Generic placeholder image

Current Genomics

Editor-in-Chief

ISSN (Print): 1389-2029
ISSN (Online): 1875-5488

Research Article

Comparisons of Forecasting for Survival Outcome for Head and Neck Squamous Cell Carcinoma by using Machine Learning Models based on Multi-omics

Author(s): Liying Mo, Yuangang Su, Jianhui Yuan, Zhiwei Xiao, Ziyan Zhang, Xiuwan Lan and Daizheng Huang*

Volume 23, Issue 2, 2022

Published on: 18 March, 2022

Page: [94 - 108] Pages: 15

DOI: 10.2174/1389202923666220204153744

Price: $65

Abstract

Background: Machine learning methods showed excellent predictive ability in a wide range of fields. For the survival of head and neck squamous cell carcinoma (HNSC), its multi-omics influence is crucial. This study attempts to establish a variety of machine learning multi-omics models to predict the survival of HNSC and find the most suitable machine learning prediction method.

Methods: The HNSC clinical data and multi-omics data were downloaded from the TCGA database. The important variables were screened by the LASSO algorithm. We used a total of 12 supervised machine learning models to predict the outcome of HNSC survival and compared the results. In vitro qPCR was performed to verify core genes predicted by the random forest algorithm.

Results: For omics of HNSC, the results of the twelve models showed that the performance of multiomics was better than each single-omic alone. Results were presented, which showed that the Bayesian network(BN) model (area under the curve [AUC] 0.8250, F1 score=0.7917) and random forest(RF) model (area under the curve [AUC] 0.8002,F1 score=0.7839) played good prediction performance in HNSC multi-omics data. The results of in vitro qPCR were consistent with the RF algorithm.

Conclusion: Machine learning methods could better forecast the survival outcome of HNSC. Meanwhile, this study found that the BN model and the RF model were the most superior. Moreover, the forecast result of multi-omics was better than single-omic alone in HNSC.

Keywords: Machine learning models, multi-omics integration, head and neck squamous cell carcinoma, survival prediction, bayesian network, random forest.

Graphical Abstract

[1]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2020. CA Cancer J. Clin., 2020, 70(1), 7-30.
[http://dx.doi.org/10.3322/caac.21590] [PMID: 31912902]
[2]
Chow, L.Q.M. Head and neck cancer. N. Engl. J. Med., 2020, 382(1), 60-72.
[http://dx.doi.org/10.1056/NEJMra1715715] [PMID: 31893516]
[3]
Beynon, R.A.; Lang, S.; Schimansky, S.; Penfold, C.M.; Waylen, A.; Thomas, S.J.; Pawlita, M.; Waterboer, T.; Martin, R.M.; May, M.; Ness, A.R. Tobacco smoking and alcohol drinking at diagnosis of head and neck cancer and all-cause mortality: Results from head and neck 5000, a prospective observational cohort of people with head and neck cancer. Int. J. Cancer, 2018, 143(5), 1114-1127.
[http://dx.doi.org/10.1002/ijc.31416] [PMID: 29607493]
[4]
Torre, L.A.; Bray, F.; Siegel, R.L.; Ferlay, J.; Lortet-Tieulent, J.; Jemal, A. Global cancer statistics, 2012. CA Cancer J. Clin., 2015, 65(2), 87-108.
[http://dx.doi.org/10.3322/caac.21262] [PMID: 25651787]
[5]
Mourad, M.; Jetmore, T.; Jategaonkar, A.A.; Moubayed, S.; Moshier, E.; Urken, M.L. Epidemiological trends of head and neck cancer in the united states: A seer population study. J. Oral Maxillofac. Surg., 2017, 75(12), 2562-2572.
[http://dx.doi.org/10.1016/j.joms.2017.05.008] [PMID: 28618252]
[6]
Colevas, A.D.; Yom, S.S.; Pfister, D.G.; Spencer, S.; Adelstein, D.; Adkins, D.; Brizel, D.M.; Burtness, B.; Busse, P.M.; Caudell, J.J.; Cmelak, A.J.; Eisele, D.W.; Fenton, M.; Foote, R.L.; Gilbert, J.; Gillison, M.L.; Haddad, R.I.; Hicks, W.L., Jr; Hitchcock, Y.J.; Jimeno, A.; Leizman, D.; Maghami, E.; Mell, L.K.; Mittal, B.B.; Pinto, H.A.; Ridge, J.A.; Rocco, J.; Rodriguez, C.P.; Shah, J.P.; Weber, R.S.; Witek, M.; Worden, F.; Zhen, W.; Burns, J.L.; Darlow, S.D. NCCN guidelines insights: Head and neck cancers, version 1.2018. J. Natl. Compr. Canc. Netw., 2018, 16(5), 479-490.
[http://dx.doi.org/10.6004/jnccn.2018.0026] [PMID: 29752322]
[7]
Marur, S.; Forastiere, A.A. Head and neck squamous cell carcinoma: Update on epidemiology, diagnosis, and treatment. Mayo Clin. Proc., 2016, 91(3), 386-396.
[http://dx.doi.org/10.1016/j.mayocp.2015.12.017] [PMID: 26944243]
[8]
Chaudhary, K.; Poirion, O.B.; Lu, L.; Garmire, L.X. Deep learning-based multi-omics integration robustly predicts survival in liver cancer. Clin. Cancer Res., 2018, 24(6), 1248-1259.
[http://dx.doi.org/10.1158/1078-0432.CCR-17-0853] [PMID: 28982688]
[9]
Chen, L.; Lu, D.; Sun, K.; Xu, Y.; Hu, P.; Li, X.; Xu, F. Identification of biomarkers associated with diagnosis and prognosis of colorectal cancer patients based on integrated bioinformatics analysis. Gene, 2019, 692, 119-125.
[http://dx.doi.org/10.1016/j.gene.2019.01.001] [PMID: 30654001]
[10]
Ren, N.; Liang, B.; Li, Y. Identification of prognosis-related genes in the tumor microenvironment of stomach adenocarcinoma by TCGA and GEO datasets. Biosci. Rep., 2020, 40(10), BSR20200980.
[http://dx.doi.org/10.1042/BSR20200980] [PMID: 33015704]
[11]
Ghafouri-Fard, S.; Gholipour, M.; Taheri, M.; Shirvani Farsani, Z. MicroRNA profile in the squamous cell carcinoma: Prognostic and diagnostic roles. Heliyon, 2020, 6(11), e05436.
[http://dx.doi.org/10.1016/j.heliyon.2020.e05436] [PMID: 33204886]
[12]
Hu, F.; Zeng, W.; Liu, X. A gene signature of survival prediction for kidney renal cell carcinoma by multi-omic data analysis. Int. J. Mol. Sci., 2019, 20(22), E5720.
[http://dx.doi.org/10.3390/ijms20225720] [PMID: 31739630]
[13]
Vantaku, V.; Dong, J.; Ambati, C.R.; Perera, D.; Donepudi, S.R.; Amara, C.S.; Putluri, V.; Ravi, S.S.; Robertson, M.J.; Piyarathna, D.W.B.; Villanueva, M.; von Rundstedt, F.C.; Karanam, B.; Ballester, L.Y.; Terris, M.K.; Bollag, R.J.; Lerner, S.P.; Apolo, A.B.; Villanueva, H.; Lee, M.; Sikora, A.G.; Lotan, Y.; Sreekumar, A.; Coarfa, C.; Putluri, N. Multi-omics integration analysis robustly predicts high-grade patient survival and identifies cpt1b effect on fatty acid metabolism in bladder cancer. Clin. Cancer Res., 2019, 25(12), 3689-3701.
[http://dx.doi.org/10.1158/1078-0432.CCR-18-1515] [PMID: 30846479]
[14]
Yin, Z.; Yan, X.; Wang, Q.; Deng, Z.; Tang, K.; Cao, Z.; Qiu, T. Detecting prognosis risk biomarkers for colon cancer through multi-omics-based prognostic analysis and target regulation simulation modeling. Front. Genet., 2020, 11, 524.
[http://dx.doi.org/10.3389/fgene.2020.00524] [PMID: 32528533]
[15]
Argelaguet, R.; Velten, B.; Arnol, D.; Dietrich, S.; Zenz, T.; Marioni, J.C.; Buettner, F.; Huber, W.; Stegle, O. Multi-omics factor analysis-a framework for unsupervised integration of multi-omics data sets. Mol. Syst. Biol., 2018, 14(6), e8124.
[http://dx.doi.org/10.15252/msb.20178124] [PMID: 29925568]
[16]
Olivier, M.; Asmis, R.; Hawkins, G.A.; Howard, T.D.; Cox, L.A. The need for multi-omics biomarker signatures in precision medicine. Int. J. Mol. Sci., 2019, 20(19), E4781.
[http://dx.doi.org/10.3390/ijms20194781] [PMID: 31561483]
[17]
Chakraborty, S.; Hosen, M.I.; Ahmed, M.; Shekhar, H.U. Onco-Multi-OMICS approach: A new frontier in cancer research. BioMed Res. Int., 2018, 2018, 9836256.
[http://dx.doi.org/10.1155/2018/9836256] [PMID: 30402498]
[18]
Keyvanpour, M.R.; Shirzad, M.B. An analysis of QSAR research based on machine learning concepts. Curr. Drug Discov. Technol., 2021, 18(1), 17-30.
[http://dx.doi.org/10.2174/1570163817666200316104404] [PMID: 32178612]
[19]
Raza, A.; Bardhan, S.; Xu, L.; Yamijala, S.S.R.K.C.; Lian, C.; Kwon, H.; Wong, B.M. A machine learning approach for predicting defluorination of Per- and Polyfluoroalkyl Substances (PFAS) for their efficient treatment and removal. Environ. Sci. Technol. Lett., 2019, 6(10), 624-629.
[http://dx.doi.org/10.1021/acs.estlett.9b00476]
[20]
Maurya, N.S.; Kushwaha, S.; Chawade, A.; Mani, A. Transcriptome profiling by combined machine learning and statistical R analysis identifies TMEM236 as a potential novel diagnostic biomarker for colorectal cancer. Sci. Rep., 2021, 11(1), 14304.
[http://dx.doi.org/10.1038/s41598-021-92692-0] [PMID: 34253750]
[21]
Guan, C.; Ouyang, D.; Qiao, Y.; Li, K.; Zheng, G.; Lao, X.; Zhang, S.; Liao, G.; Liang, Y. CA9 transcriptional expression determines prognosis and tumour grade in tongue squamous cell carcinoma patients. J. Cell. Mol. Med., 2020, 24(10), 5832-5841.
[http://dx.doi.org/10.1111/jcmm.15252] [PMID: 32299152]
[22]
Chai, H.; Zhou, X.; Zhang, Z.; Rao, J.; Zhao, H.; Yang, Y. Integrating multi-omics data through deep learning for accurate cancer prognosis prediction. Comput. Biol. Med., 2021, 134, 104481.
[http://dx.doi.org/10.1016/j.compbiomed.2021.104481] [PMID: 33989895]
[23]
Fujino, Y.; Murata, H.; Mayama, C.; Asaoka, R. Applying “Lasso” regression to predict future visual field progression in glaucoma patients. Invest. Ophthalmol. Vis. Sci., 2015, 56(4), 2334-2339.
[http://dx.doi.org/10.1167/iovs.15-16445] [PMID: 25698708]
[24]
Huang, E.W.; Bhope, A.; Lim, J.; Sinha, S.; Emad, A. Tissue-guided LASSO for prediction of clinical drug response using preclinical samples. PLOS Comput. Biol., 2020, 16(1), e1007607.
[http://dx.doi.org/10.1371/journal.pcbi.1007607] [PMID: 31967990]
[25]
Nandra, R.; Parry, M.; Forsberg, J.; Grimer, R. Can a bayesian belief network be used to estimate 1-year survival in patients with bone sarcomas? Clin. Orthop. Relat. Res., 2017, 475(6), 1681-1689.
[http://dx.doi.org/10.1007/s11999-017-5346-1] [PMID: 28397168]
[26]
Burghardt, T.P.; Ajtai, K. Neural/Bayes network predictor for inheritable cardiac disease pathogenicity and phenotype. J. Mol. Cell. Cardiol., 2018, 119, 19-27.
[http://dx.doi.org/10.1016/j.yjmcc.2018.04.006] [PMID: 29654880]
[27]
Bellot, P. de Los Campos, G.; Pérez-Enciso, M. Can deep learning improve genomic prediction of complex human traits? Genetics, 2018, 210(3), 809-819.
[http://dx.doi.org/10.1534/genetics.118.301298] [PMID: 30171033]
[28]
McEligot, A.J.; Poynor, V.; Sharma, R.; Panangadan, A. Logistic LASSO regression for dietary intakes and breast cancer. Nutrients, 2020, 12(9), E2652.
[http://dx.doi.org/10.3390/nu12092652] [PMID: 32878103]
[29]
Ying, Q.; Chen, C.; Xiaoyi, L. Multi-feature fusion combined with machine learning algorithms to quickly screen uveitis. J. Xinjiang Univ., 2021, 38(4), 439-449.
[http://dx.doi.org/10.13568/j.cnki.651094.651316]
[30]
Stojadinovic, A.; Bilchik, A.; Smith, D.; Eberhardt, J.S.; Ward, E.B.; Nissan, A.; Johnson, E.K.; Protic, M.; Peoples, G.E.; Avital, I.; Steele, S.R. Clinical decision support and individualized prediction of survival in colon cancer: Bayesian belief network model. Ann. Surg. Oncol., 2013, 20(1), 161-174.
[http://dx.doi.org/10.1245/s10434-012-2555-4] [PMID: 22899001]
[31]
Stojadinovic, A.; Eberhardt, C.; Henry, L.; Eberhardt, J.; Elster, E.A.; Peoples, G.E.; Nissan, A.; Shriver, C.D. Development of a Bayesian classifier for breast cancer risk stratification: A feasibility study. Eplasty, 2010, 10, e25.
[32]
Wang, Q.; Chen, R.; Cheng, F.; Wei, Q.; Ji, Y.; Yang, H.; Zhong, X.; Tao, R.; Wen, Z.; Sutcliffe, J.S.; Liu, C.; Cook, E.H.; Cox, N.J.; Li, B. A Bayesian framework that integrates multi-omics data and gene networks predicts risk genes from schizophrenia GWAS data. Nat. Neurosci., 2019, 22(5), 691-699.
[http://dx.doi.org/10.1038/s41593-019-0382-7] [PMID: 30988527]
[33]
Matsuo, K. Survival outcome prediction in cervical cancer: Cox models vs. deep-learning model. Am. J. Obstet. Gynecol., 2019, 220(4), 381.
[http://dx.doi.org/10.1016/j.ajog.2018.12.030]
[34]
Shen, Y.; Peng, X.; Shen, C. Identification and validation of immune-related lncRNA prognostic signature for breast cancer. Genomics, 2020, 112(3), 2640-2646.
[http://dx.doi.org/10.1016/j.ygeno.2020.02.015] [PMID: 32087243]
[35]
The Gene Ontology Consortium.Expansion of the gene ontology knowledgebase and resources. Nucleic Acids Res., 2017, 45(D1), D331-D338.
[http://dx.doi.org/10.1093/nar/gkw1108] [PMID: 27899567]
[36]
Jin, Y.; Yang, Y. Identification and analysis of genes associated with head and neck squamous cell carcinoma by integrated bioinformatics methods. Mol. Genet. Genomic Med., 2019, 7(8), e857.
[http://dx.doi.org/10.1002/mgg3.857] [PMID: 31304688]
[37]
Wang, M.; Zhong, B.; Li, M.; Wang, Y.; Yang, H.; Du, K. Identification of potential core genes and pathways predicting pathogenesis in head and neck squamous cell carcinoma. Biosci. Rep., 2021, 41(5), BSR20204148.
[http://dx.doi.org/10.1042/BSR20204148] [PMID: 33982750]
[38]
Misawa, K.; Mima, M.; Imai, A.; Mochizuki, D.; Misawa, Y.; Endo, S.; Ishikawa, R.; Kanazawa, T.; Mineta, H. The neuropeptide genes SST, TAC1, HCRT, NPY, and GAL are powerful epigenetic biomarkers in head and neck cancer: A site-specific analysis. Clin. Epigenetics, 2018, 10(1), 52.
[http://dx.doi.org/10.1186/s13148-018-0485-0] [PMID: 29682090]
[39]
Direito, I.; Madeira, A.; Brito, M.A.; Soveral, G. Aquaporin-5: From structure to function and dysfunction in cancer. Cell. Mol. Life Sci., 2016, 73(8), 1623-1640.
[http://dx.doi.org/10.1007/s00018-016-2142-0] [PMID: 26837927]
[40]
Rubicz, R.; Zhao, S.; Geybels, M.; Wright, J.L.; Kolb, S.; Klotzle, B.; Bibikova, M.; Troyer, D.; Lance, R.; Ostrander, E.A.; Feng, Z.; Fan, J.B.; Stanford, J.L. DNA methylation profiles in African American prostate cancer patients in relation to disease progression. Genomics, 2019, 111(1), 10-16.
[http://dx.doi.org/10.1016/j.ygeno.2016.02.004] [PMID: 26902887]
[41]
Yang, X.; Pang, Y.; Zhang, J.; Shi, J.; Zhang, X.; Zhang, G.; Yang, S.; Wang, J.; Hu, K.; Wang, J.; Jing, H.; Ke, X.; Fu, L. High expression levels of ACTN1 and ACTN3 indicate unfavorable prognosis in acute myeloid leukemia. J. Cancer, 2019, 10(18), 4286-4292.
[http://dx.doi.org/10.7150/jca.31766] [PMID: 31413748]
[42]
Zhang, L.; Jiang, Y.; Lu, X.; Zhao, H.; Chen, C.; Wang, Y.; Hu, W.; Zhu, Y.; Yan, H.; Yan, F. Genomic characterization of cervical cancer based on human papillomavirus status. Gynecol. Oncol., 2019, 152(3), 629-637.
[http://dx.doi.org/10.1016/j.ygyno.2018.12.017] [PMID: 30581036]
[43]
Zhu, Z.; Jiao, L.; Li, T.; Wang, H.; Wei, W.; Qian, H. Expression of AQP3 and AQP5 as a prognostic marker in triple-negative breast cancer. Oncol. Lett., 2018, 16(2), 2661-2667.
[http://dx.doi.org/10.3892/ol.2018.8955] [PMID: 30013662]
[44]
Gobin, E.; Bagwell, K.; Wagner, J.; Mysona, D.; Sandirasegarane, S.; Smith, N.; Bai, S.; Sharma, A.; Schleifer, R.; She, J.X. A pan-cancer perspective of Matrix Metalloproteases (MMP) gene expression profile and their diagnostic/prognostic potential. BMC Cancer, 2019, 19(1), 581.
[http://dx.doi.org/10.1186/s12885-019-5768-0] [PMID: 31200666]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy