi.org/10.1063/1.2404793]
[75]
Bower, A.F. Influence of strain hardening on the cumulative plastic deformation caused by repeated rolling and sliding contact. Univ. Eng. Dep. (Technical Report) CUED/C-Mech.,, 1987, 37(4), 136692179.
[76]
Oliver, WC Available from:. 2004.https://Nanoindentation_review.pdf/
[77]
Adamcik, J.; Mezzenga, R. Study of amyloid fibrils via atomic force microscopy. Curr. Opin. Colloid Interface Sci., 2012, 17(6), 369-376.
[http://dx.doi.org/10.1016/j.cocis.2012.08.001]
[78]
Lucas, M.; Leach, A.M.; McDowell, M.T.; Hunyadi, S.E.; Gall, K.; Murphy, C.J. Plastic deformation of pentagonal silver nanowires: Comparison between AFM nanoindentation and atomistic simulations. Phys. Rev. B Condens. Matter Mater. Phys., 2008, 77(24), 2-5.
[http://dx.doi.org/10.1103/PhysRevB.77.245420]
[79]
Tombler, T.W.; Zhou, C.; Alexseyev, L.; Kong, J.; Dai, H. Reversible electromechanical characteristics of carbon nanotubes under local-probe manipulation. Nature, 2000, 661(1993), 769-772.
[80]
Rapa, M.; Gaidau, C.; Stefan, L.M.; Matei, E.; Niculescu, M.; Gavrila, R.; Predescu, C.; Vidu, R. New Nanofibers based on protein by-products with bioactive potential for tissue engineering. Materials, 2020, 13, 3149.
[http://dx.doi.org/10.3390/ma13143149]
[81]
Lee, S.H.; Tekmen, C.; Sigmund, W.M. Three-point bending of electrospun TiO2 nanofibers. Mater. Sci. Eng. A, 2005, 398(1-2), 77-81.
[http://dx.doi.org/10.1016/j.msea.2005.03.014]
[82]
Zhou, J.; Cai, Q.; Liu, X.; Ding, Y.; Xu, F. Temperature effect on the mechanical properties of electrospun PU nanofibers. Nanoscale Res. Lett., 2018, 13(1), 384.
[http://dx.doi.org/10.1186/s11671-018-2801-1] [PMID: 30488187]
[83]
Smith, J.F.; Knowles, T.P.J.; Dobson, C.M.; Macphee, C.E.; Welland, M.E. Characterization of the nanoscale properties of individual amy-loid fibrils. Proc. Natl. Acad. Sci. USA, 2006, 103(43), 15806-15811.
[http://dx.doi.org/10.1073/pnas.0604035103] [PMID: 17038504]
[84]
Knight, D.P.; Vollrath, F. Changes in element composition along the spinning duct in a Nephila spider. Naturwissenschaften, 2001, 88(4), 179-182.
[http://dx.doi.org/10.1007/s001140100220] [PMID: 11480706]
[85]
Shackelford, C.D. Cumulative mass approach for column testing By Charles D. Shackelford, 1995, (3), 696-703.
[86]
Ma, L.; Gu, J. 3D bending simulation and mechanical properties of the OLED bending area. Open Phys., 2020, 18(1), 397-407.
[http://dx.doi.org/10.1515/phys-2020-0165]
[87]
Haque, M.A.; Saif, M.T.A. A review of MEMS-based microscale and nanoscale tensile and bending testing. Exp. Mech., 2003, 43(3), 248-255.
[http://dx.doi.org/10.1007/BF02410523]
[88]
Wang, W.; Barber, A.H. Measurement of size-dependent glass transition temperature in electrospun polymer fibers using AFM nanome-chanical testing. J. Polym. Sci., B, Polym. Phys., 2012, 50(8), 546-551.
[http://dx.doi.org/10.1002/polb.23030]
[89]
Yu, M.F.; Lourie, O.; Dyer, M.J.; Moloni, K.; Kelly, T.F.; Ruoff, R.S. Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science, 2000, 287(5453), 637-640.
[http://dx.doi.org/10.1126/science.287.5453.637]
[90]
Eppell, S.J.; Smith, B.N.; Kahn, H.; Ballarini, R. Nano measurements with micro-devices: Mechanical properties of hydrated collagen fi-brils. J. R. Soc. Interface, 2006, 3(6), 117-121.
[http://dx.doi.org/10.1098/rsif.2005.0100] [PMID: 16849223]
[91]
Nagayama, K.; Ohata, S.; Obata, S.; Sato, A. Macroscopic and microscopic analysis of mechanical properties and adhesive force of cells using single cell tensile test and atomic force microscopy. J. Mech. Behav. Biomed. Mater., 2020, 110(20), 121.
[92]
Lega, P.V.; Orlov, A.P.; Frolov, A.V.; Subramani, R.; Irzhak, A.V.; Koledov, V.V. 3D Nanomanipulation: Design and applications of func-tional nanostructured bio-materials. J. Phys. Conf. Ser., 2020, 1461(1), 012082.
[http://dx.doi.org/10.1088/1742-6596/1461/1/012082]
[93]
Irzhak, A.V.; Lega, P.V.; Zhikharev, A.M.; Koledov, V.V.; Orlov, A.P.; Kuchin, D.S. Shape memory effect in nanosized Ti2NiCu alloy-based composites. Dokl. Phys., 2017, 62(1), 5-9.
[http://dx.doi.org/10.1134/S1028335817010050]
[94]
Sorokin, A.A.; Makogonov, S.V.; Korolev, S.P. The information infrastructure for collective scientific work in the Far East of Russia. Sci. Tech. Inf. Process., 2017, 44, 302-304.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy