Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

Pharmacophore Modelling and Virtual Screening Studies for the Discovery of Natural Product-based PDE 3/4 Dual Inhibitors for COPD

Author(s): Tan Xuan Hui, Lim Jia Le and Anand Gaurav*

Volume 19, Issue 10, 2022

Published on: 11 April, 2022

Page: [905 - 924] Pages: 20

DOI: 10.2174/1570180819666220209150035

Price: $65

Abstract

Background: Chronic Obstructive Pulmonary Disorder (COPD) is a chronic and progressive lung disease with a steady increase in prevalence over the recent years. Current treatment options of COPD are aimed at symptomatic relief without the ability to cure COPD, and certain corticosteroid treatments cause patients to be susceptible to infections. Newer studies have hinted that PDE3/4 dual inhibitors may produce a higher efficacy and better safety profile compared to current alternatives. These novel inhibitors may potentially improve the control of COPD exacerbation without increasing the risk of infections. Thus, our study aimed to identify and refine natural compounds with PDE3/4 dual inhibitory activities through molecular modelling techniques.

Methods: A two-sided approach through ligand-based and structure-based pharmacophore modelling was employed, followed by virtual screening and molecular docking to identify lead compounds with PDE3/4 dual inhibition activity.

Results: Pharmacophore-based screening of Universal Natural Products Database (UNPD) resulted in the identification of one compound for each pharmacophore model, namely UNPD1558 and UNPD139455, with high binding affinities towards both PDE3B and PDE4B. The two compounds were subsequently docked with PDE3B and PDE4B to study their interactions with the active site residues. Structural modifications of the compounds were proposed based on the docking results to optimise their binding affinity and physicochemical properties.

Conclusion: Compound 25a4 and compound 28, which were designed based on the structures of UNPD1558 and UNPD139455, respectively, showed an improved binding affinity for both PDE3B and PDE4B. These lead compounds showed promising results as drug candidates, and their PDE3/4 dual inhibitory properties should be further investigated through in vivo and in vivo studies.

Keywords: Phosphodiesterase, PDE3/4, chronic obstructive pulmonary disorder, shared feature pharmacophore, virtual screening, molecular docking, natural product database.

Graphical Abstract

[1]
World Health Organization. 2010. Avaialble from: https://www.who.int/whosis/whostat/2010/en/
[2]
World Health Organization. Chronic obstructive pulmonary disease (COPD). 2021. Avaialble from: https://www.who.int/news-room/fact-sheets/detail/chronic-obstructive-pulmonary-disease-(copd)
[3]
(a)Soriano JB, Kendrick PJ, Paulson KR, et al. PA, M.; Pakhale, S.; Pana, A.; Panda-Jonas, S.; Park, E-K.; Pham, H.Q.; Postma, M.J.; Pourjafar, H.; Poustchi, H.; Radfar, A.; Rafiei, A.; Rahim, F.; Rahman, M.H.U.; Rahman, M.A.; Rawaf, S.; Rawaf, D.L.; Rawal, L.; Reiner Jr, R.C.; Reitsma, M.B.; Roever, L.; Ronfani, L.; Roro, E.M.; Roshandel, G.; Rudd, K.E.; Sabde, Y.D.; Sabour, S.; Saddik, B.; Safari, S.; Saleem, K.; Samy, A.M.; Santric-Milicevic, M.M.; Sao Jose, B.P.; Sartorius, B.; Satpathy, M.; Savic, M.; Sawhney, M.; Sepanlou, S.G.; Shaikh, M.A.; Sheikh, A.; Shigematsu, M.; Shirkoohi, R.; Si, S.; Siabani, S.; Singh, V.; Singh, J.A.; Soljak, M.; Somayaji, R.; Soofi, M.; Soyiri, I.N.; Tefera, Y.M.; Temsah, M-H.; Tesfay, B.E.; Thakur, J.S.; Toma, A.T.; Tortajada-Girbés, M.; Tran, K.B.; Tran, B.X.; Tudor Car, L.; Ullah, I.; Vacante, M.; Valdez, P.R.; van Boven, J.F.M.; Vasankari, T.J.; Veisani, Y.; Violante, F.S.; Wagner, G.R.; Westerman, R.; Wolfe, C.D.A.; Wondafrash, D.Z.; Wondmieneh, A.B.; Yonemoto, N.; Yoon, S-J.; Zaidi, Z.; Zamani, M.; Zar, H.J.; Zhang, Y.; Vos, T. Prevalence and attributable health burden of chronic respiratory diseases, 1990-2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet Respir Med. 8(6): 585-596.
[http://dx.doi.org/10.1016/S2213-2600(20)30105-3] [PMID: 32526187] ; (b)Mosenifar Z. Chronic Obstructive Pulmonary Disease (COPD). Medscape, 2020. Available from:https://emedicine.medscape.com/ar-ticle/297664-overview#a3
[4]
(a)Billington CK, Penn RB, Hall IPβ2 Agonists. Handb Exp Pharmacol 2017; 237: 23-40.
[http://dx.doi.org/10.1007/164_2016_64] [PMID: 27878470] ; (b) National Institute for Health and Care Excellence (NICE). Chronic obstructive pulmonary disease in over 16s: Diagnosis and management. 2019, Available from: https://www.nice.org.uk/guidance/ ng115
[5]
Gershon A, Croxford R, Calzavara A, et al. Cardiovascular safety of inhaled long-acting bronchodilators in individuals with chronic obstructive pulmonary disease. JAMA Intern Med 2013; 173(13): 1175-85.
[http://dx.doi.org/10.1001/jamainternmed.2013.1016] [PMID: 23689820]
[6]
Hirota K, Yoshioka H, Kabara S, Kudo T, Ishihara H, Matsuki A. A comparison of the relaxant effects of olprinone and amino-phylline on methacholine-induced bronchoconstriction in dogs. Anesth Analg 2001; 93(1): 230-3.
[http://dx.doi.org/10.1097/00000539-200107000-00046] [PMID: 11429372]
[7]
Cleary S, Page C. Exploring dual PDE3/4 inhibition in the treatment of airway diseases. Drugs Future 2015; 40: 301.
[http://dx.doi.org/10.1358/dof.2015.040.05.2310563]
[8]
Rabe KF. Update on roflumilast, a phosphodiesterase 4 inhibitor for the treatment of chronic obstructive pulmonary disease. Br J Pharmacol 2011; 163(1): 53-67.
[http://dx.doi.org/10.1111/j.1476-5381.2011.01218.x] [PMID: 21232047]
[9]
Ochiai K, Takita S, Kojima A, et al. Phos-phodiesterase inhibitors. Part 5: hybrid PDE3/4 inhibitors as dual bronchorelaxant/anti-inflammatory agents for inhaled administration. Bioorg Med Chem Lett 2013; 23(1): 375-81.
[http://dx.doi.org/10.1016/j.bmcl.2012.08.121] [PMID: 23200255]
[10]
The Universal Natural Products Database (UNPD). Available from: https://pharmacognosy.in/the-universal-natural-products-database-unpd/
[11]
(a)Banner KH, Press NJ. Dual PDE3/4 inhibitors as therapeutic agents for chronic obstructive pulmonary disease. Br J Pharmacol 2009; 157(6): 892-906.
[http://dx.doi.org/10.1111/j.1476-5381.2009.00170.x] [PMID: 19508401] ; (b)Lin H-Y, Ho Y, Liu H-L. Structure-based pharmacophore modeling to discover novel CCR5 inhibitors for HIV-1/cancers therapy. J Biomed Sci Eng 2019; 12: 10-30.
[http://dx.doi.org/10.4236/jbise.2019.121002] ; (c)Li R-J, Wang Y-L, Wang Q-H, Wang J, Cheng M-S. In silico design of human IMPDH inhibitors using pharmacophore mapping and molecular docking approaches. Comput Math Methods Med 2015; 2015: 418767.
[http://dx.doi.org/10.1155/2015/418767] [PMID: 25784957]
[12]
(a)Harvey AL, Edrada-Ebel R, Quinn RJ. The re-emergence of natural products for drug discovery in the genomics era. Nat Rev Drug Discov 2015; 14: (2), 111-129.
[http://dx.doi.org/10.1038/nrd4510] [PMID: 25614221] ; (b)Atanasov AG, Zotchev SB, Dirsch VM, et al. Skalicka-Woźniak, K.; Skaltsounis, L.; Sobarzo-Sánchez, E.; Bredt, D.S.; Stuppner, H.; Sureda, A.; Tzvetkov, N.T.; Vacca, R.A.; Aggarwal, B.B.; Battino, M.; Giampieri, F.; Wink, M.; Wolfender, J-L.; Xiao, J.; Yeung, A.W.K.; Lizard, G.; Popp, M.A.; Heinrich, M.; Berindan-Neagoe, I.; Stadler, M.; Daglia, M.; Verpoorte, R.; Supuran, C.T. International Natural Product Sciences Taskforce. Natural products in drug discovery: Advances and opportunities. Nat Rev Drug Discov 2021; 20(3): 200-16.
[http://dx.doi.org/10.1038/s41573-020-00114-z] [PMID: 33510482]
[13]
Dias DA, Urban S, Roessner U. A historical overview of natural products in drug discovery. Metabolites 2012; 2(2): 303-36.
[http://dx.doi.org/10.3390/metabo2020303] [PMID: 24957513]
[14]
Van der Mey M, Bommelé KM, Boss H, et al. Synthesis and structure-activity relationships of cis-tetrahydrophthalazinone/pyridazinone hybrids: A novel series of potent dual PDE3/PDE4 inhibitory agents. J Med Chem 2003; 46(10): 2008-16.
[http://dx.doi.org/10.1021/jm030776l] [PMID: 12723963]
[15]
Gaurav A. Structure-based three-dimensional pharmacophores as an alternative to traditional methodologies. J Receptor Ligand Channel Res 2014; 7: 27-38.
[http://dx.doi.org/10.2147/JRLCR.S46845]
[16]
Cereto-Massagué A, Guasch L, Valls C, Mulero M, Pujadas G, Garcia-Vallvé S. DecoyFinder: An easy-to-use python GUI applica-tion for building target-specific decoy sets. Bioinformatics 2012; 28(12): 1661-2.
[http://dx.doi.org/10.1093/bioinformatics/bts249] [PMID: 22539671]
[17]
Hajian-Tilaki K. Receiver Operating Characteristic (ROC) curve analysis for medical diagnostic test evaluation. Caspian J Intern Med 2013; 4(2): 627-35.
[PMID: 24009950]
[18]
(a)Lu, S-H.; Wu, J.W.; Liu, H-L.; Zhao, J-H.; Liu, K-T.; Chuang, C-K.; Lin, H-Y.; Tsai, W-B.; Ho, Y. The discovery of potential acetylcholinesterase inhibitors: A combination of pharmacophore modeling, virtual screening, and molecular docking studies. J Biomed Sci 2011; 18: (1), 8.
[http://dx.doi.org/10.1186/1423-0127-18-8] ; (b)Suganya PR, Kalva S, Saleena LM. Identification of potent virtual leads specific to S1′ Loop of ADAMTS4: Pharmacophore modeling, 3D-QSAR, molecular docking and dynamic studies. Comb Chem High Throughput Screen 2016; 19(3): 216-27.
[http://dx.doi.org/10.2174/1386207319666160127111318] [PMID: 26813685]
[19]
(a)Jayaram B, Singh T, Mukherjee G, Mathur A, Shekhar S, Shekhar V. Sanjeevini: A freely accessible web-server for target directed lead molecule discovery. BMC Bioinformatics 2012; 13: (17), S7.
[http://dx.doi.org/10.1186/1471-2105-13-S17-S7] [PMID: 23282245] ; (b)Lipinski CA. Lead- and drug-like compounds: The rule-of-five revolution. Drug Discov Today Technol 2004; 1(4): 337-41.
[http://dx.doi.org/10.1016/j.ddtec.2004.11.007] [PMID: 24981612]
[20]
(a)Dar A. Molecular docking: Approaches, types, applications and basic challenges. J Anal Bioanal Tech 2017; 08: 356.; (b)Meng X-Y, Zhang H-X, Mezei M, Cui M. Molecular docking: A powerful approach for structure-based drug discovery. Curr Computeraided Drug Des 2011; 7(2): 146-57.
[http://dx.doi.org/10.2174/157340911795677602] [PMID: 21534921]
[21]
Scapin G, Patel SB, Chung C, et al. Crystal structure of human phosphodiesterase 3B: Atomic basis for substrate and inhibitor specificity. Biochemistry 2004; 43(20): 6091-100.
[http://dx.doi.org/10.1021/bi049868i] [PMID: 15147193]
[22]
Woodrow MD, Ballantine SP, Barker MD, et al. Quinolines as a novel structural class of potent and selective PDE4 inhibitors. Optimisation for inhaled administration. Bioorg Med Chem Lett 2009; 19(17): 5261-5.
[http://dx.doi.org/10.1016/j.bmcl.2009.04.012] [PMID: 19656678]
[23]
Hevener KE, Zhao W, Ball DM, et al. Validation of molecular docking programs for virtual screening against dihydropteroate synthase. J Chem Inf Model 2009; 49(2): 444-60.
[http://dx.doi.org/10.1021/ci800293n] [PMID: 19434845]
[24]
Daina A, Michielin O, Zoete V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep 2017; 7: 42717.
[http://dx.doi.org/10.1038/srep42717] [PMID: 28256516]
[25]
Jansen C, Albert J, Kanev G. PDEStrIAn: A phosphodiesterase structure and ligand interaction annotated database as a tool for struc-ture-based drug design. Zenodo 2016; 59(15): 7029-7065.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01813]
[26]
Strong P, Ito K, Murray J, Rapeport G. Current approaches to the discovery of novel inhaled medicines. Drug Discov Today 2018; 23(10): 1705-17.
[http://dx.doi.org/10.1016/j.drudis.2018.05.017] [PMID: 29775668]
[27]
Ibrahim M, Verma R, Garcia-Contreras L. Inhalation drug delivery devices: Technology update. Med Devices (Auckl) 2015; 8: 131-9.
[PMID: 25709510]
[28]
Ertl P, Schuffenhauer A. Estimation of synthetic accessibility score of drug-like molecules based on molecular complexity and fragment contributions. J Cheminform 2009; 1(1): 8.
[http://dx.doi.org/10.1186/1758-2946-1-8] [PMID: 20298526]
[29]
Li YQ, Zhou FC, Gao F, Bian JS, Shan F. Comparative evaluation of quercetin, isoquercetin and rutin as inhibitors of alpha-glucosidase. J Agric Food Chem 2009; 57(24): 11463-8.
[http://dx.doi.org/10.1021/jf903083h] [PMID: 19938837]
[30]
Zhang R, Yao Y, Wang Y, Ren G. Antidiabetic activity of isoquercetin in diabetic KK -Ay mice. Nutr Metab (Lond) 2011; 8(1): 85.
[http://dx.doi.org/10.1186/1743-7075-8-85] [PMID: 22133267]
[31]
Kim Y, Narayanan S, Chang KO. Inhibition of influenza virus replication by plant-derived isoquercetin. Antiviral Res 2010; 88(2): 227-35.
[http://dx.doi.org/10.1016/j.antiviral.2010.08.016] [PMID: 20826184]
[32]
Wijeratne EMK, Paranagama PA, Gunatilaka AAL. Five new isocoumarins from Sonoran desert plant-associated fungal strains Par-aphaeosphaeria quadriseptata and Chaetomium chiversii. Tetrahedron 2006; 62(36): 8439-46.
[http://dx.doi.org/10.1016/j.tet.2006.06.089]
[33]
Matsuo H. Hirose, T.; Mokudai, T.; Nonaka, K.; Niwano, Y.; Sunazuka, T.; Takahashi, Y.; Ōmura, S.; Nakashima, T. Absolute structure and anti-oxidative activity of chaetochiversin C isolated from fungal strain Neocosmospora sp. FKI-7792 by physicochemical screening. J Gen Appl Microbiol 2020; 66(3): 181-7.
[http://dx.doi.org/10.2323/jgam.2019.06.001] [PMID: 31735764]

© 2024 Bentham Science Publishers | Privacy Policy