Generic placeholder image

Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1573-4064
ISSN (Online): 1875-6638

Review Article

Recent Update on the Development of Leucine-Rich Repeat Kinase 2 (LRRK2) Inhibitors: A Promising Target for the Treatment of Parkinson’s Disease

Author(s): Ashish Patel*, Stuti Patel, Meshwa Mehta, Yug Patel, Dhruv Langaliya, Shyam Bhalodiya and Tushar Bambharoliya

Volume 18, Issue 7, 2022

Published on: 31 March, 2022

Page: [757 - 771] Pages: 15

DOI: 10.2174/1573406418666220215122136

Price: $65

Abstract

Parkinson’s disease is a relatively common neurological disorder with incidence increasing with age. Since current medications only relieve the symptoms and do not change the course of the disease, therefore, finding disease-modifying therapies is a critical unmet medical need. However, significant progress in understanding how genetics underpins Parkinson's disease (PD) has opened up new opportunities for understanding disease pathogenesis and identifying possible therapeutic targets. One such target is leucine-rich repeat kinase 2 (LRRK2), an elusive enzyme implicated in both familial and idiopathic PD risk. As a result, both academia and industry have promoted the development of potent and selective inhibitors of LRRK2. In this review, we have summarized recent progress in the discovery and development of LRKK2 inhibitors as well as the bioactivity of several small-molecule LRRK2 inhibitors that have been used to inhibit LRRK2 kinase activity in vitro or in vivo.

Keywords: Leucine-rich repeat kinase 2 (LRRK2), Parkinson's disease (PD), brain penetrant LRKK2 inhibitors, G2019SLRRK2 mutant, wild-type LRKK2, promising target.

Graphical Abstract

[1]
Van Den Eeden, S.K.; Tanner, C.M.; Bernstein, A.L.; Fross, R.D.; Leimpeter, A.; Bloch, D.A.; Nelson, L.M. Incidence of Par-kinson’s disease: Variation by age, gender, and race/ethnicity. Am. J. Epidemiol., 2003, 157(11), 1015-1022.
[http://dx.doi.org/10.1093/aje/kwg068] [PMID: 12777365]
[2]
Postuma, R.B.; Berg, D.; Stern, M.; Poewe, W.; Olanow, C.W.; Oertel, W.; Obeso, J.; Marek, K.; Litvan, I.; Lang, A.E.; Halliday, G.; Goetz, C.G.; Gasser, T.; Dubois, B.; Chan, P.; Bloem, B.R.; Adler, C.H.; Deuschl, G. MDS clinical diagnostic criteria for Parkinson’s disease. Mov. Disord., 2015, 30(12), 1591-1601.
[http://dx.doi.org/10.1002/mds.26424] [PMID: 26474316]
[3]
Samii, A.; Nutt, J.G.; Ransom, B.R. Parkinson’s disease. Lancet, 2004, 363(9423), 1783-1793.
[http://dx.doi.org/10.1016/S0140-6736(04)16305-8] [PMID: 15172778]
[4]
de Lau, L.M.; Breteler, M.M. Epidemiology of Parkinson’s disease. Lancet Neurol., 2006, 5(6), 525-535.
[http://dx.doi.org/10.1016/S1474-4422(06)70471-9] [PMID: 16713924]
[5]
Parkinson’s disease statistics. Available from: https://parkinsonsnewstoday.com/parkinsons-disease-statistics/
[6]
Lees, A.J.; Hardy, J.; Revesz, T. Parkinson’s disease. Lancet, 2009, 373(9680), 2055-2066.
[http://dx.doi.org/10.1016/S0140-6736(09)60492-X] [PMID: 19524782]
[7]
Chaudhuri, K.R.; Healy, D.G.; Schapira, A.H.V. National Institute for Clinical Excellence. Non-motor symptoms of Parkinson’s disease: Diagnosis and management. Lancet Neurol., 2006, 5(3), 235-245.
[http://dx.doi.org/10.1016/S1474-4422(06)70373-8] [PMID: 16488379]
[8]
Poewe, W. Non-motor symptoms in Parkinson’s disease. Eur. J. Neurol., 2008, 15(Suppl. 1), 14-20.
[http://dx.doi.org/10.1111/j.1468-1331.2008.02056.x] [PMID: 18353132]
[9]
Spillantini, M.G.; Schmidt, M.L.; Lee, V.M.; Trojanowski, J.Q.; Jakes, R.; Goedert, M. Alpha-synuclein in Lewy bodies. Nature, 1997, 388(6645), 839-840.
[http://dx.doi.org/10.1038/42166] [PMID: 9278044]
[10]
Braak, H.; Del Tredici, K.; Rüb, U.; de Vos, R.A.I.; Jansen Steur, E.N.H.; Braak, E. Staging of brain pathology related to sporadic Parkin-son’s disease. Neurobiol. Aging, 2003, 24(2), 197-211.
[http://dx.doi.org/10.1016/S0197-4580(02)00065-9] [PMID: 12498954]
[11]
Singleton, A.B.; Farrer, M.; Johnson, J.; Singleton, A.; Hague, S.; Kachergus, J.; Hulihan, M.; Peuralinna, T.; Dutra, A.; Nussbaum, R.; Lincoln, S.; Crawley, A.; Hanson, M.; Maraganore, D.; Adler, C.; Cookson, M.R.; Muenter, M.; Baptista, M.; Miller, D.; Blancato, J.; Har-dy, J.; Gwinn-Hardy, K. Alpha-Synuclein locus triplication causes Parkinson’s disease. Science, 2003, 302(5646), 841.
[http://dx.doi.org/10.1126/science.1090278] [PMID: 14593171]
[12]
Paisán-Ruíz, C.; Jain, S.; Evans, E.W.; Gilks, W.P.; Simón, J.; van der Brug, M.; López de Munain, A.; Aparicio, S.; Gil, A.M.; Khan, N.; Johnson, J.; Martinez, J.R.; Nicholl, D.; Martí Carrera, I.; Pena, A.S.; de Silva, R.; Lees, A.; Martí-Massó, J.F.; Pérez-Tur, J.; Wood, N.W.; Singleton, A.B. Cloning of the gene containing mutations that cause PARK8-linked Parkinson’s disease. Neuron, 2004, 44(4), 595-600.
