Abstract
Harmful microorganisms are widely present in the surrounding environment, causing a large number of infectious diseases in human society and serious negative effects on human life. In order to resist the damage of harmful microorganisms, antimicrobial agents that inhibit the growth of microorganisms came into being. This review aimed to encompass current syntheses and applications of N-halamines antimicrobial agents in the past five years, highlighting recent significant breakthroughs. This review included an introduction to the classification of antimicrobial agents, antimicrobial mechanisms, syntheses, and applications of small molecular N-halamines and N-halamines polymers. And finally, the conclusion and outlooks of N-halamines antimicrobial agents were provided.
Keywords: Antimicrobial agent, N-halamines, small molecular N-halamines, N-halamines polymers, applications, pathogens.
[http://dx.doi.org/10.1016/j.jpha.2015.11.005] [PMID: 29403965]
[http://dx.doi.org/10.1016/j.matchemphys.2020.123037]
[http://dx.doi.org/10.1007/s11814-017-0076-3]
[http://dx.doi.org/10.1016/j.ijadhadh.2004.11.008]
[http://dx.doi.org/10.1016/j.cis.2008.09.002] [PMID: 18945421]
[http://dx.doi.org/10.1021/acs.chemrev.6b00687] [PMID: 28252944]
(b)Swain, T. Secondary compounds as protective agents. Annu. Rev. Plant Physiol., 1977, 28(1), 479-501.
[http://dx.doi.org/10.1146/annurev.pp.28.060177.002403]
(c)Jiang, L.; Jia, Z.; Xu, X.; Chen, Y.; Peng, W.; Zhang, J.; Wang, H.; Li, S.; Wen, J. Preparation of antimicrobial activated carbon fiber by loading with silver nanoparticles. Colloids Surf. A Physicochem. Eng. Asp., 2022, 633, 127868.
[http://dx.doi.org/10.1016/j.colsurfa.2021.127868]
(d)Zhang, T.; Jia, Z. Preparation of PVDF and EVOH antimicrobial membranes by grafting quaternary ammonium compounds. React. Funct. Polym., 2022, 170, 105117.
[http://dx.doi.org/10.1016/j.reactfunctpolym.2021.105117]
[http://dx.doi.org/10.1016/j.apsusc.2008.02.048]
[http://dx.doi.org/10.1128/aem.59.5.1668-1670.1993] [PMID: 8390819]
[http://dx.doi.org/10.1177/0040517507082332]
(b)Angelova, T.; Rangelova, N.; Yuryev, R.; Georgieva, N.; Müller, R. Antibacterial activity of SiO2/hydroxypropyl cellulose hybrid materials containing silver nanoparticles. Mater. Sci. Eng. C, 2012, 32(5), 1241-1246.
[http://dx.doi.org/10.1016/j.msec.2012.03.015]
[http://dx.doi.org/10.1016/j.nano.2019.102142] [PMID: 31843661]
[http://dx.doi.org/10.1007/s40820-015-0040-x] [PMID: 30464967]
[http://dx.doi.org/10.1021/bm301980q] [PMID: 23391154]
[http://dx.doi.org/10.1002/app.40797]
[http://dx.doi.org/10.1016/j.carbpol.2018.06.072] [PMID: 30092983]
[http://dx.doi.org/10.1016/j.colsurfb.2018.04.065] [PMID: 29778035]
[http://dx.doi.org/10.1021/ct060007s] [PMID: 26626695]
[http://dx.doi.org/10.1021/ie030846m]
[http://dx.doi.org/10.1021/ma020691e]
[http://dx.doi.org/10.1021/am100511x] [PMID: 20669910]
[http://dx.doi.org/10.1177/088391159801300205]
[http://dx.doi.org/10.1021/ie060088a] [PMID: 18714370]
[http://dx.doi.org/10.1002/app.12405]
(b)Williams, D.E.; Worley, S.D.; Barnela, S.B.; Swango, L.J. Bactericidal activities of selected organic N-halamines. Appl. Environ. Microbiol., 1987, 53(9), 2082-2089.
[http://dx.doi.org/10.1128/aem.53.9.2082-2089.1987] [PMID: 3314705]
[http://dx.doi.org/10.1016/j.polymer.2011.11.036]
(b)Ma, Y.; Li, J.; Si, Y.; Huang, K.; Nitin, N.; Sun, G. Rechargeable antibacterial n-halamine films with antifouling function for food packaging applications. ACS Appl. Mater. Interfaces, 2019, 11(19), 17814-17822.
[http://dx.doi.org/10.1021/acsami.9b03464] [PMID: 31022343]
(c)Ren, X.; Kocer, H.B.; Worley, S.; Broughton, R.; Huang, T. Rechargeable biocidal cellulose: Synthesis and application of 3-(2, 3-dihydroxypropyl)-5, 5-dimethylimidazolidine-2, 4-dione. Carbohydr. Polym., 2009, 75(4), 683-687.
[http://dx.doi.org/10.1016/j.carbpol.2008.09.012]
[http://dx.doi.org/10.1128/aem.43.4.899-904.1982] [PMID: 6805433]
[http://dx.doi.org/10.1177/1558925019843222]
[http://dx.doi.org/10.1021/ie300212x] [PMID: 22942559]
[http://dx.doi.org/10.1021/ie400122h]
[http://dx.doi.org/10.1016/j.actbio.2011.12.027] [PMID: 22244984]
[http://dx.doi.org/10.1016/j.apsusc.2013.10.063]
[http://dx.doi.org/10.1021/acs.iecr.7b00863]
[http://dx.doi.org/10.1039/C9NA00103D]
(b)Wang, Y.; Yin, M.; Lin, X.; Li, L.; Li, Z.; Ren, X.; Sun, Y. Tailored synthesis of polymer-brush-grafted mesoporous silicas with N-halamine and quaternary ammonium groups for antimicrobial applications. J. Colloid Interface Sci., 2019, 533, 604-611.
[http://dx.doi.org/10.1016/j.jcis.2018.08.080] [PMID: 30193147]
(c)Zhang, S.; Li, L.; Ren, X.; Huang, T-S. N-halamine modified multiporous bacterial cellulose with enhanced antibacterial and hemostatic properties. Int. J. Biol. Macromol., 2020, 161, 1070-1078.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.06.053] [PMID: 32531364]
[http://dx.doi.org/10.1002/app.44998]
(b)Luo, H.; Yin, X.; Tan, P.; Shi, Y.; Gu, Y.; Zeng, R.; Tan, L. Engineering an antibacterial nanofibrous membrane containing N-halamine for recyclable wound dressing application. Mater. Today Commun., 2020, 23, 100898.
[http://dx.doi.org/10.1016/j.mtcomm.2020.100898]
(c)Mu, T.; Pan, N.; Wang, Y.; Ren, X.; Huang, T-S. Antibacterial coating of cellulose by iso-bifunctional reactive N-halamine with the dyeing process of reactive dye. Fibers Polym., 2018, 19(11), 2284-2289.
[http://dx.doi.org/10.1007/s12221-018-8632-y]
(d)Xiu, K.; Wen, J.; Porteous, N.; Sun, Y. Controlling bacterial fouling with polyurethane/N-halamine semi-interpenetrating polymer networks. J. Bioact. Compat. Polym., 2017, 32(5), 542-554.
[http://dx.doi.org/10.1177/0883911516689334] [PMID: 30034088]
(e)Xu, D.; Wang, S.; Hu, J.; Liu, Y.; Jiang, Z.; Zhu, P. Enhancing antibacterial and flame-retardant performance of cotton fabric with an iminodiacetic acid-containing N-halamine. Cellulose, 2021, 28(5), 3265-3277.
[http://dx.doi.org/10.1007/s10570-021-03716-x]
[http://dx.doi.org/10.1021/acsbiomaterials.7b00996] [PMID: 33435041]
(b)Demir, B.; Broughton, R.M.; Huang, T.S.; Bozack, M.J.; Worley, S.D. Polymeric antimicrobial n-halamine-surface modification of stainless steel. Ind. Eng. Chem. Res., 2017, 56(41), 11773-11781.
[http://dx.doi.org/10.1021/acs.iecr.7b02412]
(c)Li, Y.; Liu, X.; Tan, L.; Cui, Z.; Yang, X.; Yeung, K.W.K.; Pan, H.; Wu, S. Construction of N-halamine labeled silica/zinc oxide hybrid nanoparticles for enhancing antibacterial ability of Ti implants. Mater. Sci. Eng. C, 2017, 76, 50-58.
[http://dx.doi.org/10.1016/j.msec.2017.02.160] [PMID: 28482556]
(d)Ren, T.; Qiao, M.; Huang, T-S.; Weese, J.; Ren, X. Efficacy of N-halamine compound on reduction of microorganisms in absorbent food pads of raw beef. Food Control, 2018, 84, 255-262.
[http://dx.doi.org/10.1016/j.foodcont.2017.08.006]
(b)Liu, J.; Dong, C.; Zhang, Z.; Wei, D.; Lu, Z. Synthesis of a novel n-halamine-based cyclic polysiloxane and its antibacterial application on cotton fabrics. Fibers Polym., 2020, 21(2), 273-281.
[http://dx.doi.org/10.1007/s12221-020-9593-5]
(c)Liu, M.; Wang, F.; Liang, M.; Si, Y.; Yu, J.; Ding, B. In situ green synthesis of rechargeable antibacterial N-halamine grafted poly (vinyl alcohol) nanofibrous membranes for food packaging applications. Compos. Commun., 2020, 17, 147-153.
[http://dx.doi.org/10.1016/j.coco.2019.11.018]
(d)Pan, N.; Wang, Y.; Ren, X.; Huang, T-S.; Kim, I.S. Graphene oxide as a polymeric N-halamine carrier and release platform: Highly-efficient, sustained-release antibacterial property and great storage stability. Mater. Sci. Eng. C, 2019, 103, 109877.
[http://dx.doi.org/10.1016/j.msec.2019.109877] [PMID: 31349493]
(e)Wang, Y.; Liu, Y.; Tian, H.; Zhai, Y.; Pan, N.; Yin, M.; Ren, X.; Liang, J. Preparation and characterization of antibacterial mesoporous sieves with N-halamine. Colloid Polym. Sci., 2017, 295(10), 1897-1904.
[http://dx.doi.org/10.1007/s00396-017-4167-9]
(f)Zuo, M.; Pan, N.; Huang, T-S.; Kim, I.S.; Ren, X. Antibacterial Chitosan Hybrid Films with N-Halamine-Functionalized Graphene Oxide. Nano, 2020, 15(02), 2050027.
[http://dx.doi.org/10.1142/S1793292020500277]
[http://dx.doi.org/10.1016/j.cclet.2021.03.007]
(b)Chien, H-W.; Chen, Y-Y.; Chen, Y-L.; Cheng, C-H.; Lin, J-C. Studies of PET nonwovens modified by novel antimicrobials configured with both N-halamine and dual quaternary ammonium with different alkyl chain length. RSC Advances, 2019, 9(13), 7257-7265.
[http://dx.doi.org/10.1039/C9RA00094A]
[http://dx.doi.org/10.1039/D0TB01497D] [PMID: 32857090]
[http://dx.doi.org/10.1002/pat.4653]
[http://dx.doi.org/10.1016/j.jcis.2013.09.036] [PMID: 24183435]
[http://dx.doi.org/10.1016/j.biomaterials.2014.02.056] [PMID: 24695094]
[http://dx.doi.org/10.1002/pat.4571]
[http://dx.doi.org/10.1016/j.desal.2013.07.018]
[http://dx.doi.org/10.1039/C4RA14530E]
[http://dx.doi.org/10.1021/acsami.5b05429] [PMID: 26191972]
[http://dx.doi.org/10.1021/acsami.6b08431] [PMID: 27808500]
[http://dx.doi.org/10.1016/j.cej.2014.03.042]
[http://dx.doi.org/10.1016/j.surfcoat.2019.125021]
[http://dx.doi.org/10.1016/j.jcis.2011.08.036] [PMID: 21925670]
[http://dx.doi.org/10.1021/am402191j] [PMID: 23915243]
[http://dx.doi.org/10.1021/am200351w] [PMID: 21657263]
[http://dx.doi.org/10.1016/0032-3861(96)00194-2]
[http://dx.doi.org/10.1016/j.jfoodeng.2013.02.004]
[http://dx.doi.org/10.1002/app.37806]
[http://dx.doi.org/10.1016/j.apsusc.2011.01.115]
[http://dx.doi.org/10.1021/la047407s] [PMID: 16042495]
(b)Kong, Q.; Li, Z.; Ding, F.; Ren, X. Hydrophobic N-halamine based POSS block copolymer porous films with antibacterial and resistance of bacterial adsorption performances. Chem. Eng. J., 2021, 410, 128407.
[http://dx.doi.org/10.1016/j.cej.2021.128407]
[http://dx.doi.org/10.1016/j.fbp.2015.06.002]
[http://dx.doi.org/10.1016/j.biotechadv.2008.09.002] [PMID: 18854209]
[http://dx.doi.org/10.1021/ie00025a022]
[http://dx.doi.org/10.1002/mabi.201600304] [PMID: 27678495]
[http://dx.doi.org/10.1021/ie502479h] [PMID: 25678740]
[http://dx.doi.org/10.2147/IJN.S132035] [PMID: 28408826]
[http://dx.doi.org/10.1021/acsami.5b12601] [PMID: 26824841]
[http://dx.doi.org/10.1007/s12221-015-5108-1]
[http://dx.doi.org/10.1021/acsami.8b18322] [PMID: 30525383]
[http://dx.doi.org/10.1007/s10853-014-8285-1]
[http://dx.doi.org/10.1007/s10853-016-0488-1]
[http://dx.doi.org/10.1007/s11051-014-2454-7]
[http://dx.doi.org/10.1039/D0NJ01439G]
(b)Ma, W.; Li, L.; Lin, X.; Wang, Y.; Ren, X.; Huang, T-S. Novel ZnO/N-halamine-mediated multifunctional dressings as quick antibacterial agent for biomedical applications. ACS Appl. Mater. Interfaces, 2019, 11(34), 31411-31420.
[http://dx.doi.org/10.1021/acsami.9b10857] [PMID: 31373785]
(c)Pan, N.; Liu, Y.; Ren, X.; Huang, T-S. Fabrication of cotton fabrics through in-situ reduction of polymeric N-halamine modified graphene oxide with enhanced ultraviolet-blocking, self-cleaning, and highly efficient, and monitorable antibacterial properties. Colloid. Colloids Surf. A Physicochem. Eng. Asp., 2018, 555, 765-771.
[http://dx.doi.org/10.1016/j.colsurfa.2018.07.056]
(d)Wang, H.; Wang, Z-M.; Yan, X.; Chen, J.; Lang, W-Z.; Guo, Y-J. Novel organic-inorganic hybrid polyvinylidene fluoride ultrafiltration membranes with antifouling and antibacterial properties by embedding N-halamine functionalized silica nanospheres. J. Ind. Eng. Chem., 2017, 52, 295-304.
[http://dx.doi.org/10.1016/j.jiec.2017.03.059]
[http://dx.doi.org/10.1002/app.44897]
[http://dx.doi.org/10.1016/j.apsusc.2017.05.087]
(b)Li, R.; Sheng, J.; Cheng, X.; Li, J.; Ren, X.; Huang, T-S. Biocidal poly (vinyl alcohol) films incorporated with N-halamine siloxane. Compos. Commun., 2018, 10, 89-92.
[http://dx.doi.org/10.1016/j.coco.2018.07.005]
(c)Tian, C.; Wu, F.; Jiao, W.; Liu, X.; Yin, X.; Si, Y.; Yu, J.; Ding, B. Antibacterial and antiviral N-halamine nanofibrous membranes with nanonet structure for bioprotective applications. Compos. Commun., 2021, 24, 100668.
[http://dx.doi.org/10.1016/j.coco.2021.100668]
(b)Chang, D.; Li, Z.; Wang, X.; Zhu, C.; Dong, A.; Gao, G. N-Halamine polymer from bipolymer to amphiphilic terpolymer with enhancement in antibacterial activity. Colloids Surf. B Biointerfaces, 2018, 163, 402-411.
[http://dx.doi.org/10.1016/j.colsurfb.2018.01.013] [PMID: 29366983]
(c)Chen, Y.; Feng, C.; Zhang, Q.; Luo, M.; Xu, J.; Han, Q. Engineering of antibacterial/recyclable difunctional nanoparticles via synergism of quaternary ammonia salt site and N-halamine sites on magnetic surface. Colloids Surf. B Biointerfaces, 2020, 187, 110642.
[http://dx.doi.org/10.1016/j.colsurfb.2019.110642] [PMID: 31744761]
(d)Gao, Y.; Song, N.; Liu, W.; Dong, A.; Wang, Y.J.; Yang, Y.W. Construction of antibacterial n-halamine polymer nanomaterials capable of bacterial membrane disruption for efficient anti-infective wound therapy. Macromol. Biosci., 2019, 19(4), e1800453.
[http://dx.doi.org/10.1002/mabi.201800453] [PMID: 30645044]
(e)Yao, Q.; Borjihan, Q.; Qu, H.; Guo, Y.; Zhao, Z.; Qiao, L.; Li, T.; Dong, A.; Liu, Y. Cow dung-derived biochars engineered as antibacterial agents for bacterial decontamination. J. Environ. Sci. (China), 2021, 105, 33-43.
[http://dx.doi.org/10.1016/j.jes.2020.12.022] [PMID: 34130837]
(f)Zhang, S.; Demir, B.; Ren, X.; Worley, S.; Broughton, R.; Huang, T.S. Synthesis of antibacterial N‐halamine acryl acid copolymers and their application onto cotton. J. Appl. Polym. Sci., 2019, 136(16), 47426.
[http://dx.doi.org/10.1002/app.47426]
(g)Zheng, Y.; Pan, N.; Liu, Y.; Ren, X. Novel porous chitosan/N-halamine structure with efficient antibacterial and hemostatic properties. Carbohydr. Polym., 2021, 253, 117205.
[http://dx.doi.org/10.1016/j.carbpol.2020.117205] [PMID: 33278975]
[http://dx.doi.org/10.1016/j.coco.2019.06.005]
(b)Liu, Y.; Li, L.; Pan, N.; Wang, Y.; Ren, X.; Xie, Z.; Buschle, G.; Huang, T.S. Antibacterial cellulose acetate films incorporated with N‐halamine‐modified nano‐crystalline cellulose particles. Polym. Adv. Technol., 2017, 28(4), 463-469.
[http://dx.doi.org/10.1002/pat.3906]
(c)Tao, B.; Shen, X.; Yuan, Z.; Ran, Q.; Shen, T.; Pei, Y.; Liu, J.; He, Y.; Hu, Y.; Cai, K. N-halamine-based multilayers on titanium substrates for antibacterial application. Colloids Surf. B Biointerfaces, 2018, 170, 382-392.
[http://dx.doi.org/10.1016/j.colsurfb.2018.06.039] [PMID: 29945050]
(d)Yin, M.; Wang, Y.; Zhang, Y.; Ren, X.; Qiu, Y.; Huang, T.S. Novel quaternarized N-halamine chitosan and polyvinyl alcohol nanofibrous membranes as hemostatic materials with excellent antibacterial properties. Carbohydr. Polym., 2020, 232, 115823.
[http://dx.doi.org/10.1016/j.carbpol.2019.115823] [PMID: 31952618]
[http://dx.doi.org/10.1021/acsbiomaterials.7b00111] [PMID: 33440505]
[http://dx.doi.org/10.1016/j.eurpolymj.2020.109654]
[http://dx.doi.org/10.1016/j.cej.2021.128888]
(b)Liu, Y.; Qiao, M.; Lv, C.; Ren, X.; Buschle, G.; Huang, T-S. N-halamine polyelectrolytes used for preparation of antibacterial polypropylene nonwoven fabrics and study on their basal cytotoxicity and mutagenicity. Int. J. Polym. Mater., 2020, 69(15), 971-978.
[http://dx.doi.org/10.1080/00914037.2019.1636250]
[http://dx.doi.org/10.1021/acs.langmuir.1c01256] [PMID: 34160231]
(b)Nazi, N.; Humblot, V.; Debiemme-Chouvy, C. A new antibacterial N-halamine coating based on polydopamine. Langmuir, 2020, 36(37), 11005-11014.
[http://dx.doi.org/10.1021/acs.langmuir.0c01856] [PMID: 32830496]
[http://dx.doi.org/10.1002/adv.21798]
(b)Ma, W.; Li, L.; Liu, Y.; Sun, Y.; Kim, I.S.; Ren, X. Tailored assembly of vinylbenzyl N-halamine with end-activated ZnO to form hybrid nanoparticles for quick antibacterial response and enhanced UV stability. J. Alloys Compd., 2019, 797, 692-701.
[http://dx.doi.org/10.1016/j.jallcom.2019.05.174]
[http://dx.doi.org/10.1021/acsabm.9b00537]
(b)Xiu, K.; Wen, J.; Liu, J.; He, C.; Sun, Y. Controlling the structure and antimicrobial function of N-halamine-based polyurethane semi-interpenetrating polymer networks. Ind. Eng. Chem. Res., 2017, 56(42), 12032-12037.
[http://dx.doi.org/10.1021/acs.iecr.7b03302]
[http://dx.doi.org/10.1016/j.apsusc.2020.147702]
[http://dx.doi.org/10.1021/acsbiomaterials.1c00117] [PMID: 33852801]
[http://dx.doi.org/10.3390/molecules22101582] [PMID: 28934124]
[http://dx.doi.org/10.1038/s41467-021-23069-0] [PMID: 34083518]
[http://dx.doi.org/10.1016/j.carbpol.2019.115546] [PMID: 31826415]
[http://dx.doi.org/10.1016/j.ijbiomac.2019.11.125] [PMID: 31751749]