Generic placeholder image

Mini-Reviews in Organic Chemistry

Editor-in-Chief

ISSN (Print): 1570-193X
ISSN (Online): 1875-6298

Review Article

Syntheses and Applications of N-halamines Antimicrobial Agents

Author(s): Tianqi Zhang, Shuang Hao, Zhiqian Jia*, Xin Xu, Wenjuan Peng*, Yili Chen, Suoding Li and Jianping Wen

Volume 19, Issue 8, 2022

Published on: 28 March, 2022

Page: [955 - 967] Pages: 13

DOI: 10.2174/1570193X19666220217114955

Price: $65

Abstract

Harmful microorganisms are widely present in the surrounding environment, causing a large number of infectious diseases in human society and serious negative effects on human life. In order to resist the damage of harmful microorganisms, antimicrobial agents that inhibit the growth of microorganisms came into being. This review aimed to encompass current syntheses and applications of N-halamines antimicrobial agents in the past five years, highlighting recent significant breakthroughs. This review included an introduction to the classification of antimicrobial agents, antimicrobial mechanisms, syntheses, and applications of small molecular N-halamines and N-halamines polymers. And finally, the conclusion and outlooks of N-halamines antimicrobial agents were provided.

Keywords: Antimicrobial agent, N-halamines, small molecular N-halamines, N-halamines polymers, applications, pathogens.

[1]
Balouiri, M.; Sadiki, M.; Ibnsouda, S.K. Methods for in vitro evaluating antimicrobial activity: A review. J. Pharm. Anal., 2016, 6(2), 71-79.
[http://dx.doi.org/10.1016/j.jpha.2015.11.005] [PMID: 29403965]
[2]
Göl, F.; Aygün, A.; Seyrankaya, A.; Gür, T.; Yenikaya, C.; Şen, F. Green synthesis and characterization of Camellia sinensis mediated silver nanoparticles for antibacterial ceramic applications. Mater. Chem. Phys., 2020, 250, 123037.
[http://dx.doi.org/10.1016/j.matchemphys.2020.123037]
[3]
Bushra, R.; Naushad, M.; Sharma, G.; Azam, A.; Alothman, Z.A. Synthesis of polyaniline based composite material and its analytical applications for the removal of highly toxic Hg2+ metal ion: Antibacterial activity against E. coli. Korean J. Chem. Eng., 2017, 34(7), 1970-1979.
[http://dx.doi.org/10.1007/s11814-017-0076-3]
[4]
Lee, H.H.; Chou, K.S.; Shih, Z.W. Effect of nano-sized silver particles on the resistivity of polymeric conductive adhesives. Int. J. Adhes. Adhes., 2005, 25(5), 437-441.
[http://dx.doi.org/10.1016/j.ijadhadh.2004.11.008]
[5]
Sharma, V.K.; Yngard, R.A.; Lin, Y. Silver nanoparticles: green synthesis and their antimicrobial activities. Adv. Colloid Interfac., 2009, 145(1-2), 83-96.
[http://dx.doi.org/10.1016/j.cis.2008.09.002] [PMID: 18945421]
[6]
(a)Dong, A.; Wang, Y.J.; Gao, Y.; Gao, T.; Gao, G. Chemical Insights into Antibacterial N-Halamines. Chem. Rev., 2017, 117(6), 4806-4862.
[http://dx.doi.org/10.1021/acs.chemrev.6b00687] [PMID: 28252944]
(b)Swain, T. Secondary compounds as protective agents. Annu. Rev. Plant Physiol., 1977, 28(1), 479-501.
[http://dx.doi.org/10.1146/annurev.pp.28.060177.002403]
(c)Jiang, L.; Jia, Z.; Xu, X.; Chen, Y.; Peng, W.; Zhang, J.; Wang, H.; Li, S.; Wen, J. Preparation of antimicrobial activated carbon fiber by loading with silver nanoparticles. Colloids Surf. A Physicochem. Eng. Asp., 2022, 633, 127868.
[http://dx.doi.org/10.1016/j.colsurfa.2021.127868]
(d)Zhang, T.; Jia, Z. Preparation of PVDF and EVOH antimicrobial membranes by grafting quaternary ammonium compounds. React. Funct. Polym., 2022, 170, 105117.
[http://dx.doi.org/10.1016/j.reactfunctpolym.2021.105117]
[7]
Tsuji, T.; Thang, D.H.; Okazaki, Y.; Nakanishi, M.; Tsuboi, Y.; Tsuji, M. Preparation of silver nanoparticles by laser ablation in polyvinylpyrrolidone solutions. Appl. Surf. Sci., 2008, 254(16), 5224-5230.
[http://dx.doi.org/10.1016/j.apsusc.2008.02.048]
[8]
Ireland, J.C.; Klostermann, P.; Rice, E.W.; Clark, R.M. Inactivation of Escherichia coli by titanium dioxide photocatalytic oxidation. Appl. Environ. Microbiol., 1993, 59(5), 1668-1670.
[http://dx.doi.org/10.1128/aem.59.5.1668-1670.1993] [PMID: 8390819]
[9]
(a)Gao, Y.; Cranston, R. Recent advances in antimicrobial treatments of textiles. Text. Res. J., 2008, 78(1), 60-72.
[http://dx.doi.org/10.1177/0040517507082332]
(b)Angelova, T.; Rangelova, N.; Yuryev, R.; Georgieva, N.; Müller, R. Antibacterial activity of SiO2/hydroxypropyl cellulose hybrid materials containing silver nanoparticles. Mater. Sci. Eng. C, 2012, 32(5), 1241-1246.
[http://dx.doi.org/10.1016/j.msec.2012.03.015]
[10]
Bonilla-Gameros, L.; Chevallier, P.; Sarkissian, A.; Mantovani, D. Silver-based antibacterial strategies for healthcare-associated infections: Processes, challenges, and regulations. An integrated review. Nanomedicine, 2020, 24, 102142.
[http://dx.doi.org/10.1016/j.nano.2019.102142] [PMID: 31843661]
[11]
Sirelkhatim, A.; Mahmud, S.; Seeni, A.; Kaus, N.H.M.; Ann, L.C.; Bakhori, S.K.M.; Hasan, H.; Mohamad, D. Review on zinc oxide nanoparticles: Antibacterial activity and toxicity mechanism. Nano-Micro Lett., 2015, 7(3), 219-242.
[http://dx.doi.org/10.1007/s40820-015-0040-x] [PMID: 30464967]
[12]
Hui, F.; Debiemme-Chouvy, C. Antimicrobial N-halamine polymers and coatings: A review of their synthesis, characterization, and applications. Biomacromolecules, 2013, 14(3), 585-601.
[http://dx.doi.org/10.1021/bm301980q] [PMID: 23391154]
[13]
Gao, Y.; Bach, Y.; Zhu, Y.; Louis, I. Electrospun antibacterial nanofibers: Production, activity, and in vivo applications. J. Appl. Polym. Sci., 2014, 131(18), 40797.
[http://dx.doi.org/10.1002/app.40797]
[14]
Khoshnevisan, K.; Maleki, H.; Samadian, H.; Shahsavari, S.; Sarrafzadeh, M.H.; Larijani, B.; Dorkoosh, F.A.; Haghpanah, V.; Khorramizadeh, M-R. Cellulose acetate electrospun nanofibers for drug delivery systems: Applications and recent advances. Carbohydr. Polym., 2018, 198, 131-141.
[http://dx.doi.org/10.1016/j.carbpol.2018.06.072] [PMID: 30092983]
[15]
Elena, P.; Miri, K. Formation of contact active antimicrobial surfaces by covalent grafting of quaternary ammonium compounds. Colloids Surf. B Biointerfaces, 2018, 169, 195-205.
[http://dx.doi.org/10.1016/j.colsurfb.2018.04.065] [PMID: 29778035]
[16]
Akdag, A.; Okur, S.; McKee, M.L.; Worley, S.D. The stabilities of N-Cl bonds in biocidal materials. J. Chem. Theory Comput., 2006, 2(3), 879-884.
[http://dx.doi.org/10.1021/ct060007s] [PMID: 26626695]
[17]
Sun, Y.; Sun, G. Novel refreshable N-halamine polymeric biocides: N-chlorination of aromatic polyamides. Ind. Eng. Chem. Res., 2004, 43(17), 5015-5020.
[http://dx.doi.org/10.1021/ie030846m]
[18]
Sun, Y.; Sun, G. Synthesis, characterization, and antibacterial activities of novel N-halamine polymer beads prepared by suspension copolymerization. Macromolecules, 2002, 35(23), 8909-8912.
[http://dx.doi.org/10.1021/ma020691e]
[19]
Kocer, H.B.; Akdag, A.; Worley, S.D.; Acevedo, O.; Broughton, R.M.; Wu, Y. Mechanism of photolytic decomposition of N-halamine antimicrobial siloxane coatings. ACS Appl. Mater. Interfaces, 2010, 2(8), 2456-2464.
[http://dx.doi.org/10.1021/am100511x] [PMID: 20669910]
[20]
Eknoian, M.W.; Worley, S.D.; Harris, J.M. New Biocidal N-Halamine-PEG Polymers. J. Bioact. Compat. Polym., 1998, 13(2), 136-145.
[http://dx.doi.org/10.1177/088391159801300205]
[21]
Chen, Z.; Sun, Y. N-halamine-based antimicrobial additives for polymers: preparation, characterization and antimicrobial activity. Ind. Eng. Chem. Res., 2006, 45(8), 2634-2640.
[http://dx.doi.org/10.1021/ie060088a] [PMID: 18714370]
[22]
(a)Qian, L.; Sun, G. Durable and regenerable antimicrobial textiles: Synthesis and applications of 3-methylol-2,2,5,5-tetramethyl-imidazolidin-4-one (MTMIO). J. Appl. Polym. Sci., 2003, 89(9), 2418-2425.
[http://dx.doi.org/10.1002/app.12405]
(b)Williams, D.E.; Worley, S.D.; Barnela, S.B.; Swango, L.J. Bactericidal activities of selected organic N-halamines. Appl. Environ. Microbiol., 1987, 53(9), 2082-2089.
[http://dx.doi.org/10.1128/aem.53.9.2082-2089.1987] [PMID: 3314705]
[23]
(a)Li, L.; Zhao, N.; Liu, S. Versatile surface biofunctionalization of poly (ethylene terephthalate) by interpenetrating polymerization of a butynyl monomer followed by “Click Chemistry”. Polymer (Guildf.), 2012, 53(1), 67-78.
[http://dx.doi.org/10.1016/j.polymer.2011.11.036]
(b)Ma, Y.; Li, J.; Si, Y.; Huang, K.; Nitin, N.; Sun, G. Rechargeable antibacterial n-halamine films with antifouling function for food packaging applications. ACS Appl. Mater. Interfaces, 2019, 11(19), 17814-17822.
[http://dx.doi.org/10.1021/acsami.9b03464] [PMID: 31022343]
(c)Ren, X.; Kocer, H.B.; Worley, S.; Broughton, R.; Huang, T. Rechargeable biocidal cellulose: Synthesis and application of 3-(2, 3-dihydroxypropyl)-5, 5-dimethylimidazolidine-2, 4-dione. Carbohydr. Polym., 2009, 75(4), 683-687.
[http://dx.doi.org/10.1016/j.carbpol.2008.09.012]
[24]
Selk, S.H.; Pogány, S.A.; Higuchi, T. Comparative antimicrobial activity, in vitro and in vivo, of soft N-chloramine systems and chlorhexidine. Appl. Environ. Microbiol., 1982, 43(4), 899-904.
[http://dx.doi.org/10.1128/aem.43.4.899-904.1982] [PMID: 6805433]
[25]
Huang, C.; Liu, Y.; Li, Z.; Li, R.; Ren, X.; Huang, T-S. N-halamine antibacterial nanofibrous mats based on polyacrylonitrile and N-halamine for protective face masks. J. Eng. Fibers Fabrics, 2019, 14, 1-8.
[http://dx.doi.org/10.1177/1558925019843222]
[26]
Padmanabhuni, R.V.; Luo, J.; Cao, Z.; Sun, Y. Preparation and Characterization of N-Halamine-based Antimicrobial Fillers. Ind. Eng. Chem. Res., 2012, 51(14), 5148-5156.
[http://dx.doi.org/10.1021/ie300212x] [PMID: 22942559]
[27]
Ma, K.; Liu, Y.; Xie, Z.; Li, R.; Jiang, Z.; Ren, X.; Huang, T-S. Synthesis of novel n-halamine epoxide based on cyanuric acid and its application for antimicrobial finishing. Ind. Eng. Chem. Res., 2013, 52(22), 7413-7418.
[http://dx.doi.org/10.1021/ie400122h]
[28]
Sun, X.; Cao, Z.; Porteous, N.; Sun, Y. An N-halamine-based rechargeable antimicrobial and biofilm controlling polyurethane. Acta Biomater., 2012, 8(4), 1498-1506.
[http://dx.doi.org/10.1016/j.actbio.2011.12.027] [PMID: 22244984]
[29]
Jiang, Z.; Ma, K.; Du, J.; Li, R.; Ren, X.; Huang, T.S. Synthesis of novel reactive N-halamine precursors and application in antimicrobial cellulose. Appl. Surf. Sci., 2014, 288, 518-523.
[http://dx.doi.org/10.1016/j.apsusc.2013.10.063]
[30]
Tian, H.; Zhai, Y.; Xu, C.; Liang, J. Durable antibacterial cotton fabrics containing stable acyclic n-halamine groups. Ind. Eng. Chem. Res., 2017, 56(28), 7902-7909.
[http://dx.doi.org/10.1021/acs.iecr.7b00863]
[31]
(a)Wang, R.; Li, Y.; Si, Y.; Wang, F.; Liu, Y.; Ma, Y.; Yu, J.; Yin, X.; Ding, B. Rechargeable polyamide-based N-halamine nanofibrous membranes for renewable, high-efficiency, and antibacterial respirators. Nanoscale Adv., 2019, 1(5), 1948-1956.
[http://dx.doi.org/10.1039/C9NA00103D]
(b)Wang, Y.; Yin, M.; Lin, X.; Li, L.; Li, Z.; Ren, X.; Sun, Y. Tailored synthesis of polymer-brush-grafted mesoporous silicas with N-halamine and quaternary ammonium groups for antimicrobial applications. J. Colloid Interface Sci., 2019, 533, 604-611.
[http://dx.doi.org/10.1016/j.jcis.2018.08.080] [PMID: 30193147]
(c)Zhang, S.; Li, L.; Ren, X.; Huang, T-S. N-halamine modified multiporous bacterial cellulose with enhanced antibacterial and hemostatic properties. Int. J. Biol. Macromol., 2020, 161, 1070-1078.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.06.053] [PMID: 32531364]
[32]
(a)Jiang, Z.; Qiao, M.; Ren, X.; Zhu, P.; Huang, T-S. Preparation of antibacterial cellulose with s-triazine-based quaternarizedN-halamine. J. Appl. Polym. Sci., 2017, 134(26), 44998.
[http://dx.doi.org/10.1002/app.44998]
(b)Luo, H.; Yin, X.; Tan, P.; Shi, Y.; Gu, Y.; Zeng, R.; Tan, L. Engineering an antibacterial nanofibrous membrane containing N-halamine for recyclable wound dressing application. Mater. Today Commun., 2020, 23, 100898.
[http://dx.doi.org/10.1016/j.mtcomm.2020.100898]
(c)Mu, T.; Pan, N.; Wang, Y.; Ren, X.; Huang, T-S. Antibacterial coating of cellulose by iso-bifunctional reactive N-halamine with the dyeing process of reactive dye. Fibers Polym., 2018, 19(11), 2284-2289.
[http://dx.doi.org/10.1007/s12221-018-8632-y]
(d)Xiu, K.; Wen, J.; Porteous, N.; Sun, Y. Controlling bacterial fouling with polyurethane/N-halamine semi-interpenetrating polymer networks. J. Bioact. Compat. Polym., 2017, 32(5), 542-554.
[http://dx.doi.org/10.1177/0883911516689334] [PMID: 30034088]
(e)Xu, D.; Wang, S.; Hu, J.; Liu, Y.; Jiang, Z.; Zhu, P. Enhancing antibacterial and flame-retardant performance of cotton fabric with an iminodiacetic acid-containing N-halamine. Cellulose, 2021, 28(5), 3265-3277.
[http://dx.doi.org/10.1007/s10570-021-03716-x]
[33]
(a)Bai, R.; Kang, J.; Simalou, O.; Liu, W.; Ren, H.; Gao, T.; Gao, Y.; Chen, W.; Dong, A.; Jia, R. Novel N-Br Bond-Containing N-halamine nanofibers with antibacterial activities. ACS Biomater. Sci. Eng., 2018, 4(6), 2193-2202.
[http://dx.doi.org/10.1021/acsbiomaterials.7b00996] [PMID: 33435041]
(b)Demir, B.; Broughton, R.M.; Huang, T.S.; Bozack, M.J.; Worley, S.D. Polymeric antimicrobial n-halamine-surface modification of stainless steel. Ind. Eng. Chem. Res., 2017, 56(41), 11773-11781.
[http://dx.doi.org/10.1021/acs.iecr.7b02412]
(c)Li, Y.; Liu, X.; Tan, L.; Cui, Z.; Yang, X.; Yeung, K.W.K.; Pan, H.; Wu, S. Construction of N-halamine labeled silica/zinc oxide hybrid nanoparticles for enhancing antibacterial ability of Ti implants. Mater. Sci. Eng. C, 2017, 76, 50-58.
[http://dx.doi.org/10.1016/j.msec.2017.02.160] [PMID: 28482556]
(d)Ren, T.; Qiao, M.; Huang, T-S.; Weese, J.; Ren, X. Efficacy of N-halamine compound on reduction of microorganisms in absorbent food pads of raw beef. Food Control, 2018, 84, 255-262.
[http://dx.doi.org/10.1016/j.foodcont.2017.08.006]
[34]
(a)Liang, M.; Wang, F.; Liu, M.; Yu, J.; Si, Y.; Ding, B. N-halamine functionalized electrospun poly(vinyl alcohol-co-ethylene) nanofibrous membranes with rechargeable antibacterial activity for bioprotective applications. Adv. Mater., 2019, 1(2), 126-136.
(b)Liu, J.; Dong, C.; Zhang, Z.; Wei, D.; Lu, Z. Synthesis of a novel n-halamine-based cyclic polysiloxane and its antibacterial application on cotton fabrics. Fibers Polym., 2020, 21(2), 273-281.
[http://dx.doi.org/10.1007/s12221-020-9593-5]
(c)Liu, M.; Wang, F.; Liang, M.; Si, Y.; Yu, J.; Ding, B. In situ green synthesis of rechargeable antibacterial N-halamine grafted poly (vinyl alcohol) nanofibrous membranes for food packaging applications. Compos. Commun., 2020, 17, 147-153.
[http://dx.doi.org/10.1016/j.coco.2019.11.018]
(d)Pan, N.; Wang, Y.; Ren, X.; Huang, T-S.; Kim, I.S. Graphene oxide as a polymeric N-halamine carrier and release platform: Highly-efficient, sustained-release antibacterial property and great storage stability. Mater. Sci. Eng. C, 2019, 103, 109877.
[http://dx.doi.org/10.1016/j.msec.2019.109877] [PMID: 31349493]
(e)Wang, Y.; Liu, Y.; Tian, H.; Zhai, Y.; Pan, N.; Yin, M.; Ren, X.; Liang, J. Preparation and characterization of antibacterial mesoporous sieves with N-halamine. Colloid Polym. Sci., 2017, 295(10), 1897-1904.
[http://dx.doi.org/10.1007/s00396-017-4167-9]
(f)Zuo, M.; Pan, N.; Huang, T-S.; Kim, I.S.; Ren, X. Antibacterial Chitosan Hybrid Films with N-Halamine-Functionalized Graphene Oxide. Nano, 2020, 15(02), 2050027.
[http://dx.doi.org/10.1142/S1793292020500277]
[35]
(a)Bu, D.; Zhou, Y.; Yang, C.; Feng, H.; Cheng, C.; Zhang, M.; Xu, Z.; Xiao, L.; Liu, Y.; Jin, Z. Preparation of quaternarized N-halamine-grafted graphene oxide nanocomposites and synergetic antibacterial properties. Chin. Chem. Lett., 2021, 33(11), 3509-3513.
[http://dx.doi.org/10.1016/j.cclet.2021.03.007]
(b)Chien, H-W.; Chen, Y-Y.; Chen, Y-L.; Cheng, C-H.; Lin, J-C. Studies of PET nonwovens modified by novel antimicrobials configured with both N-halamine and dual quaternary ammonium with different alkyl chain length. RSC Advances, 2019, 9(13), 7257-7265.
[http://dx.doi.org/10.1039/C9RA00094A]
[36]
Wu, K.; Li, J.; Chen, X.; Yao, J.; Shao, Z. Synthesis of novel multi-hydroxyl N-halamine precursors based on barbituric acid and their applications in antibacterial poly(ethylene terephthalate) (PET) materials. J. Mater. Chem. B Mater. Biol. Med., 2020, 8(37), 8695-8701.
[http://dx.doi.org/10.1039/D0TB01497D] [PMID: 32857090]
[37]
Zeng, W.; He, J.; Liu, F. Preparation and properties of antibacterial ABS plastics based on polymeric quaternary phosphonium salts antibacterial agents. Polym. Adv. Technol., 2019, 30(10), 2515-2522.
[http://dx.doi.org/10.1002/pat.4653]
[38]
Dong, A.; Huang, Z.; Lan, S.; Wang, Q.; Bao, S.; Siriguleng, ; Zhang, Y.; Gao, G.; Liu, F.; Harnoode, C. N-halamine-decorated polystyrene nanoparticles based on 5-allylbarbituric acid: from controllable fabrication to bactericidal evaluation. J. Colloid Interface Sci., 2014, 413, 92-99.
[http://dx.doi.org/10.1016/j.jcis.2013.09.036] [PMID: 24183435]
[39]
Gutman, O.; Natan, M.; Banin, E.; Margel, S. Characterization and antibacterial properties of N-halamine-derivatized cross-linked polymethacrylamide nanoparticles. Biomaterials, 2014, 35(19), 5079-5087.
[http://dx.doi.org/10.1016/j.biomaterials.2014.02.056] [PMID: 24695094]
[40]
Zhu, C.; Chang, D.; Wang, X.; Chai, D.; Chen, L.; Dong, A.; Gao, G. Novel antibacterial fibers of amphiphilic N‐halamine polymer prepared by electrospinning. Polym. Adv. Technol., 2019, 30(6), 1386-1393.
[http://dx.doi.org/10.1002/pat.4571]
[41]
Yu, H.; Zhang, X.; Zhang, Y.; Liu, J.; Zhang, H. Development of a hydrophilic PES ultrafiltration membrane containing SiO2@N-Halamine nanoparticles with both organic antifouling and antibacterial properties. Desalination, 2013, 326, 69-76.
[http://dx.doi.org/10.1016/j.desal.2013.07.018]
[42]
Duan, L.; Huang, W.; Zhang, Y. High-flux, antibacterial ultrafiltration membranes by facile blending with N-halamine grafted halloysite nanotubes. RSC Advances, 2015, 5(9), 6666-6674.
[http://dx.doi.org/10.1039/C4RA14530E]
[43]
Kang, J.; Han, J.; Gao, Y.; Gao, T.; Lan, S.; Xiao, L.; Zhang, Y.; Gao, G.; Chokto, H.; Dong, A. Unexpected Enhancement in Antibacterial Activity of N-Halamine Polymers from Spheres to Fibers. ACS Appl. Mater. Interfaces, 2015, 7(31), 17516-17526.
[http://dx.doi.org/10.1021/acsami.5b05429] [PMID: 26191972]
[44]
Bai, R.; Zhang, Q.; Li, L.; Li, P.; Wang, Y.J.; Simalou, O.; Zhang, Y.; Gao, G.; Dong, A. N-halamine-containing electrospun fibers kill bacteria via a contact/release co-determined antibacterial pathway. ACS Appl. Mater. Interfaces, 2016, 8(46), 31530-31540.
[http://dx.doi.org/10.1021/acsami.6b08431] [PMID: 27808500]
[45]
Li, R.; Dou, J.; Jiang, Q.; Li, J.; Xie, Z.; Liang, J.; Ren, X. Preparation and antimicrobial activity of β-cyclodextrin derivative copolymers/cellulose acetate nanofibers. Chem. Eng. J., 2014, 248, 264-272.
[http://dx.doi.org/10.1016/j.cej.2014.03.042]
[46]
Ma, W.; Li, L.; Ren, X.; Huang, T-S. Highly effective antibacterial polycaprolactone fibrous membranes bonded with N-Halamine/ZnO hybrids. Surf. Coat. Tech., 2019, 379, 125021.
[http://dx.doi.org/10.1016/j.surfcoat.2019.125021]
[47]
Dong, A.; Lan, S.; Huang, J.; Wang, T.; Zhao, T.; Wang, W.; Xiao, L.; Zheng, X.; Liu, F.; Gao, G.; Chen, Y. Preparation of magnetically separable N-halamine nanocomposites for the improved antibacterial application. J. Colloid Interface Sci., 2011, 364(2), 333-340.
[http://dx.doi.org/10.1016/j.jcis.2011.08.036] [PMID: 21925670]
[48]
Dong, A.; Sun, Y.; Lan, S.; Wang, Q.; Cai, Q.; Qi, X.; Zhang, Y.; Gao, G.; Liu, F.; Harnoode, C. Barbituric acid-based magnetic N-halamine nanoparticles as recyclable antibacterial agents. ACS Appl. Mater. Interfaces, 2013, 5(16), 8125-8133.
[http://dx.doi.org/10.1021/am402191j] [PMID: 23915243]
[49]
Kocer, H.B.; Cerkez, I.; Worley, S.D.; Broughton, R.M.; Huang, T.S. Polymeric antimicrobial N-halamine epoxides. ACS Appl. Mater. Interfaces, 2011, 3(8), 2845-2850.
[http://dx.doi.org/10.1021/am200351w] [PMID: 21657263]
[50]
Sun, G.; Chen, T.Y.; Worley, S.D. A novel biocidal styrenetriazinedione polymer. Polymer (Guildf.), 1996, 37(16), 3753-3756.
[http://dx.doi.org/10.1016/0032-3861(96)00194-2]
[51]
Bastarrachea, L.J.; Peleg, M.; McLandsborough, L.A.; Goddard, J.M. Inactivation of Listeria monocytogenes on a polyethylene surface modified by layer-by-layer deposition of the antimicrobial N-halamine. J. Food Eng., 2013, 117(1), 52-58.
[http://dx.doi.org/10.1016/j.jfoodeng.2013.02.004]
[52]
Bastarrachea, L.J.; Goddard, J.M. Development of antimicrobial stainless steel via surface modification with N-halamines: Characterization of surface chemistry and N-halamine chlorination. J. Appl. Polym. Sci., 2013, 127(1), 821-831.
[http://dx.doi.org/10.1002/app.37806]
[53]
Chen, Y.; Han, Q. Designing N-halamine based antibacterial surface on polymers: Fabrication, characterization, and biocidal functions. Appl. Surf. Sci., 2011, 257(14), 6034-6039.
[http://dx.doi.org/10.1016/j.apsusc.2011.01.115]
[54]
(a)Izquierdo, A.; Ono, S.S.; Voegel, J-C.; Schaaf, P.; Decher, G. Dipping versus spraying: exploring the deposition conditions for speeding up layer-by-layer assembly. Langmuir, 2005, 21(16), 7558-7567.
[http://dx.doi.org/10.1021/la047407s] [PMID: 16042495]
(b)Kong, Q.; Li, Z.; Ding, F.; Ren, X. Hydrophobic N-halamine based POSS block copolymer porous films with antibacterial and resistance of bacterial adsorption performances. Chem. Eng. J., 2021, 410, 128407.
[http://dx.doi.org/10.1016/j.cej.2021.128407]
[55]
Denis, A.; Bastarrachea, L.J.; Goddard, J.M. Antimicrobial efficacy of N -halamine coatings prepared via dip and spray layer-by-layer deposition. Food Bioprod. Process., 2015, 96, 12-19.
[http://dx.doi.org/10.1016/j.fbp.2015.06.002]
[56]
Rai, M.; Yadav, A.; Gade, A. Silver nanoparticles as a new generation of antimicrobials. Biotechnol. Adv., 2009, 27(1), 76-83.
[http://dx.doi.org/10.1016/j.biotechadv.2008.09.002] [PMID: 18854209]
[57]
Sun, W.B.; Worley, S. A new cyclic N-halamine biocidal polymer. Ind. Eng. Chem. Res., 1994, 33(1), 168-170.
[http://dx.doi.org/10.1021/ie00025a022]
[58]
Si, Y.; Cossu, A.; Nitin, N.; Ma, Y.; Zhao, C.; Chiou, B-S.; Cao, T.; Wang, D.; Sun, G. Mechanically robust and transparent n-halamine grafted pva-co-pe films with renewable antimicrobial activity. Macromol. Biosci., 2017, 17(3), 1600304.
[http://dx.doi.org/10.1002/mabi.201600304] [PMID: 27678495]
[59]
Li, J.; Liu, Y.; Jiang, Z.; Ma, K.; Ren, X.; Huang, T-S. Antimicrobial cellulose modified with nanotitania and cyclic n-halamine. Ind. Eng. Chem. Res., 2014, 53(33), 13058-13064.
[http://dx.doi.org/10.1021/ie502479h] [PMID: 25678740]
[60]
Li, S.; Zhu, T.; Huang, J.; Guo, Q.; Chen, G.; Lai, Y. Durable antibacterial and UV-protective Ag/TiO2@ fabrics for sustainable biomedical application. Int. J. Nanomedicine, 2017, 12, 2593-2606.
[http://dx.doi.org/10.2147/IJN.S132035] [PMID: 28408826]
[61]
Liu, Y.; Li, J.; Li, L.; McFarland, S.; Ren, X.; Acevedo, O.; Huang, T.S. Characterization and mechanism for the protection of photolytic decomposition of n-halamine siloxane coatings by titanium dioxide. ACS Appl. Mater. Interfaces, 2016, 8(5), 3516-3523.
[http://dx.doi.org/10.1021/acsami.5b12601] [PMID: 26824841]
[62]
Fan, X.; Jiang, Q.; Sun, Z.; Li, G.; Ren, X.; Liang, J.; Huang, T.S. Preparation and characterization of electrospun antimicrobial fibrous membranes based on polyhydroxybutyrate (PHB). Fibers Polym., 2015, 16(8), 1751-1758.
[http://dx.doi.org/10.1007/s12221-015-5108-1]
[63]
Liu, C.; Shan, H.; Chen, X.; Si, Y.; Yin, X.; Yu, J.; Ding, B. Novel inorganic-based n-halamine nanofibrous membranes as highly effective antibacterial agent for water disinfection. ACS Appl. Mater. Interfaces, 2018, 10(51), 44209-44215.
[http://dx.doi.org/10.1021/acsami.8b18322] [PMID: 30525383]
[64]
Jiang, Q.; Jiang, Z.; Ma, K.; Li, R.; Du, J.; Xie, Z.; Ren, X.; Huang, T.S. Development of cytocompatible antibacterial electro-spun nanofibrous composites. J. Mater. Sci., 2014, 49(19), 6734-6741.
[http://dx.doi.org/10.1007/s10853-014-8285-1]
[65]
Pan, N.; Liu, Y.; Fan, X.; Jiang, Z.; Ren, X.; Liang, J. Preparation and characterization of antibacterial graphene oxide functionalized with polymeric N-halamine. J. Mater. Sci., 2016, 52(4), 1996-2006.
[http://dx.doi.org/10.1007/s10853-016-0488-1]
[66]
Zhao, L.; Yan, X.; Jie, Z.; Yang, H.; Yang, S.; Liang, J. Regenerable antimicrobial N-halamine/silica hybrid nanoparticles. J. Nanopart. Res., 2014, 16(7), 2454.
[http://dx.doi.org/10.1007/s11051-014-2454-7]
[67]
(a)Bu, D.; Li, N.; Zhou, Y.; Feng, H.; Yu, F.; Cheng, C.; Li, M.; Xiao, L.; Ao, Y. Enhanced UV stability of N-halamine-immobilized Fe3O4@SiO2@TiO2 nanoparticles: synthesis, characteristics and antibacterial property. New J. Chem., 2020, 44(25), 10352-10358.
[http://dx.doi.org/10.1039/D0NJ01439G]
(b)Ma, W.; Li, L.; Lin, X.; Wang, Y.; Ren, X.; Huang, T-S. Novel ZnO/N-halamine-mediated multifunctional dressings as quick antibacterial agent for biomedical applications. ACS Appl. Mater. Interfaces, 2019, 11(34), 31411-31420.
[http://dx.doi.org/10.1021/acsami.9b10857] [PMID: 31373785]
(c)Pan, N.; Liu, Y.; Ren, X.; Huang, T-S. Fabrication of cotton fabrics through in-situ reduction of polymeric N-halamine modified graphene oxide with enhanced ultraviolet-blocking, self-cleaning, and highly efficient, and monitorable antibacterial properties. Colloid. Colloids Surf. A Physicochem. Eng. Asp., 2018, 555, 765-771.
[http://dx.doi.org/10.1016/j.colsurfa.2018.07.056]
(d)Wang, H.; Wang, Z-M.; Yan, X.; Chen, J.; Lang, W-Z.; Guo, Y-J. Novel organic-inorganic hybrid polyvinylidene fluoride ultrafiltration membranes with antifouling and antibacterial properties by embedding N-halamine functionalized silica nanospheres. J. Ind. Eng. Chem., 2017, 52, 295-304.
[http://dx.doi.org/10.1016/j.jiec.2017.03.059]
[68]
Luo, G.; Xi, G.; Wang, X.; Qin, D.; Zhang, Y.; Fu, F.; Liu, X. Antibacterial N‐halamine coating on cotton fabric fabricated using mist polymerization. J. Appl. Polym. Sci., 2017, 134(22), 44897.
[http://dx.doi.org/10.1002/app.44897]
[69]
(a)Chen, Y.; Yu, P.; Feng, C.; Wang, Y.; Han, Q.; Zhang, Q. Synthesis of polysiloxane with quaternized N-halamine moieties for antibacterial coating of polypropylene via supercritical impregnation technique. Appl. Surf. Sci., 2017, 419, 683-691.
[http://dx.doi.org/10.1016/j.apsusc.2017.05.087]
(b)Li, R.; Sheng, J.; Cheng, X.; Li, J.; Ren, X.; Huang, T-S. Biocidal poly (vinyl alcohol) films incorporated with N-halamine siloxane. Compos. Commun., 2018, 10, 89-92.
[http://dx.doi.org/10.1016/j.coco.2018.07.005]
(c)Tian, C.; Wu, F.; Jiao, W.; Liu, X.; Yin, X.; Si, Y.; Yu, J.; Ding, B. Antibacterial and antiviral N-halamine nanofibrous membranes with nanonet structure for bioprotective applications. Compos. Commun., 2021, 24, 100668.
[http://dx.doi.org/10.1016/j.coco.2021.100668]
[70]
(a)Chai, D.; Liu, W.; Hao, X.; Wang, H.; Wang, H.; Hao, Y.; Gao, Y.; Qu, H.; Wang, L.; Dong, A. Mussel-inspired synthesis of magnetic N-Halamine nanoparticles for antibacterial recycling. Colloid. Interface Sci., 2020, 39, 100320.
(b)Chang, D.; Li, Z.; Wang, X.; Zhu, C.; Dong, A.; Gao, G. N-Halamine polymer from bipolymer to amphiphilic terpolymer with enhancement in antibacterial activity. Colloids Surf. B Biointerfaces, 2018, 163, 402-411.
[http://dx.doi.org/10.1016/j.colsurfb.2018.01.013] [PMID: 29366983]
(c)Chen, Y.; Feng, C.; Zhang, Q.; Luo, M.; Xu, J.; Han, Q. Engineering of antibacterial/recyclable difunctional nanoparticles via synergism of quaternary ammonia salt site and N-halamine sites on magnetic surface. Colloids Surf. B Biointerfaces, 2020, 187, 110642.
[http://dx.doi.org/10.1016/j.colsurfb.2019.110642] [PMID: 31744761]
(d)Gao, Y.; Song, N.; Liu, W.; Dong, A.; Wang, Y.J.; Yang, Y.W. Construction of antibacterial n-halamine polymer nanomaterials capable of bacterial membrane disruption for efficient anti-infective wound therapy. Macromol. Biosci., 2019, 19(4), e1800453.
[http://dx.doi.org/10.1002/mabi.201800453] [PMID: 30645044]
(e)Yao, Q.; Borjihan, Q.; Qu, H.; Guo, Y.; Zhao, Z.; Qiao, L.; Li, T.; Dong, A.; Liu, Y. Cow dung-derived biochars engineered as antibacterial agents for bacterial decontamination. J. Environ. Sci. (China), 2021, 105, 33-43.
[http://dx.doi.org/10.1016/j.jes.2020.12.022] [PMID: 34130837]
(f)Zhang, S.; Demir, B.; Ren, X.; Worley, S.; Broughton, R.; Huang, T.S. Synthesis of antibacterial N‐halamine acryl acid copolymers and their application onto cotton. J. Appl. Polym. Sci., 2019, 136(16), 47426.
[http://dx.doi.org/10.1002/app.47426]
(g)Zheng, Y.; Pan, N.; Liu, Y.; Ren, X. Novel porous chitosan/N-halamine structure with efficient antibacterial and hemostatic properties. Carbohydr. Polym., 2021, 253, 117205.
[http://dx.doi.org/10.1016/j.carbpol.2020.117205] [PMID: 33278975]
[71]
(a)Kong, X.; Zhang, S.; Wang, Y.; Liu, Y.; Li, R.; Ren, X.; Huang, T-S. Antibacterial polyvinyl alcohol films incorporated with N-halamine grafted oxidized microcrystalline cellulose. Compos. Commun., 2019, 15, 25-29.
[http://dx.doi.org/10.1016/j.coco.2019.06.005]
(b)Liu, Y.; Li, L.; Pan, N.; Wang, Y.; Ren, X.; Xie, Z.; Buschle, G.; Huang, T.S. Antibacterial cellulose acetate films incorporated with N‐halamine‐modified nano‐crystalline cellulose particles. Polym. Adv. Technol., 2017, 28(4), 463-469.
[http://dx.doi.org/10.1002/pat.3906]
(c)Tao, B.; Shen, X.; Yuan, Z.; Ran, Q.; Shen, T.; Pei, Y.; Liu, J.; He, Y.; Hu, Y.; Cai, K. N-halamine-based multilayers on titanium substrates for antibacterial application. Colloids Surf. B Biointerfaces, 2018, 170, 382-392.
[http://dx.doi.org/10.1016/j.colsurfb.2018.06.039] [PMID: 29945050]
(d)Yin, M.; Wang, Y.; Zhang, Y.; Ren, X.; Qiu, Y.; Huang, T.S. Novel quaternarized N-halamine chitosan and polyvinyl alcohol nanofibrous membranes as hemostatic materials with excellent antibacterial properties. Carbohydr. Polym., 2020, 232, 115823.
[http://dx.doi.org/10.1016/j.carbpol.2019.115823] [PMID: 31952618]
[72]
Si, Y.; Li, J.; Zhao, C.; Deng, Y.; Ma, Y.; Wang, D.; Sun, G. Biocidal and rechargeable n-halamine nanofibrous membranes for highly efficient water disinfection. ACS Biomater. Sci. Eng., 2017, 3(5), 854-862.
[http://dx.doi.org/10.1021/acsbiomaterials.7b00111] [PMID: 33440505]
[73]
Chien, H-W.; Chiu, T-H. Stable N-halamine on polydopamine coating for high antimicrobial efficiency. Eur. Polym. J., 2020, 130, 109654.
[http://dx.doi.org/10.1016/j.eurpolymj.2020.109654]
[74]
(a)Liu, W.; Tao, Z.; Wang, D.; Liu, Q.; Wu, H.; Lan, S.; Dong, A. Engineering a black phosphorus-based magnetic nanosystem armed with antibacterial N-halamine polymer for recyclable blood disinfection. Chem. Eng. J., 2021, 415, 128888.
[http://dx.doi.org/10.1016/j.cej.2021.128888]
(b)Liu, Y.; Qiao, M.; Lv, C.; Ren, X.; Buschle, G.; Huang, T-S. N-halamine polyelectrolytes used for preparation of antibacterial polypropylene nonwoven fabrics and study on their basal cytotoxicity and mutagenicity. Int. J. Polym. Mater., 2020, 69(15), 971-978.
[http://dx.doi.org/10.1080/00914037.2019.1636250]
[75]
(a)Chien, H-W.; Chiu, T-H.; Lee, Y-L. Rapid Biocidal Activity of N-Halamine-Functionalized Polydopamine and Polyethylene Imine Coatings. Langmuir, 2021, 37(26), 8037-8044.
[http://dx.doi.org/10.1021/acs.langmuir.1c01256] [PMID: 34160231]
(b)Nazi, N.; Humblot, V.; Debiemme-Chouvy, C. A new antibacterial N-halamine coating based on polydopamine. Langmuir, 2020, 36(37), 11005-11014.
[http://dx.doi.org/10.1021/acs.langmuir.0c01856] [PMID: 32830496]
[76]
(a)Ma, W.; Li, L.; Li, J.; Ren, X.; Gu, Z.G.; Huang, T.S. Antibacterial PVA membranes containing TiO2/N‐halamine nanoparticles. Adv. Polym. Technol., 2018, 37(5), 1390-1400.
[http://dx.doi.org/10.1002/adv.21798]
(b)Ma, W.; Li, L.; Liu, Y.; Sun, Y.; Kim, I.S.; Ren, X. Tailored assembly of vinylbenzyl N-halamine with end-activated ZnO to form hybrid nanoparticles for quick antibacterial response and enhanced UV stability. J. Alloys Compd., 2019, 797, 692-701.
[http://dx.doi.org/10.1016/j.jallcom.2019.05.174]
[77]
(a)Wang, F.; Liu, M.; Ding, R.; Liang, M.; Huang, L.; Yu, J.; Si, Y. Rechargeable Antibacterial Polysulfonamide-Based N-Halamine Nanofibrous Membranes for Bioprotective Applications. ACS Appl. Bio Mater., 2019, 2(8), 3668-3677.
[http://dx.doi.org/10.1021/acsabm.9b00537]
(b)Xiu, K.; Wen, J.; Liu, J.; He, C.; Sun, Y. Controlling the structure and antimicrobial function of N-halamine-based polyurethane semi-interpenetrating polymer networks. Ind. Eng. Chem. Res., 2017, 56(42), 12032-12037.
[http://dx.doi.org/10.1021/acs.iecr.7b03302]
[78]
Chen, Y.; Chen, Q.; Wang, Y.; Zhang, Q.; Han, Q. Fluorocarbon-assisted surface orientation of N-halamine groups on cellulose in supercritical CO2: An effective and eco-friendly approach for developing higher biocidability. Appl. Surf. Sci., 2021, 535, 147702.
[http://dx.doi.org/10.1016/j.apsusc.2020.147702]
[79]
Ma, Y.; Wisuthiphaet, N.; Bolt, H.; Nitin, N.; Zhao, Q.; Wang, D.; Pourdeyhimi, B.; Grondin, P.; Sun, G. N-Halamine Polypropylene Nonwoven Fabrics with Rechargeable Antibacterial and Antiviral Functions for Medical Applications. ACS Biomater. Sci. Eng., 2021, 7(6), 2329-2336.
[http://dx.doi.org/10.1021/acsbiomaterials.1c00117] [PMID: 33852801]
[80]
Demir, B.; Broughton, R.M.; Qiao, M.; Huang, T-S.; Worley, S.D. N-halamine biocidal materials with superior antimicrobial efficacies for wound dressings. Molecules, 2017, 22(10), 1582.
[http://dx.doi.org/10.3390/molecules22101582] [PMID: 28934124]
[81]
Wu, S.; Xu, J.; Zou, L.; Luo, S.; Yao, R.; Zheng, B.; Liang, G.; Wu, D.; Li, Y. Long-lasting renewable antibacterial porous polymeric coatings enable titanium biomaterials to prevent and treat peri-implant infection. Nat. Commun., 2021, 12(1), 3303.
[http://dx.doi.org/10.1038/s41467-021-23069-0] [PMID: 34083518]
[82]
Tang, X.; Xu, H.; Shi, Y.; Wu, M.; Tian, H.; Liang, J. Porous antimicrobial starch particles containing N-halamine functional groups. Carbohydr. Polym., 2020, 229, 115546.
[http://dx.doi.org/10.1016/j.carbpol.2019.115546] [PMID: 31826415]
[83]
Zhao, Y.; Wei, B.; Wu, M.; Zhang, H.; Yao, J.; Chen, X.; Shao, Z. Preparation and characterization of antibacterial poly(lactic acid) nanocomposites with N-halamine modified silica. Int. J. Biol. Macromol., 2020, 155, 1468-1477.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.11.125] [PMID: 31751749]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy