Abstract
Background: Cannabidiol (CBD), a non-psychoactive phytocannabinoid from Cannabis Sativa, has become an interesting option for medicinal chemists in the development of new drug candidates.
Objective: This study aims to propose analogs with therapeutic potential from the CBD scaffold.
Methods: The 16 analogs proposed were designed using the PubChem Sketcher V. 2.4® software. Already, CBD analogs were subjected to different in silico tools, such as Molinspiration®; SwissADME®; SwissTargetPrediction®, and OSIRIS Property Explorer®.
Results and Discussion: The screening of CBD analogs carried out in this study showed compounds 9 and 16 with a good affinity for interactions with CB1 and CB2 receptors. Pharmacokinetic data showed that these two compounds have good oral absorption. Finally, in silico toxicity data showed that these compounds pose no risk of a toxic event in humans.
Conclusion: CBD analogs 9 and 16 would have a better profile of drug candidates to be further tested in vitro and in vivo models.
Keywords: Cannabidiol, in silico screening, Cannabis sativa, ADMET predictions, physical-chemical properties, CBD analogs.
Graphical Abstract
[http://dx.doi.org/10.1016/j.tips.2019.06.004]
[http://dx.doi.org/10.3390/app10072376]
[http://dx.doi.org/10.2174/1389200218666170316093301] [PMID: 28302026]
[http://dx.doi.org/10.1016/j.compbiomed.2019.01.008]
[http://dx.doi.org/10.1159/000444234]
[http://dx.doi.org/10.1016/j.psychres.2020.112890]
[http://dx.doi.org/10.1016/j.plefa.2018.11.016]
[http://dx.doi.org/10.1016/j.neuropharm.2017.04.033]
[http://dx.doi.org/10.3389/fphar.2017.00422]
[http://dx.doi.org/10.1016/j.ajme.2015.10.003]
[http://dx.doi.org/10.1038/srep42717] [PMID: 28256516]
[http://dx.doi.org/10.1016/j.heliyon.2020.e03724] [PMID: 32322718]
[http://dx.doi.org/10.1016/j.yrtph.2017.09.030] [PMID: 28970106]
[http://dx.doi.org/10.1016/S0169-409X(96)00423-1]
[http://dx.doi.org/10.1016/j.cbpa.2018.05.010]
[http://dx.doi.org/10.3390/ijms20184612]
[http://dx.doi.org/10.1016/j.drudis.2019.03.015]
[http://dx.doi.org/10.1126/sciadv.1501240] [PMID: 27051863]
[http://dx.doi.org/10.1021/acsmedchemlett.7b00002]
[http://dx.doi.org/10.1016/j.xphs.2016.12.002]
[http://dx.doi.org/10.1016/j.tibtech.2016.01.001] [PMID: 26838094]
[http://dx.doi.org/10.3389/fonc.2018.00239]
[http://dx.doi.org/10.3389/fphar.2015.00123]
[http://dx.doi.org/10.1016/j.ymeth.2017.09.008]
[http://dx.doi.org/10.1021/acs.jcim.6b00174] [PMID: 27391578]
[http://dx.doi.org/10.2147/JPR.S166617] [PMID: 30233233]
[http://dx.doi.org/10.1038/nrd.2018.115] [PMID: 30116049]
[http://dx.doi.org/10.4137/PMC.S32171] [PMID: 27398024]
[http://dx.doi.org/10.2174/09298673113206660296] [PMID: 24164198]
[http://dx.doi.org/10.1097/ACO.0000000000000616]
[http://dx.doi.org/10.1111/bph.14440] [PMID: 29981240]
[http://dx.doi.org/10.3390/ijms21145064] [PMID: 32709050]