Generic placeholder image

Coronaviruses

Editor-in-Chief

ISSN (Print): 2666-7967
ISSN (Online): 2666-7975

Review Article

The Concept of Repurposing in COVID-19 Infection

Author(s): Lata Potey*, Anshu Chaudhary Dudhe, Dhanashri Tumme, Rupesh Dudhea and Prafulla Sable

Volume 3, Issue 4, 2022

Published on: 20 May, 2022

Article ID: e040222200823 Pages: 10

DOI: 10.2174/2666796703666220204102622

Abstract

The strategy of drug repurposing has been proved successful in response to the current coronavirus pandemic, with remdesivir becoming the first drug of choice, an antiviral drug approved for the treatment of COVID-19. In parallel to this, several drugs, such as antimalarial, corticosteroids, and antibiotics, like azithromycin, are used to treat the severe condition of hospitalized COVID-19 patients, while clinical testing of additional therapeutic drugs, including vaccines, is going on. It is reasonably expected that this review article will deliver optimized and specific curative tools that will increase the attentiveness of health systems to the probable outlook of epidemics in the future. This review focuses on the application of repurposed drugs by studying their structure, pharmacokinetic study, different mechanisms of action, and Covid-19 guidelines, which can potentially influence SARS-CoV-2. For most of the drugs, direct clinical evidence regarding their effectiveness in the treatment of COVID-19 is missing. Future clinical trial studies may conclude that one of these can be more potential to inhibit the progression of COVID-19.

Keywords: COVID-19, drug repurposing, antiviral, antimalarial, corticosteroids, SARS-CoV, remdesivir.

Graphical Abstract

[1]
Nzila A, Ma Z, Chibale K. Drug repositioning in the treatment of malaria and TB. Future Med Chem 2011; 3(11): 1413-26.
[http://dx.doi.org/10.4155/fmc.11.95] [PMID: 21879845]
[2]
Al-Horani RA, Desai UR. Recent advances on plasmin inhibitors for the treatment of fibrinolysis-related disorders. Med Res Rev 2014; 34(6): 1168-216.
[http://dx.doi.org/10.1002/med.21315] [PMID: 24659483]
[3]
Pizzorno A, Padey B, Terrier O, Rosa-Calatrava M. Drug repurposing approaches for the treatment of influenza viral infection: Reviving old drugs to fight against a long-lived enemy. Front Immunol 2019; 10: 531.
[http://dx.doi.org/10.3389/fimmu.2019.00531] [PMID: 30941148]
[4]
Arabi YM, Mandourah Y, Al-Hameed F, et al. Corticosteroid therapy for critically ill patients with Middle East respiratory syndrome. Am J Respir Crit Care Med 2018; 197(6): 757-67.
[http://dx.doi.org/10.1164/rccm.201706-1172OC] [PMID: 29161116]
[5]
Asrar H. Explained in 10 charts: How India’s second COVID wave is more. 2021. Available from: TIMESOFINDIA.COM2021.
[6]
Eltahla AA, Luciani F, White PA, Lloyd AR, Bull RA. Inhibitors of the hepatitis C virus polymerase; mode of action and resistance. Viruses 2015; 7(10): 5206-24.
[http://dx.doi.org/10.3390/v7102868] [PMID: 26426038]
[7]
Balfour H. Nafamostat inhibits SARS-CoV-2 infection, preventing COVID-19 transmission. Drug Target Rev 2021.
[8]
Bozzette SA, Sattler FR, Chiu J, et al. A controlled trial of early adjunctive treatment with corticosteroids for Pneumocystis carinii pneumo-nia in the acquired immunodeficiency syndrome. N Engl J Med 1990; 323(21): 1451-7.
[http://dx.doi.org/10.1056/NEJM199011223232104] [PMID: 2233917]
[9]
Burmester GR, Feist E, Sleeman MA, Wang B, White B, Magrini F. Mavrilimumab, a human monoclonal antibody targeting GM-CSF re-ceptor-α, in subjects with rheumatoid arthritis: A randomised, double-blind, placebo-controlled, phase I, first-in-human study. Ann Rheum Dis 2011; 70(9): 1542-9.
[http://dx.doi.org/10.1136/ard.2010.146225] [PMID: 21613310]
[10]
Ponticelli C, Moroni G. Hydroxychloroquine in systemic lupus erythematosus (SLE). Expert Opin Drug Saf 2017; 16(3): 411-9.
[http://dx.doi.org/10.1080/14740338.2017.1269168] [PMID: 27927040]
[11]
Pires de Mello CP, Drusano GL, Adams JR, Shudt M, Kulawy R, Brown AN. Oseltamivir-zanamivir combination therapy suppresses drug-resistant H1N1 influenza A viruses in the hollow fiber infection model (HFIM) system. Eur J Pharm Sci 2018; 111: 443-9.
[http://dx.doi.org/10.1016/j.ejps.2017.10.027] [PMID: 29079337]
[12]
Parra-Rojas C, Gustavo HMVK, E.A.H. Vergas. Neuraminidase inhibitors in influenza treatment and prevention–is it time to call it a day? Viruses 2018; 10(9): 454.
[http://dx.doi.org/10.3390/v10090454] [PMID: 30149615]
[13]
Chen X, Xu Z, Zeng S, et al. The molecular aspect of antitumor effects of protease inhibitor nafamostat mesylate and its role in potential clinical applications. Front Oncol 2019; 9: 852.
[http://dx.doi.org/10.3389/fonc.2019.00852] [PMID: 31552177]
[14]
Wang C, Wang Z, Wang G, Lau JY, Zhang K, Li W. COVID-19 in early 2021: Current status and looking forward. Signal Transduct Target Ther 2021; 6(1): 114.
[http://dx.doi.org/10.1038/s41392-021-00527-1] [PMID: 33686059]
[15]
Spinner CD, Gottlieb RL, Criner GJ, et al. Effect of remdesivir vs standard care on clinical status at 11 days in patients with moderate COVID-19: A randomized clinical trial. JAMA 2020; 324(11): 1048-57.
[http://dx.doi.org/10.1001/jama.2020.16349] [PMID: 32821939]
[16]
DM H. Request for emergency use authorization for use of chloroquine phosphate or hydroxychloroquine sulfate supplied from the strategic national stockpile for treatment of 2019 coronavirus disease. Food and Drug Administration (FDA) 2020.
[17]
Dong L, Hu S, Gao J. Discovering drugs to treat coronavirus disease 2019 (COVID-19). Drug Discov Ther 2020; 14(1): 58-60.
[http://dx.doi.org/10.5582/ddt.2020.01012] [PMID: 32147628]
[18]
Dyson JK, Hutchinson J, Harrison L, et al. Liver toxicity associated with sofosbuvir, an NS5A inhibitor and ribavirin use. J Hepatol 2016; 64(1): 234-8.
[http://dx.doi.org/10.1016/j.jhep.2015.07.041] [PMID: 26325535]
[19]
Tchesnokov EP, Gordon CJ, Woolner E, et al. Template-dependent inhibition of coronavirus RNA-dependent RNA polymerase by remdesivir reveals a second mechanism of action. J Biol Chem 2020; 295(47): 16156-65.
[http://dx.doi.org/10.1074/jbc.AC120.015720] [PMID: 32967965]
[20]
Cosson F, Faroux A, Baltaze JP, et al. Synthesis of ribavirin 2′-Me-C-nucleoside analogues. Beilstein J Org Chem 2017; 13: 755-61.
[http://dx.doi.org/10.3762/bjoc.13.74] [PMID: 28503210]
[21]
Abd-Elsalam S, Ahmed OA, Mansour NO, et al. Remdesivir efficacy in COVID-19 treatment: A randomized controlled trial. Am J Trop Med Hyg 2022; 106(3): 886-90.
[http://dx.doi.org/10.4269/ajtmh.21-0606] [PMID: 34649223]
[22]
González de Requena D, Blanco F, Garcia-Benayas T, Jiménez-Nácher I, González-Lahoz J, Soriano V. Correlation between lopinavir plasma levels and lipid abnormalities in patients taking lopinavir/ritonavir. AIDS Patient Care STDS 2003; 17(9): 443-5.
[http://dx.doi.org/10.1089/108729103322395465] [PMID: 14588081]
[23]
Recovery Collaborative Group, Horby P, Lin WS, et al. Dexamethasone in hospitalized patients with COVID-19 - preliminary report. N Engl J Med 2021; 384(8): 693-704.
[http://dx.doi.org/10.1056/NEJMoa2021436] [PMID: 32678530]
[24]
Horby P, Mafham M, Linsell L, Bell JL. Effect of hydroxychloroquine in hospitalized patients with COVID-19: Preliminary results from a multi-centre, randomized, controlled trial. N Engl J Med 2020; 383(21): 2030-40.
[http://dx.doi.org/10.1056/NEJMoa2022926] [PMID: 33031652]
[25]
Blaising , Polyak SJ, Pecheur EL. Arbidol as a broad-spectrum antiviral: An update. Antivir Res 2014; 84-94.
[http://dx.doi.org/10.1016/j.antiviral.2014.04.006] [PMID: 24769245]
[26]
Rossignol JF, Kabil SM, el-Gohary Y, Younis AM. Effect of nitazoxanide in diarrhea and enteritis caused by Cryptosporidium species. Clin Gastroenterol Hepatol 2006; 4(3): 320-4.
[http://dx.doi.org/10.1016/j.cgh.2005.12.020] [PMID: 16527695]
[27]
Liu J, Cao R, Xu M, et al. Hydroxychloroquine, a less toxic derivative of chloroquine, is effective in inhibiting SARS-CoV-2 infection in vitro. Cell Discov 2020; 6(6): 16.
[http://dx.doi.org/10.1038/s41421-020-0156-0] [PMID: 32194981]
[28]
Beigel JH, Tomashek KM, Dodd LE, et al. Remdesivir for the treatment of COVID-19 - final report. N Engl J Med 2020; 383(19): 1813-26.
[http://dx.doi.org/10.1056/NEJMoa2007764] [PMID: 32445440]
[29]
Stangl JR, Carroll KL, Illichmann M, Striker R. Effect of antimetabolite immunosuppressants on Flaviviridae, including hepatitis C virus. Transplantation 2004; 77(4): 562-7.
[http://dx.doi.org/10.1097/01.TP.0000114610.40412.C6] [PMID: 15084936]
[30]
Jasenosky LD, Cadena C, Mire CE, et al. The FDA approved oral drug nitazoxanide amplifies host anti-viral responses and inhibits ebola virus. iScience 2019; 19: 1279-90.
[http://dx.doi.org/10.1016/j.isci.2019.07.003] [PMID: 31402258]
[31]
Thanh Le T, Andreadakis Z, Kumar A, et al. The COVID-19 vaccine development landscape. Nat Rev Drug Discov 2020; 19(5): 305-6.
[http://dx.doi.org/10.1038/d41573-020-00073-5] [PMID: 32273591]
[32]
Cavalcanti AB, Zampieri FG, Rosa RG, et al. Hydroxychloroquine with or without Azithromycin in mild-to-moderate COVID-19. N Engl J Med 2020; 383(21): 2041-52.
[http://dx.doi.org/10.1056/NEJMoa2019014] [PMID: 32706953]
[33]
Sleire L, Forde HE, Netland IA, Leiss L. Drug repurposing in cancer. Pharmacol Res 2017; 124: 74-91.
[http://dx.doi.org/10.1016/j.phrs.2017.07.013] [PMID: 28712971]
[34]
Wang M, Cao R, Zhang L, et al. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res 2020; 30(3): 269-71.
[http://dx.doi.org/10.1038/s41422-020-0282-0] [PMID: 32020029]
[35]
Macareo L, Lwin KM, Cheah PY, Yuentrakul P, Miller RS, Nosten F. Triangular test design to evaluate tinidazole in the prevention of Plasmodium vivax relapse. Malar J 2013; 12: 173.
[http://dx.doi.org/10.1186/1475-2875-12-173] [PMID: 23718705]
[36]
Gheblawi M, Wang K, Viveiros A, et al. Angiotensin-converting enzyme 2: SARS-CoV-2 receptor and regulator of the renin-angiotensin system: Celebrating the 20th anniversary of the discovery of ACE2. Circ Res 2020; 126(10): 1456-74.
[http://dx.doi.org/10.1161/CIRCRESAHA.120.317015] [PMID: 32264791]
[37]
Maisonnasse P, Guedj J, Contreras V, et al. Hydroxychloroquine use against SARS-CoV-2 infection in non-human primates. Nature 2020; 585(7826): 584-7.
[http://dx.doi.org/10.1038/s41586-020-2558-4] [PMID: 32698191]
[38]
Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 2020; 181(2): 271-280.e8.
[http://dx.doi.org/10.1016/j.cell.2020.02.052] [PMID: 32142651]
[39]
Ihara M, Saito S. Drug repositioning for Alzheimer’s disease. Brain Nerve 2019; 71(9): 961-70.
[http://dx.doi.org/10.11477/mf.1416201388] [PMID: 31506398]
[40]
Bashar MDA, Begam N. Chloroquine and hydroxychloroquine: Are they really wonder drugs for COVID 19? J Community Health Manage 2020; 7(2): 64-6.
[http://dx.doi.org/10.18231/j.jchm.2020.013]
[41]
Zhang M, Luo H, Xi Z, Rogaeva E. Drug repositioning for diabetes based on ‘omics’ data mining. PLoS One 2015; 10(5): e0126082.
[http://dx.doi.org/10.1371/journal.pone.0126082] [PMID: 25946000]
[42]
Mondelli MU. The multifaceted functions of ribavirin: Antiviral, immunomodulator, or both? Hepatology 2014; 60(4): 1126-9.
[http://dx.doi.org/10.1002/hep.27186] [PMID: 24753082]
[43]
Barrows NJ, Campos RK, Powell ST, et al. A screen of FDA-approved drugs for inhibitors of zika virus infection. Cell Host Microbe 2016; 20(2): 259-70.
[http://dx.doi.org/10.1016/j.chom.2016.07.004] [PMID: 27476412]
[44]
Conterno LO, Turchi MD, Corrêa I, Monteiro de Barros Almeida RA. Anthelmintic drugs for treating ascariasis. Cochrane Database Syst Rev 2020; 4: CD010599.
[http://dx.doi.org/10.1002/14651858.CD010599.pub2] [PMID: 32289194]
[45]
World Health Organization. Therapeutics and COVID-19: Living Guideline. 2021. Available from: https://www.who.int/publications/i/item/WHO-2019-nCoV-therapeutics-2021.1 (Accessed on April 8, 2021).
[46]
Abd-Elsalam S, Noor RA, Badawi R, et al. Clinical study evaluating the efficacy of ivermectin in COVID-19 treatment: A randomized controlled study. J Med Virol 2021; 93(10): 5833-8.
[http://dx.doi.org/10.1002/jmv.27122] [PMID: 34076901]
[47]
NI.H. Immunomodulators under evaluation for the treatment of. COVID-19 people with certain medical conditions, 2011.
[48]
Rocco PRM, Silva PL, Cruz FF, et al. SARITA-2 investigators. arly use of nitazoxanide in mild COVID-19 disease: Randomised, place-bo-controlled trial. Eur Respir J 2021; 58(1): 2003725.
[http://dx.doi.org/10.1183/13993003.03725-2020] [PMID: 33361100]
[49]
V’kovski P, Kratzel A, Steiner S, Stalder H, Thiel V. Coronavirus biology and replication: Implications for SARS-CoV-2. Nat Rev Microbiol 2021; 19(3): 155-70.
[http://dx.doi.org/10.1038/s41579-020-00468-6] [PMID: 33116300]
[50]
Pujadas E, Chaudhry F, McBride R, et al. SARS-CoV-2 viral load predicts COVID-19 mortality. Lancet Respir Med 2020; 8(9): e70.
[http://dx.doi.org/10.1016/S2213-2600(20)30354-4] [PMID: 32771081]
[51]
Wang Q, Zhang Y, Wu L, et al. Structural and functional basis of SARS-CoV-2 entry by using human ACE2. Cell 2020; 181(4): 894-904.e9.
[http://dx.doi.org/10.1016/j.cell.2020.03.045] [PMID: 32275855]
[52]
Castillo R, Holland LE, Boltz DA. Peramivir and its use in H1N1 influenza. Drugs Today (Barc) 2010; 46(6): 399-408.
[http://dx.doi.org/10.1358/dot.2010.46.6.1459659] [PMID: 20571608]
[53]
Schroeder RL, Gerber JP. Chloroquine and hydroxychloroquine binding to melanin: Some possible consequences for pathologies. Toxicol Rep 2014; 1: 963-8.
[http://dx.doi.org/10.1016/j.toxrep.2014.10.019] [PMID: 28962308]
[54]
Kadam RU, Wilson IA. Structural basis of influenza virus fusion inhibition by the antiviral drug. Proc Natl Acad Sci 2017; 114(2): 206-14.
[http://dx.doi.org/10.1073/pnas.1617020114] [PMID: 28003465]
[55]
Eastman RT, Roth JS, Brimacombe KR, et al. Remdesivir: A review of its discovery and development leading to human clinical trials for treatment of COVID-19. ACS Cent Sci 2020; 6(5): 672-83.
[http://dx.doi.org/10.1021/acscentsci.0c00489] [PMID: 32483554]
[56]
Rossignol JF. Nitazoxanide, a new drug candidate for the treatment of Middle East respiratory syndrome coronavirus. J Infect Public Health 2016; 9(3): 227-30.
[http://dx.doi.org/10.1016/j.jiph.2016.04.001] [PMID: 27095301]
[57]
Bimonte S, Crispo A, Amore A, Celentano E, Cuomo A, Cascella M. Potential antiviral drugs for SARS-CoV-2 treatment: Preclinical find-ings and ongoing clinical research. In Vivo 2020; 34(3) (Suppl.): 1597-602.
[http://dx.doi.org/10.21873/invivo.11949] [PMID: 32503817]
[58]
Sadahiro T, Yuzawa H, Kimura T, et al. Current practices in acute blood purification therapy in Japan and topics for further study. Contrib Nephrol 2018; 196: 209-14.
[http://dx.doi.org/10.1159/000485724] [PMID: 30041229]
[59]
Walmsley S, Bernstein B, King M, et al. M98-863 Study Team. Lopinavir-ritonavir versus nelfinavir for the initial treatment of HIV infec-tion. N Engl J Med 2002; 346(26): 2039-46.
[http://dx.doi.org/10.1056/NEJMoa012354] [PMID: 12087139]
[60]
Joshi S, Parkar J, Ansari A, et al. Role of favipiravir in the treatment of COVID-19. Int J Infect Dis 2021; 102: 501-8.
[http://dx.doi.org/10.1016/j.ijid.2020.10.069] [PMID: 33130203]
[61]
Tandon S, Aggarwal A, Jain S, Shukla S, Chaudhary S. Perspective on the role of antibodies and potential therapeutic drugs to combat COVID-19. Protein J 2020; 39(6): 631-43.
[http://dx.doi.org/10.1007/s10930-020-09921-0] [PMID: 33034824]
[62]
Kaplan SS, Hicks CB. Safety and antiviral activity of lopinavir/ritonavir-based therapy in human immunodeficiency virus type 1 (HIV-1) infection. J Antimicrob Chemother 2005; 56(2): 273-6.
[http://dx.doi.org/10.1093/jac/dki209] [PMID: 15994247]
[63]
Anderson VR, Curran MP. Nitazoxanide: A review of its use in the treatment of gastrointestinal infections. Drugs 2007; 67(13): 1947-67.
[http://dx.doi.org/10.2165/00003495-200767130-00015] [PMID: 17722965]
[64]
Valentin F. Lopinavir/Ritonavir and COVID-19. Community Medical Education2020.
[http://dx.doi.org/10.13140/RG.2.2.14844.69767]
[65]
Vankadari N. Arbidol: A potential antiviral drug for the treatment of SARS-CoV-2 by blocking trimerization of the spike glycoprotein. Int J Antimicrob Agents 2020; 56(2): 105998.
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105998] [PMID: 32360231]
[66]
Villar J, Ferrando C, Martínez D, et al. Dexamethasone in ARDS network. Dexamethasone treatment for the acute respiratory distress syndrome: A multicentre, randomised controlled trial. Lancet Respir Med 2020; 8(3): 267-76.
[http://dx.doi.org/10.1016/S2213-2600(19)30417-5] [PMID: 32043986]
[67]
El-Bendary M, Abd-Elsalam S, Elbaz T, et al. Efficacy of combined sofosbuvir and daclatasvir in the treatment of COVID-19 patients with pneumonia: A multicenter Egyptian study. Expert Rev Anti Infect Ther 2021; 1-5.
[http://dx.doi.org/10.1080/14787210.2021.1950532] [PMID: 34225541]
[68]
Dabbous HM, Abd-Elsalam S, El-Sayed MH, et al. Efficacy of favipiravir in COVID-19 treatment: A multi-center randomized study. Arch Virol 2021; 166(3): 949-54.
[http://dx.doi.org/10.1007/s00705-021-04956-9] [PMID: 33492523]
[69]
Mali Suraj N, Thorat Bapu R, Chopade Atul R. A viewpoint on angiotensin-converting enzyme 2, anti-hypertensives and coronavirus dis-ease 2019 (COVID-19). Infect Disord Drug Targets 2021; 21(3): 311-3.
[http://dx.doi.org/10.2174/1871526520666200511005546]

© 2024 Bentham Science Publishers | Privacy Policy