[http://dx.doi.org/10.1016/j.neuron.2004.10.023] [PMID: 15541308]
[13]
Zimprich, A.; Biskup, S.; Leitner, P.; Lichtner, P.; Farrer, M.; Lincoln, S.; Kachergus, J.; Hulihan, M.; Uitti, R.J.; Calne, D.B.; Stoessl, A.J.; Pfeiffer, R.F.; Patenge, N.; Carbajal, I.C.; Vieregge, P.; Asmus, F.; Müller-Myhsok, B.; Dickson, D.W.; Meitinger, T.; Strom, T.M.; Wszolek, Z.K.; Gasser, T. Mutations in LRRK2 cause autosomal-dominant parkinsonism with pleomorphic pathology. Neuron, 2004, 44(4), 601-607.
[http://dx.doi.org/10.1016/j.neuron.2004.11.005] [PMID: 15541309]
[14]
Kachergus, J.; Mata, I.F.; Hulihan, M.; Taylor, J.P.; Lincoln, S.; Aasly, J.; Gibson, J.M.; Ross, O.A.; Lynch, T.; Wiley, J.; Payami, H.; Nutt, J.; Maraganore, D.M.; Czyzewski, K.; Styczynska, M.; Wszolek, Z.K.; Farrer, M.J.; Toft, M. Identification of a novel LRRK2 mutation linked to autosomal dominant parkinsonism: Evidence of a common founder across European populations. Am. J. Hum. Genet., 2005, 76(4), 672-680.
[http://dx.doi.org/10.1086/429256] [PMID: 15726496]
[15]
Healy, D.G.; Falchi, M.; O’Sullivan, S.S.; Bonifati, V.; Durr, A.; Bressman, S.; Brice, A.; Aasly, J.; Zabetian, C.P.; Goldwurm, S.; Ferreira, J.J.; Tolosa, E.; Kay, D.M.; Klein, C.; Williams, D.R.; Marras, C.; Lang, A.E.; Wszolek, Z.K.; Berciano, J.; Schapira, A.H.V.; Lynch, T.; Bhatia, K.P.; Gasser, T.; Lees, A.J.; Wood, N.W. International LRRK2 Consortium.Phenotype, genotype, and worldwide genetic pene-trance of LRRK2-associated Parkinson’s disease: A case-control study. Lancet Neurol., 2008, 7(7), 583-590.
[http://dx.doi.org/10.1016/S1474-4422(08)70117-0] [PMID: 18539534]
[16]
Jankovic, J. Motor fluctuations and dyskinesias in Parkinson’s disease: Clinical manifestations. Mov. Disord., 2005, 20(Suppl. 11), S11-S16.
[http://dx.doi.org/10.1002/mds.20458] [PMID: 15822109]
[17]
Müller, T.; Russ, H. Levodopa, motor fluctuations and dyskinesia in Parkinson’s disease. Expert Opin. Pharmacother., 2006, 7(13), 1715-1730.
[http://dx.doi.org/10.1517/14656566.7.13.1715] [PMID: 16925499]
[18]
Lill, C.M.; Roehr, J.T.; McQueen, M.B.; Kavvoura, F.K.; Bagade, S.; Schjeide, B-M.M.; Schjeide, L.M.; Meissner, E.; Zauft, U.; Allen, N.C.; Liu, T.; Schilling, M.; Anderson, K.J.; Beecham, G.; Berg, D.; Biernacka, J.M.; Brice, A.; DeStefano, A.L.; Do, C.B.; Eriksson, N.; Factor, S.A.; Farrer, M.J.; Foroud, T.; Gasser, T.; Hamza, T.; Hardy, J.A.; Heutink, P.; Hill-Burns, E.M.; Klein, C.; Latourelle, J.C.; Mara-ganore, D.M.; Martin, E.R.; Martinez, M.; Myers, R.H.; Nalls, M.A.; Pankratz, N.; Payami, H.; Satake, W.; Scott, W.K.; Sharma, M.; Single-ton, A.B.; Stefansson, K.; Toda, T.; Tung, J.Y.; Vance, J.; Wood, N.W.; Zabetian, C.P. Comprehensive research synopsis and systematic meta-analyses in Parkinson’s disease genetics: The PDGene database. PLoS Genet., 2012, 8(3), e1002548.
[http://dx.doi.org/10.1371/journal.pgen.1002548] [PMID: 22438815]
[19]
Sharma, M.; Ioannidis, J.P.A.; Aasly, J.O.; Annesi, G.; Brice, A.; Van Broeckhoven, C.; Bertram, L.; Bozi, M.; Crosiers, D.; Clarke, C.; Facheris, M.; Farrer, M.; Garraux, G.; Gispert, S.; Auburger, G.; Vilariño-Güell, C.; Hadjigeorgiou, G.M.; Hicks, A.A.; Hattori, N.; Jeon, B.; Lesage, S.; Lill, C.M.; Lin, J-J.; Lynch, T.; Lichtner, P.; Lang, A.E.; Mok, V.; Jasinska-Myga, B.; Mellick, G.D.; Morrison, K.E.; Opala, G.; Pramstaller, P.P.; Pichler, I.; Park, S.S.; Quattrone, A.; Rogaeva, E.; Ross, O.A.; Stefanis, L.; Stockton, J.D.; Satake, W.; Silburn, P.A.; Theuns, J.; Tan, E-K.; Toda, T.; Tomiyama, H.; Uitti, R.J.; Wirdefeldt, K.; Wszolek, Z.; Xiromerisiou, G.; Yueh, K-C.; Zhao, Y.; Gasser, T.; Maraganore, D.; Krüger, R. Large-scale replication and heterogeneity in Parkinson disease genetic loci. Neurology, 2012, 79(7), 659-667.
[http://dx.doi.org/10.1212/WNL.0b013e318264e353] [PMID: 22786590]
[20]
Liu, X.; Cheng, R.; Verbitsky, M.; Kisselev, S.; Browne, A.; Mejia-Sanatana, H.; Louis, E.D.; Cote, L.J.; Andrews, H.; Waters, C.; Ford, B.; Frucht, S.; Fahn, S.; Marder, K.; Clark, L.N.; Lee, J.H. Genome-wide association study identifies candidate genes for Parkinson’s disease in an Ashkenazi Jewish population. BMC Med. Genet., 2011, 12(1), 104.
[http://dx.doi.org/10.1186/1471-2350-12-104] [PMID: 21812969]
[21]
Nalls, M.A.; Plagnol, V.; Hernandez, D.G.; Sharma, M.; Sheerin, U.M.; Saad, M.; Simón-Sánchez, J.; Schulte, C.; Lesage, S.; Sveinbjörnsdóttir, S.; Stefánsson, K.; Martinez, M.; Hardy, J.; Heutink, P.; Brice, A.; Gasser, T.; Singleton, A.B.; Wood, N.W. Imputation of sequence variants for identification of genetic risks for Parkinson’s disease: A meta-analysis of genome-wide association studies. Lancet, 2011, 377(9766), 641-649.
[http://dx.doi.org/10.1016/S0140-6736(10)62345-8] [PMID: 21292315]
[22]
Spencer, C.C.; Plagnol, V.; Strange, A.; Gardner, M.; Paisan-Ruiz, C.; Band, G.; Barker, R.A.; Bellenguez, C.; Bhatia, K.; Blackburn, H.; Blackwell, J.M.; Bramon, E.; Brown, M.A.; Brown, M.A.; Burn, D.; Casas, J.P.; Chinnery, P.F.; Clarke, C.E.; Corvin, A.; Craddock, N.; De-loukas, P.; Edkins, S.; Evans, J.; Freeman, C.; Gray, E.; Hardy, J.; Hudson, G.; Hunt, S.; Jankowski, J.; Langford, C.; Lees, A.J.; Markus, H.S.; Mathew, C.G.; McCarthy, M.I.; Morrison, K.E.; Palmer, C.N.; Pearson, J.P.; Peltonen, L.; Pirinen, M.; Plomin, R.; Potter, S.; Rau-tanen, A.; Sawcer, S.J.; Su, Z.; Trembath, R.C.; Viswanathan, A.C.; Williams, N.W.; Morris, H.R.; Donnelly, P.; Wood, N.W. Dissection of the genetics of Parkinson’s disease identifies an additional association 5' of SNCA and multiple associated haplotypes at 17q21. Hum. Mol. Genet., 2011, 20(2), 345-353.
[http://dx.doi.org/10.1093/hmg/ddq469] [PMID: 21044948]
[23]
Saad, M.; Lesage, S.; Saint-Pierre, A.; Corvol, J-C.; Zelenika, D.; Lambert, J-C.; Vidailhet, M.; Mellick, G.D.; Lohmann, E.; Durif, F.; Pol-lak, P.; Damier, P.; Tison, F.; Silburn, P.A.; Tzourio, C.; Forlani, S.; Loriot, M-A.; Giroud, M.; Helmer, C.; Portet, F.; Amouyel, P.; Lath-rop, M.; Elbaz, A.; Durr, A.; Martinez, M.; Brice, A. Genome-wide association study confirms BST1 and suggests a locus on 12q24 as the risk loci for Parkinson’s disease in the European population. Hum. Mol. Genet., 2011, 20(3), 615-627.
[http://dx.doi.org/10.1093/hmg/ddq497] [PMID: 21084426]
[24]
International Parkinson’s Disease Genomics Consortium (IPDGC). Wellcome Trust Case Control Consortium 2 (WTCCC2). A two-stage meta-analysis identifies several new loci for Parkinson’s disease. PLoS Genet., 2011, 7(6), e1002142.
[http://dx.doi.org/10.1371/journal.pgen.1002142] [PMID: 21738488]
[25]
Tan, E-K.; Kwok, H-H.; Tan, L.C.; Zhao, W.T.; Prakash, K.M.; Au, W.L.; Pavanni, R.; Ng, Y.Y.; Satake, W.; Zhao, Y.; Toda, T.; Liu, J.J.; Liu, J-J. Analysis of GWAS-linked loci in Parkinson disease reaffirms PARK16 as a susceptibility locus. Neurology, 2010, 75(6), 508-512.
[http://dx.doi.org/10.1212/WNL.0b013e3181eccfcd] [PMID: 20697102]
[26]
Edwards, T.L.; Scott, W.K.; Almonte, C.; Burt, A.; Powell, E.H.; Beecham, G.W.; Wang, L.; Züchner, S.; Konidari, I.; Wang, G.; Singer, C.; Nahab, F.; Scott, B.; Stajich, J.M.; Pericak-Vance, M.; Haines, J.; Vance, J.M.; Martin, E.R. Genome-wide association study confirms SNPs in SNCA and the MAPT region as common risk factors for Parkinson disease. Ann. Hum. Genet., 2010, 74(2), 97-109.
[http://dx.doi.org/10.1111/j.1469-1809.2009.00560.x] [PMID: 20070850]
[27]
Satake, W.; Nakabayashi, Y.; Mizuta, I.; Hirota, Y.; Ito, C.; Kubo, M.; Kawaguchi, T.; Tsunoda, T.; Watanabe, M.; Takeda, A.; Tomiyama, H.; Nakashima, K.; Hasegawa, K.; Obata, F.; Yoshikawa, T.; Kawakami, H.; Sakoda, S.; Yamamoto, M.; Hattori, N.; Murata, M.; Nakamu-ra, Y.; Toda, T. Genome-wide association study identifies common variants at four loci as genetic risk factors for Parkinson’s disease. Nat. Genet., 2009, 41(12), 1303-1307.
[http://dx.doi.org/10.1038/ng.485] [PMID: 19915576]
[28]
Simón-Sánchez, J.; Schulte, C.; Bras, J.M.; Sharma, M.; Gibbs, J.R.; Berg, D.; Paisan-Ruiz, C.; Lichtner, P.; Scholz, S.W.; Hernandez, D.G.; Krüger, R.; Federoff, M.; Klein, C.; Goate, A.; Perlmutter, J.; Bonin, M.; Nalls, M.A.; Illig, T.; Gieger, C.; Houlden, H.; Steffens, M.; Okun, M.S.; Racette, B.A.; Cookson, M.R.; Foote, K.D.; Fernandez, H.H.; Traynor, B.J.; Schreiber, S.; Arepalli, S.; Zonozi, R.; Gwinn, K.; van der Brug, M.; Lopez, G.; Chanock, S.J.; Schatzkin, A.; Park, Y.; Hollenbeck, A.; Gao, J.; Huang, X.; Wood, N.W.; Lorenz, D.; Deuschl, G.; Chen, H.; Riess, O.; Hardy, J.A.; Singleton, A.B.; Gasser, T. Genome-wide association study reveals genetic risk underlying Parkinson’s disease. Nat. Genet., 2009, 41(12), 1308-1312.
[http://dx.doi.org/10.1038/ng.487] [PMID: 19915575]
[29]
González-Pérez, A.; Gayán, J.; Marín, J.; Galán, J.J.; Sáez, M.E.; Real, L.M.; Antúnez, C.; Ruiz, A. Whole-genome conditional two-locus analysis identifies novel candidate genes for late-onset Parkinson’s disease. Neurogenetics, 2009, 10(3), 173-181.
[http://dx.doi.org/10.1007/s10048-009-0170-8] [PMID: 19156451]
[30]
Gao, X.; Martin, E.R.; Liu, Y.; Mayhew, G.; Vance, J.M.; Scott, W.K. Genome-wide linkage screen in familial Parkinson disease identifies loci on chromosomes 3 and 18. Am. J. Hum. Genet., 2009, 84(4), 499-504.
[http://dx.doi.org/10.1016/j.ajhg.2009.03.005] [PMID: 19327735]
[31]
Funayama, M.; Hasegawa, K.; Kowa, H.; Saito, M.; Tsuji, S.; Obata, F. A new locus for Parkinson’s disease (PARK8) maps to chromo-some 12p11.2-q13.1. Ann. Neurol., 2002, 51(3), 296-301.
[http://dx.doi.org/10.1002/ana.10113] [PMID: 11891824]
[32]
Dächsel, J.C.; Farrer, M.J. LRRK2 and Parkinson disease. Arch. Neurol., 2010, 67(5), 542-547.
[http://dx.doi.org/10.1001/archneurol.2010.79] [PMID: 20457952]
[33]
Lee, B.D.; Dawson, V.L.; Dawson, T.M. Leucine-rich repeat kinase 2 (LRRK2) as a potential therapeutic target in Parkinson’s disease. Trends Pharmacol. Sci., 2012, 33(7), 365-373.
[http://dx.doi.org/10.1016/j.tips.2012.04.001] [PMID: 22578536]
[34]
Devine, M.J.; Plun-Favreau, H.; Wood, N.W. Parkinson’s disease and cancer: Two wars, one front. Nat. Rev. Cancer, 2011, 11(11), 812-823.
[http://dx.doi.org/10.1038/nrc3150] [PMID: 22020207]
[35]
Lichtenberg, M.; Mansilla, A.; Zecchini, V.R.; Fleming, A.; Rubinsztein, D.C. The Parkinson’s disease protein LRRK2 impairs proteasome substrate clearance without affecting proteasome catalytic activity. Cell Death Dis., 2011, 2, e196.
[http://dx.doi.org/10.1038/cddis.2011.81] [PMID: 21866175]
[36]
Salado, I.G.; Zaldivar-Diez, J.; Sebastián-Pérez, V.; Li, L.; Geiger, L.; González, S.; Campillo, N.E.; Gil, C.; Morales, A.V.; Perez, D.I.; Martinez, A. Leucine rich repeat kinase 2 (LRRK2) inhibitors based on indolinone scaffold: Potential pro-neurogenic agents. Eur. J. Med. Chem., 2017, 138, 328-342.
[http://dx.doi.org/10.1016/j.ejmech.2017.06.060] [PMID: 28688273]
[37]
Cookson, M.R. LRRK2 pathways leading to neurodegeneration. Curr. Neurol. Neurosci. Rep., 2015, 15(7), 42-51.
[http://dx.doi.org/10.1007/s11910-015-0564-y] [PMID: 26008812]
[38]
Barrett, J.C.; Hansoul, S.; Nicolae, D.L.; Cho, J.H.; Duerr, R.H.; Rioux, J.D.; Brant, S.R.; Silverberg, M.S.; Taylor, K.D.; Barmada, M.M.; Bitton, A.; Dassopoulos, T.; Datta, L.W.; Green, T.; Griffiths, A.M.; Kistner, E.O.; Murtha, M.T.; Regueiro, M.D.; Rotter, J.I.; Schumm, L.P.; Steinhart, A.H.; Targan, S.R.; Xavier, R.J.; Libioulle, C.; Sandor, C.; Lathrop, M.; Belaiche, J.; Dewit, O.; Gut, I.; Heath, S.; Laukens, D.; Mni, M.; Rutgeerts, P.; Van Gossum, A.; Zelenika, D.; Franchimont, D.; Hugot, J.P.; de Vos, M.; Vermeire, S.; Louis, E.; Cardon, L.R.; Anderson, C.A.; Drummond, H.; Nimmo, E.; Ahmad, T.; Prescott, N.J.; Onnie, C.M.; Fisher, S.A.; Marchini, J.; Ghori, J.; Bumpstead, S.; Gwilliam, R.; Tremelling, M.; Deloukas, P.; Mansfield, J.; Jewell, D.; Satsangi, J.; Mathew, C.G.; Parkes, M.; Georges, M.; Daly, M.J. Ge-nome-wide association defines more than 30 distinct susceptibility loci for Crohn’s disease. Nat. Genet., 2008, 40(8), 955-962.
[http://dx.doi.org/10.1038/ng.175] [PMID: 18587394]
[39]
Looyenga, B.D.; Furge, K.A.; Dykema, K.J.; Koeman, J.; Swiatek, P.J.; Giordano, T.J.; West, A.B.; Resau, J.H.; Teh, B.T.; MacKeigan, J.P. Chromosomal amplification of leucine-rich repeat kinase-2 (LRRK2) is required for oncogenic MET signaling in papillary renal and thy-roid carcinomas. Proc. Natl. Acad. Sci. USA, 2011, 108(4), 1439-1444.
[http://dx.doi.org/10.1073/pnas.1012500108] [PMID: 21220347]
[40]
Herzig, M.C.; Kolly, C.; Persohn, E.; Theil, D.; Schweizer, T.; Hafner, T.; Stemmelen, C.; Troxler, T.J.; Schmid, P.; Danner, S.; Schnell, C.R.; Mueller, M.; Kinzel, B.; Grevot, A.; Bolognani, F.; Stirn, M.; Kuhn, R.R.; Kaupmann, K.; van der Putten, P.H.; Rovelli, G.; Shimshek, D.R. LRRK2 protein levels are determined by kinase function and are crucial for kidney and lung homeostasis in mice. Hum. Mol. Genet., 2011, 20(21), 4209-4223.
[http://dx.doi.org/10.1093/hmg/ddr348] [PMID: 21828077]
[41]
Inzelberg, R.; Cohen, O.S.; Aharon-Peretz, J.; Schlesinger, I.; Gershoni-Baruch, R.; Djaldetti, R.; Nitsan, Z.; Ephraty, L.; Tunkel, O.; Ko-zlova, E.; Inzelberg, L.; Kaplan, N.; Fixler Mehr, T.; Mory, A.; Dagan, E.; Schechtman, E.; Friedman, E.; Hassin-Baer, S. The LRRK2 G2019S mutation is associated with Parkinson disease and concomitant non-skin cancers. Neurology, 2012, 78(11), 781-786.
[http://dx.doi.org/10.1212/WNL.0b013e318249f673] [PMID: 22323743]
[42]
Lewis, P.A.; Manzoni, C. LRRK2 and human disease: A complicated question or a question of complexes? Sci. Signal., 2012, 5(207), pe2.
[http://dx.doi.org/10.1126/scisignal.2002680] [PMID: 22253261]
[43]
Liu, Z.; Lee, J.; Krummey, S.; Lu, W.; Cai, H.; Lenardo, M.J. The kinase LRRK2 is a regulator of the transcription factor NFAT that modu-lates the severity of inflammatory bowel disease. Nat. Immunol., 2011, 12(11), 1063-1070.
[http://dx.doi.org/10.1038/ni.2113] [PMID: 21983832]
[44]
Shah, H.; Patel, A.; Parikh, V.; Nagani, A.; Bhimani, B.; Shah, U.; Bambharoliya, T. The β-secretase enzyme BACE1: A biochemical enigma for Alzheimer’s disease. CNS Neurol. Disord. Drug Targets, 2020, 19(3), 184-194.
[http://dx.doi.org/10.2174/1871527319666200526144141] [PMID: 32452328]
[45]
Marín, I. The Parkinson disease gene LRRK2: evolutionary and structural insights. Mol. Biol. Evol., 2006, 23(12), 2423-2433.
[http://dx.doi.org/10.1093/molbev/msl114] [PMID: 16966681]
[46]
Esteves, A.R.; Swerdlow, R.H.; Cardoso, S.M. LRRK2, a puzzling protein: Insights into Parkinson’s disease pathogenesis. Exp. Neurol., 2014, 261, 206-216.
[http://dx.doi.org/10.1016/j.expneurol.2014.05.025] [PMID: 24907399]
[47]
Kramer, T.; Lo Monte, F.; Göring, S.; Okala Amombo, G.M.; Schmidt, B. Small molecule kinase inhibitors for LRRK2 and their application to Parkinson’s disease models. ACS Chem. Neurosci., 2012, 3(3), 151-160.
[http://dx.doi.org/10.1021/cn200117j] [PMID: 22860184]
[48]
Taymans, J-M.; Cookson, M.R. Mechanisms in dominant parkinsonism: The toxic triangle of LRRK2, alpha-synuclein, and tau. BioEssays, 2010, 32(3), 227-235.
[http://dx.doi.org/10.1002/bies.200900163] [PMID: 20127702]
[49]
Cookson, M.R. The role of Leucine-Rich Repeat Kinase 2 (LRRK2) in Parkinson’s disease. Nat. Rev. Neurosci., 2010, 11(12), 791-797.
[http://dx.doi.org/10.1038/nrn2935] [PMID: 21088684]
[50]
Seol, W. Biochemical and molecular features of LRRK2 and its pathophysiological roles in Parkinson’s disease. BMB Rep., 2010, 43(4), 233-244.
[http://dx.doi.org/10.5483/BMBRep.2010.43.4.233] [PMID: 20423607]
[51]
Rudenko, I.N.; Cookson, M.R. 14-3-3 proteins are promising LRRK2 interactors. Biochem. J., 2010, 430(3), e5-e6.
[http://dx.doi.org/10.1042/BJ20101200] [PMID: 20795948]
[52]
Nichols, R.J.; Dzamko, N.; Morrice, N.A.; Campbell, D.G.; Deak, M.; Ordureau, A.; Macartney, T.; Tong, Y.; Shen, J.; Prescott, A.R.; Alessi, D.R. 14-3-3 binding to LRRK2 is disrupted by multiple Parkinson’s disease-associated mutations and regulates cytoplasmic locali-zation. Biochem. J., 2010, 430(3), 393-404.
[http://dx.doi.org/10.1042/BJ20100483] [PMID: 20642453]
[53]
Dzamko, N.; Deak, M.; Hentati, F.; Reith, A.D.; Prescott, A.R.; Alessi, D.R.; Nichols, R.J. Inhibition of LRRK2 kinase activity leads to dephosphorylation of Ser(910)/Ser(935), disruption of 14-3-3 binding and altered cytoplasmic localization. Biochem. J., 2010, 430(3), 405-413.
[http://dx.doi.org/10.1042/BJ20100784] [PMID: 20659021]
[54]
Paisán-Ruíz, C.; Nath, P.; Washecka, N.; Gibbs, J.R.; Singleton, A.B. Comprehensive analysis of LRRK2 in publicly available Parkinson’s disease cases and neurologically normal controls. Hum. Mutat., 2008, 29(4), 485-490.
[http://dx.doi.org/10.1002/humu.20668] [PMID: 18213618]
[55]
West, A.B.; Moore, D.J.; Choi, C.; Andrabi, S.A.; Li, X.; Dikeman, D.; Biskup, S.; Zhang, Z.; Lim, K-L.; Dawson, V.L.; Dawson, T.M. Parkinson’s disease-associated mutations in LRRK2 link enhanced GTP-binding and kinase activities to neuronal toxicity. Hum. Mol. Genet., 2007, 16(2), 223-232.
[http://dx.doi.org/10.1093/hmg/ddl471] [PMID: 17200152]
[56]
Smith, W.W.; Pei, Z.; Jiang, H.; Moore, D.J.; Liang, Y.; West, A.B.; Dawson, V.L.; Dawson, T.M.; Ross, C.A. Leucine-rich repeat kinase 2 (LRRK2) interacts with parkin, and mutant LRRK2 induces neuronal degeneration. Proc. Natl. Acad. Sci. USA, 2005, 102(51), 18676-18681.
[http://dx.doi.org/10.1073/pnas.0508052102] [PMID: 16352719]
[57]
Kalia, L.V.; Lang, A.E. Parkinson’s disease. Lancet, 2015, 386(9996), 896-912.
[http://dx.doi.org/10.1016/S0140-6736(14)61393-3] [PMID: 25904081]
[58]
Kalia, L.V.; Kalia, S.K.; Lang, A.E. Disease-modifying strategies for Parkinson’s disease. Mov. Disord., 2015, 30(11), 1442-1450.
[http://dx.doi.org/10.1002/mds.26354] [PMID: 26208210]
[59]
Kalinderi, K.; Bostantjopoulou, S.; Fidani, L. The genetic background of Parkinson’s disease: Current progress and future prospects. Acta Neurol. Scand., 2016, 134(5), 314-326.
[http://dx.doi.org/10.1111/ane.12563] [PMID: 26869347]
[60]
Covy, J.P.; Giasson, B.I. Identification of compounds that inhibit the kinase activity of leucine-rich repeat kinase 2. Biochem. Biophys. Res. Commun., 2009, 378(3), 473-477.
[http://dx.doi.org/10.1016/j.bbrc.2008.11.048] [PMID: 19027715]
[61]
Ding, X.; Stasi, L.P.; Ho, M-H.; Zhao, B.; Wang, H.; Long, K.; Xu, Q.; Sang, Y.; Sun, C.; Hu, H.; Yu, H.; Wan, Z.; Wang, L.; Edge, C.; Liu, Q.; Li, Y.; Dong, K.; Guan, X.; Tattersall, F.D.; Reith, A.D.; Ren, F. Discovery of 4-ethoxy-7H-pyrrolo[2,3-d]pyrimidin-2-amines as po-tent, selective and orally bioavailable LRRK2 inhibitors. Bioorg. Med. Chem. Lett., 2018, 28(9), 1615-1620.
[http://dx.doi.org/10.1016/j.bmcl.2018.03.045] [PMID: 29588215]
[62]
Hatcher, J.M.; Zhang, J.; Choi, H.G.; Ito, G.; Alessi, D.R.; Gray, N.S. Discovery of a pyrrolopyrimidine (JH-II-127), a highly potent, selec-tive, and brain penetrant LRRK2 inhibitor. ACS Med. Chem. Lett., 2015, 6(5), 584-589.
[http://dx.doi.org/10.1021/acsmedchemlett.5b00064] [PMID: 26005538]
[63]
Estrada, A.A.; Sweeney, Z.K. Chemical biology of Leucine-Rich Repeat Kinase 2 (LRRK2) inhibitors. J. Med. Chem., 2015, 58(17), 6733-6746.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00261] [PMID: 25915084]
[64]
Estrada, A.A.; Chan, B.K.; Baker-Glenn, C.; Beresford, A.; Burdick, D.J.; Chambers, M.; Chen, H.; Dominguez, S.L.; Dotson, J.; Drum-mond, J.; Flagella, M.; Fuji, R.; Gill, A.; Halladay, J.; Harris, S.F.; Heffron, T.P.; Kleinheinz, T.; Lee, D.W.; Le Pichon, C.E.; Liu, X.; Lys-sikatos, J.P.; Medhurst, A.D.; Moffat, J.G.; Nash, K.; Scearce-Levie, K.; Sheng, Z.; Shore, D.G.; Wong, S.; Zhang, S.; Zhang, X.; Zhu, H.; Sweeney, Z.K. Discovery of highly potent, selective, and brain-penetrant aminopyrazole leucine-rich repeat kinase 2 (LRRK2) small mol-ecule inhibitors. J. Med. Chem., 2014, 57(3), 921-936.
[http://dx.doi.org/10.1021/jm401654j] [PMID: 24354345]
[65]
Chan, B.K.; Estrada, A.A.; Chen, H.; Atherall, J.; Baker-Glenn, C.; Beresford, A.; Burdick, D.J.; Chambers, M.; Dominguez, S.L.; Drum-mond, J.; Gill, A.; Kleinheinz, T.; Le Pichon, C.E.; Medhurst, A.D.; Liu, X.; Moffat, J.G.; Nash, K.; Scearce-Levie, K.; Sheng, Z.; Shore, D.G.; Van de Poël, H.; Zhang, S.; Zhu, H.; Sweeney, Z.K. Discovery of a highly selective, brain-penetrant aminopyrazole LRRK2 inhibitor. ACS Med. Chem. Lett., 2012, 4(1), 85-90.
[http://dx.doi.org/10.1021/ml3003007] [PMID: 24900567]
[66]
Estrada, A.A.; Liu, X.; Baker-Glenn, C.; Beresford, A.; Burdick, D.J.; Chambers, M.; Chan, B.K.; Chen, H.; Ding, X.; DiPasquale, A.G.; Dominguez, S.L.; Dotson, J.; Drummond, J.; Flagella, M.; Flynn, S.; Fuji, R.; Gill, A.; Gunzner-Toste, J.; Harris, S.F.; Heffron, T.P.; Klein-heinz, T.; Lee, D.W.; Le Pichon, C.E.; Lyssikatos, J.P.; Medhurst, A.D.; Moffat, J.G.; Mukund, S.; Nash, K.; Scearce-Levie, K.; Sheng, Z.; Shore, D.G.; Tran, T.; Trivedi, N.; Wang, S.; Zhang, S.; Zhang, X.; Zhao, G.; Zhu, H.; Sweeney, Z.K. Discovery of highly potent, selective, and brain-penetrable Leucine-Rich Repeat Kinase 2 (LRRK2) small molecule inhibitors. J. Med. Chem., 2012, 55(22), 9416-9433.
[http://dx.doi.org/10.1021/jm301020q] [PMID: 22985112]
[67]
Henderson, J.L.; Kormos, B.L.; Hayward, M.M.; Coffman, K.J.; Jasti, J.; Kurumbail, R.G.; Wager, T.T.; Verhoest, P.R.; Noell, G.S.; Chen, Y.; Needle, E.; Berger, Z.; Steyn, S.J.; Houle, C.; Hirst, W.D.; Galatsis, P. Discovery and preclinical profiling of 3-[4-(morpholin-4-yl)-7H-pyrrolo[2,3-d]pyrimidin-5-yl]benzonitrile (PF-06447475), a highly potent, selective, brain penetrant, and in vivo active LRRK2 kinase in-hibitor. J. Med. Chem., 2015, 58(1), 419-432.
[http://dx.doi.org/10.1021/jm5014055] [PMID: 25353650]
[68]
Munoz, L.; Kavanagh, M.E.; Phoa, A.F.; Heng, B.; Dzamko, N.; Chen, E-J.; Doddareddy, M.R.; Guillemin, G.J.; Kassiou, M. Optimisation of LRRK2 inhibitors and assessment of functional efficacy in cell-based models of neuroinflammation. Eur. J. Med. Chem., 2015, 95, 29-34.
[http://dx.doi.org/10.1016/j.ejmech.2015.03.003] [PMID: 25791676]
[69]
Choi, H.G.; Zhang, J.; Deng, X.; Hatcher, J.M.; Patricelli, M.P.; Zhao, Z.; Alessi, D.R.; Gray, N.S. Brain penetrant LRRK2 inhibitor. ACS Med. Chem. Lett., 2012, 3(8), 658-662.
[http://dx.doi.org/10.1021/ml300123a] [PMID: 23066449]
[70]
Chen, H.; Chan, B.K.; Drummond, J.; Estrada, A.A.; Gunzner-Toste, J.; Liu, X.; Liu, Y.; Moffat, J.; Shore, D.; Sweeney, Z.K.; Tran, T.; Wang, S.; Zhao, G.; Zhu, H.; Burdick, D.J. Discovery of selective LRRK2 inhibitors guided by computational analysis and molecular modeling. J. Med. Chem., 2012, 55(11), 5536-5545.
[http://dx.doi.org/10.1021/jm300452p] [PMID: 22591441]
[71]
Zhang, J.; Deng, X.; Choi, H.G.; Alessi, D.R.; Gray, N.S. Characterization of TAE684 as a potent LRRK2 kinase inhibitor. Bioorg. Med. Chem. Lett., 2012, 22(5), 1864-1869.
[http://dx.doi.org/10.1016/j.bmcl.2012.01.084] [PMID: 22335897]
[72]
Osborne, J.; Birchall, K.; Tsagris, D.J.; Lewis, S.J.; Smiljanic-Hurley, E.; Taylor, D.L.; Levy, A.; Alessi, D.R.; McIver, E.G. Discovery of potent and selective 5-azaindazole inhibitors of Leucine-Rich Repeat Kinase 2 (LRRK2) - Part 1. Bioorg. Med. Chem. Lett., 2019, 29(4), 668-673.
[http://dx.doi.org/10.1016/j.bmcl.2018.11.058] [PMID: 30554956]
[73]
Scott, J.D.; DeMong, D.E.; Greshock, T.J.; Basu, K.; Dai, X.; Harris, J.; Hruza, A.; Li, S.W.; Lin, S-I.; Liu, H.; Macala, M.K.; Hu, Z.; Mei, H.; Zhang, H.; Walsh, P.; Poirier, M.; Shi, Z-C.; Xiao, L.; Agnihotri, G.; Baptista, M.A.S.; Columbus, J.; Fell, M.J.; Hyde, L.A.; Kuvelkar, R.; Lin, Y.; Mirescu, C.; Morrow, J.A.; Yin, Z.; Zhang, X.; Zhou, X.; Chang, R.K.; Embrey, M.W.; Sanders, J.M.; Tiscia, H.E.; Drolet, R.E.; Kern, J.T.; Sur, S.M.; Renger, J.J.; Bilodeau, M.T.; Kennedy, M.E.; Parker, E.M.; Stamford, A.W.; Nargund, R.; McCauley, J.A.; Mil-ler, M.W. Discovery of a 3-(4-Pyrimidinyl) Indazole (MLi-2), an orally available and selective Leucine-Rich Repeat Kinase 2 (LRRK2) inhibitor that reduces brain kinase activity. J. Med. Chem., 2017, 60(7), 2983-2992.
[http://dx.doi.org/10.1021/acs.jmedchem.7b00045] [PMID: 28245354]
[74]
Göring, S.; Taymans, J-M.; Baekelandt, V.; Schmidt, B. Indolinone based LRRK2 kinase inhibitors with a key hydrogen bond. Bioorg. Med. Chem. Lett., 2014, 24(19), 4630-4637.
[http://dx.doi.org/10.1016/j.bmcl.2014.08.049] [PMID: 25219901]
[75]
Troxler, T.; Greenidge, P.; Zimmermann, K.; Desrayaud, S.; Drückes, P.; Schweizer, T.; Stauffer, D.; Rovelli, G.; Shimshek, D.R. Discovery of novel indolinone-based, potent, selective and brain penetrant inhibitors of LRRK2. Bioorg. Med. Chem. Lett., 2013, 23(14), 4085-4090.
[http://dx.doi.org/10.1016/j.bmcl.2013.05.054] [PMID: 23768909]
[76]
Ding, X.; Stasi, L.P.; Dai, X.; Long, K.; Peng, C.; Zhao, B.; Wang, H.; Sun, C.; Hu, H.; Wan, Z.; Jandu, K.S.; Philps, O.J.; Chen, Y.; Wang, L.; Liu, Q.; Edge, C.; Li, Y.; Dong, K.; Guan, X.; Tattersall, F.D.; Reith, A.D.; Ren, F. 5-Substituted-N-pyridazinylbenzamides as potent and selective LRRK2 inhibitors: Improved brain unbound fraction enables efficacy. Bioorg. Med. Chem. Lett., 2019, 29(2), 212-215.
[http://dx.doi.org/10.1016/j.bmcl.2018.11.054] [PMID: 30522952]
[77]
Garofalo, A.W.; Adler, M.; Aubele, D.L.; Bowers, S.; Franzini, M.; Goldbach, E.; Lorentzen, C.; Neitz, R.J.; Probst, G.D.; Quinn, K.P.; Santiago, P.; Sham, H.L.; Tam, D.; Truong, A.P.; Ye, X.M.; Ren, Z. Novel cinnoline-based inhibitors of LRRK2 kinase activity. Bioorg. Med. Chem. Lett., 2013, 23(1), 71-74.
[http://dx.doi.org/10.1016/j.bmcl.2012.11.021] [PMID: 23219325]
[78]
Ding, X.; Dai, X.; Long, K.; Peng, C.; Andreotti, D.; Bamborough, P.; Eatherton, A.J.; Edge, C.; Jandu, K.S.; Nichols, P.L.; Philps, O.J.; Stasi, L.P.; Wan, Z.; Xiang, J-N.; Dong, K.; Dossang, P.; Ho, M-H.; Li, Y.; Mensah, L.; Guan, X.; Reith, A.D.; Ren, F. Discovery of 5-substituent-N-arylbenzamide derivatives as potent, selective and orally bioavailable LRRK2 inhibitors. Bioorg. Med. Chem. Lett., 2017, 27(17), 4034-4038.
[http://dx.doi.org/10.1016/j.bmcl.2017.07.052] [PMID: 28774425]
[79]
Garofalo, A.W.; Adler, M.; Aubele, D.L.; Brigham, E.F.; Chian, D.; Franzini, M.; Goldbach, E.; Kwong, G.T.; Motter, R.; Probst, G.D.; Quinn, K.P.; Ruslim, L.; Sham, H.L.; Tam, D.; Tanaka, P.; Truong, A.P.; Ye, X.M.; Ren, Z. Discovery of 4-alkylamino-7-aryl-3-cyanoquinoline LRRK2 kinase inhibitors. Bioorg. Med. Chem. Lett., 2013, 23(7), 1974-1977.
[http://dx.doi.org/10.1016/j.bmcl.2013.02.041] [PMID: 23453068]
[80]
Yun, H.; Heo, H.Y.; Kim, H.H. DooKim, N.; Seol, W. Identification of chemicals to inhibit the kinase activity of leucine-rich repeat kinase 2 (LRRK2), a Parkinson’s disease-associated protein. Bioorg. Med. Chem. Lett., 2011, 21(10), 2953-2957.
[http://dx.doi.org/10.1016/j.bmcl.2011.03.061] [PMID: 21474311]
[81]
Reith, A.D.; Bamborough, P.; Jandu, K.; Andreotti, D.; Mensah, L.; Dossang, P.; Choi, H.G.; Deng, X.; Zhang, J.; Alessi, D.R.; Gray, N.S. GSK2578215A; a potent and highly selective 2-arylmethyloxy-5-substitutent-N-arylbenzamide LRRK2 kinase inhibitor. Bioorg. Med. Chem. Lett., 2012, 22(17), 5625-5629.
[http://dx.doi.org/10.1016/j.bmcl.2012.06.104] [PMID: 22863203]
[82]
Smith, G.P.; Badolo, L.; Chell, V.; Chen, I-J.; Christensen, K.V.; David, L.; Daechsel, J.A.; Hentzer, M.; Herzig, M.C.; Mikkelsen, G.K.; Watson, S.P.; Williamson, D.S. The design and SAR of a novel series of 2-aminopyridine based LRRK2 inhibitors. Bioorg. Med. Chem. Lett., 2017, 27(18), 4500-4505.
[http://dx.doi.org/10.1016/j.bmcl.2017.07.072] [PMID: 28802631]
[83]
Liu, Z.; Galemmo, R.A., Jr; Fraser, K.B.; Moehle, M.S.; Sen, S.; Volpicelli-Daley, L.A.; DeLucas, L.J.; Ross, L.J.; Valiyaveettil, J. Mou-kha-Chafiq, O.; Pathak, A.K.; Ananthan, S.; Kezar, H.; White, E.L.; Gupta, V.; Maddry, J.A.; Suto, M.J.; West, A.B. Unique functional and structural properties of the LRRK2 protein ATP-binding pocket. J. Biol. Chem., 2014, 289(47), 32937-32951.
[http://dx.doi.org/10.1074/jbc.M114.602318] [PMID: 25228699]
[84]
Galatsis, P.; Henderson, J.L.; Kormos, B.L.; Han, S.; Kurumbail, R.G.; Wager, T.T.; Verhoest, P.R.; Noell, G.S.; Chen, Y.; Needle, E.; Berger, Z.; Steyn, S.J.; Houle, C.; Hirst, W.D. Kinase domain inhibition of Leucine Rich Repeat Kinase 2 (LRRK2) using a [1,2,4]triazolo[4,3-b]pyridazine scaffold. Bioorg. Med. Chem. Lett., 2014, 24(17), 4132-4140.
[http://dx.doi.org/10.1016/j.bmcl.2014.07.052] [PMID: 25113930]
[85]
Franzini, M.; Ye, X.M.; Adler, M.; Aubele, D.L.; Garofalo, A.W.; Gauby, S.; Goldbach, E.; Probst, G.D.; Quinn, K.P.; Santiago, P.; Sham, H.L.; Tam, D.; Truong, A.; Ren, Z. Triazolopyridazine LRRK2 kinase inhibitors. Bioorg. Med. Chem. Lett., 2013, 23(7), 1967-1973.
[http://dx.doi.org/10.1016/j.bmcl.2013.02.043] [PMID: 23454015]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy