摘要
免疫疗法代表了 21 世纪最大的突破之一,并重新定义了现代癌症治疗。 尽管这种新方法改变了各种癌症实体(包括肺癌和头颈癌)的治疗模式,但这些治疗方案的疗效在不同的患者亚组中存在差异,到目前为止,这些治疗方案未能满足 胃食管癌患者。 这篇综述讨论了有关胃食管癌患者免疫治疗的新治疗方法,并对正在进行的试验和新的治疗组合提供了一些启示。
关键词: 食管肿瘤、胃肿瘤、免疫治疗、免疫原性细胞死亡、胃食管癌、胃癌、食管癌。
图形摘要
[1]
Ferlay, J.; Colombet, M.; Soerjomataram, I.; Mathers, C.; Parkin, D.M.; Piñeros, M.; Znaor, A.; Bray, F. Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. Int. J. Cancer, 2019, 144(8), 1941-1953.
[http://dx.doi.org/10.1002/ijc.31937] [PMID: 30350310]
[http://dx.doi.org/10.1002/ijc.31937] [PMID: 30350310]
[2]
National Cancer Institute Bethesda MD. SEER Cancer Stat Facts: Esophageal Cancer. Available from: https://seer.cancer.gov/statfacts/html/esoph.html (Accessed 25.11.2019).
[3]
National Cancer Institute Bethesda MD. SEER Cancer Stat Facts: Stomach Cancer. Available from: https://seer.cancer.gov/statfacts/html/stomach.html (Accessed 25.11.2019).
[4]
Vrána, D.; Matzenauer, M.; Neoral, Č.; Aujeský, R.; Vrba, R.; Melichar, B.; Rušarová, N.; Bartoušková, M.; Jankowski, J. From tumor immunology to immunotherapy in gastric and esophageal cancer. Int. J. Mol. Sci., 2018, 20(1), E13.
[http://dx.doi.org/10.3390/ijms20010013] [PMID: 30577521]
[http://dx.doi.org/10.3390/ijms20010013] [PMID: 30577521]
[5]
Puhr, H.C.; Preusser, M.; Prager, G.; Ilhan-Mutlu, A. New treatment options for advanced gastroesophageal tumours: Mature for the current practice? Cancers (Basel), 2020, 12(2), E301.
[http://dx.doi.org/10.3390/cancers12020301] [PMID: 32012895]
[http://dx.doi.org/10.3390/cancers12020301] [PMID: 32012895]
[6]
Lordick, F.; Shitara, K.; Janjigian, Y.Y. New agents on the horizon in gastric cancer. Ann. Oncol., 2017, 28(8), 1767-1775.
[http://dx.doi.org/10.1093/annonc/mdx051] [PMID: 28184417]
[http://dx.doi.org/10.1093/annonc/mdx051] [PMID: 28184417]
[7]
Kelly, R.J. Immunotherapy for esophageal and gastric cancer. Am. Soc. Clin. Oncol. Educ. Book, 2017, 37, 292-300.
[http://dx.doi.org/10.1200/EDBK_175231] [PMID: 28561677]
[http://dx.doi.org/10.1200/EDBK_175231] [PMID: 28561677]
[8]
Topalian, S.L.; Hodi, F.S.; Brahmer, J.R.; Gettinger, S.N.; Smith, D.C.; McDermott, D.F.; Powderly, J.D.; Carvajal, R.D.; Sosman, J.A.; Atkins, M.B.; Leming, P.D.; Spigel, D.R.; Antonia, S.J.; Horn, L.; Drake, C.G.; Pardoll, D.M.; Chen, L.; Sharfman, W.H.; Anders, R.A.; Taube, J.M.; McMiller, T.L.; Xu, H.; Korman, A.J.; Jure-Kunkel, M.; Agrawal, S.; McDonald, D.; Kollia, G.D.; Gupta, A.; Wigginton, J.M.; Sznol, M. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N. Engl. J. Med., 2012, 366(26), 2443-2454.
[http://dx.doi.org/10.1056/NEJMoa1200690] [PMID: 22658127]
[http://dx.doi.org/10.1056/NEJMoa1200690] [PMID: 22658127]
[9]
Robert, C. A decade of immune-checkpoint inhibitors in cancer therapy. Nat. Commun., 2020, 11(1), 3801.
[http://dx.doi.org/10.1038/s41467-020-17670-y] [PMID: 32732879]
[http://dx.doi.org/10.1038/s41467-020-17670-y] [PMID: 32732879]
[10]
Kang, Y-K.; Boku, N.; Satoh, T.; Ryu, M-H.; Chao, Y.; Kato, K.; Chung, H.C.; Chen, J.S.; Muro, K.; Kang, W.K.; Yeh, K.H.; Yoshikawa, T.; Oh, S.C.; Bai, L.Y.; Tamura, T.; Lee, K.W.; Hamamoto, Y.; Kim, J.G.; Chin, K.; Oh, D.Y.; Minashi, K.; Cho, J.Y.; Tsuda, M.; Chen, L.T. Nivolumab in patients with advanced gastric or gastro-oesophageal junction cancer refractory to, or intolerant of, at least two previous chemotherapy regimens (ONO-4538-12, ATTRACTION-2): A randomised, double-blind, placebo-controlled, phase 3 trial. Lancet, 2017, 390(10111), 2461-2471.
[http://dx.doi.org/10.1016/S0140-6736(17)31827-5] [PMID: 28993052]
[http://dx.doi.org/10.1016/S0140-6736(17)31827-5] [PMID: 28993052]
[11]
Kato, K.; Cho, B.C.; Takahashi, M.; Okada, M.; Lin, C-Y.; Chin, K.; Kadowaki, S.; Ahn, M.J.; Hamamoto, Y.; Doki, Y.; Yen, C.C.; Kubota, Y.; Kim, S.B.; Hsu, C.H.; Holtved, E.; Xynos, I.; Kodani, M.; Kitagawa, Y. Nivolumab versus chemotherapy in patients with advanced oesophageal squamous cell carcinoma refractory or intolerant to previous chemotherapy (ATTRACTION-3): A multicentre, randomised, open-label, phase 3 trial. Lancet Oncol., 2019, 20(11), 1506-1517.
[http://dx.doi.org/10.1016/S1470-2045(19)30626-6] [PMID: 31582355]
[http://dx.doi.org/10.1016/S1470-2045(19)30626-6] [PMID: 31582355]
[12]
Administration FaD. FDA approves nivolumab for esophageal squamous cell carcinoma. 2020. Available from: https://www.fda.gov/drugs/drug-approvals-and-databases/fda-approves-nivolumab-esophageal-squamous-cell-carcinoma (Accessed 23/09/2020).
[13]
Agency, E.M. Opdivo: Pending EC decision. 2020. Available from: https://www.ema.europa.eu/en/medicines/human/summaries-opinion/opdivo-1 (Accessed 31/10/2020).
[14]
Martinson, H.A.; Mallari, D.; Richter, C.; Wu, T.T.; Tiesinga, J.; Alberts, S.R.; Olnes, M.J. Molecular classification of gastric cancer among Alaska native people. Cancers (Basel), 2020, 12(1), E198.
[http://dx.doi.org/10.3390/cancers12010198] [PMID: 31941061]
[http://dx.doi.org/10.3390/cancers12010198] [PMID: 31941061]
[15]
Satake, H.; Lee, K.W.; Chung, H.C.; Lee, J.; Yamaguchi, K.; Chen, J.-S. Pembrolizumab (pembro) versus standard of care chemotherapy (chemo) in patients with advanced gastric or gastroesophageal junction adenocarcinoma: Asian subgroup analysis of KEYNOTE-062. J. Clin. Oncol., 2020, 38(15_suppl), 4523.
[http://dx.doi.org/10.1200/JCO.2020.38.15_suppl.4523]
[http://dx.doi.org/10.1200/JCO.2020.38.15_suppl.4523]
[16]
Davis, A.A.; Patel, V.G. The role of PD-L1 expression as a predictive biomarker: an analysis of all US Food and Drug Administration (FDA) approvals of immune checkpoint inhibitors. J. Immunother. Cancer, 2019, 7(1), 278.
[http://dx.doi.org/10.1186/s40425-019-0768-9] [PMID: 31655605]
[http://dx.doi.org/10.1186/s40425-019-0768-9] [PMID: 31655605]
[17]
Yamashita, K.; Iwatsuki, M.; Ajani, J.A.; Baba, H. Programmed death ligand-1 expression in gastrointestinal cancer: Clinical significance and future challenges. Ann. Gastroenterol. Surg., 2020, 4(4), 369-378.
[http://dx.doi.org/10.1002/ags3.12348] [PMID: 32724880]
[http://dx.doi.org/10.1002/ags3.12348] [PMID: 32724880]
[18]
Park, Y.; Koh, J.; Na, H.Y.; Kwak, Y.; Lee, K.-W.; Ahn, S.-H. PD-L1 testing in gastric cancer by the combined positive score of the 22C3 PharmDx and SP263 assay with clinically relevant cut-offs. Cancer Res. Treat., 2020, 52(3), 661-670.
[http://dx.doi.org/10.4143/crt.2019.718]
[http://dx.doi.org/10.4143/crt.2019.718]
[19]
Fuchs, C.S.; Doi, T.; Jang, R.W.; Muro, K.; Satoh, T.; Machado, M.; Sun, W.; Jalal, S.I.; Shah, M.A.; Metges, J.P.; Garrido, M.; Golan, T.; Mandala, M.; Wainberg, Z.A.; Catenacci, D.V.; Ohtsu, A.; Shitara, K.; Geva, R.; Bleeker, J.; Ko, A.H.; Ku, G.; Philip, P.; Enzinger, P.C.; Bang, Y.J.; Levitan, D.; Wang, J.; Rosales, M.; Dalal, R.P.; Yoon, H.H. Safety and efficacy of pembrolizumab monotherapy in patients with previously treated advanced gastric and gastroesophageal junction cancer: Phase 2 clinical KEYNOTE-059 trial. JAMA Oncol., 2018, 4(5), e180013.
[http://dx.doi.org/10.1001/jamaoncol.2018.0013] [PMID: 29543932]
[http://dx.doi.org/10.1001/jamaoncol.2018.0013] [PMID: 29543932]
[20]
Kojima, T.; Shah, M.A.; Muro, K.; Francois, E.; Adenis, A.; Hsu, C.H.; Doi, T.; Moriwaki, T.; Kim, S.B.; Lee, S.H.; Bennouna, J.; Kato, K.; Shen, L.; Enzinger, P.; Qin, S.K.; Ferreira, P.; Chen, J.; Girotto, G.; de la Fouchardiere, C.; Senellart, H.; Al-Rajabi, R.; Lordick, F.; Wang, R.; Suryawanshi, S.; Bhagia, P.; Kang, S.P.; Metges, J.P. Randomized phase III KEYNOTE-181 study of pembrolizumab versus chemotherapy in advanced esophageal cancer. J. Clin. Oncol., 2020, 38(35), 4138-4148.
[http://dx.doi.org/10.1200/JCO.20.01888] [PMID: 33026938]
[http://dx.doi.org/10.1200/JCO.20.01888] [PMID: 33026938]
[21]
Polom, K.; Marano, L.; Marrelli, D.; De Luca, R.; Roviello, G.; Savelli, V.; Tan, P.; Roviello, F. Meta-analysis of microsatellite instability in relation to clinicopathological characteristics and overall survival in gastric cancer. Br. J. Surg., 2018, 105(3), 159-167.
[http://dx.doi.org/10.1002/bjs.10663] [PMID: 29091259]
[http://dx.doi.org/10.1002/bjs.10663] [PMID: 29091259]
[22]
Le, D.T.; Uram, J.N.; Wang, H.; Bartlett, B.R.; Kemberling, H.; Eyring, A.D.; Skora, A.D.; Luber, B.S.; Azad, N.S.; Laheru, D.; Biedrzycki, B.; Donehower, R.C.; Zaheer, A.; Fisher, G.A.; Crocenzi, T.S.; Lee, J.J.; Duffy, S.M.; Goldberg, R.M.; de la Chapelle, A.; Koshiji, M.; Bhaijee, F.; Huebner, T.; Hruban, R.H.; Wood, L.D.; Cuka, N.; Pardoll, D.M.; Papadopoulos, N.; Kinzler, K.W.; Zhou, S.; Cornish, T.C.; Taube, J.M.; Anders, R.A.; Eshleman, J.R.; Vogelstein, B.; Diaz, L.A., Jr PD-1 blockade in tumors with mismatch-repair deficiency. N. Engl. J. Med., 2015, 372(26), 2509-2520.
[http://dx.doi.org/10.1056/NEJMoa1500596] [PMID: 26028255]
[http://dx.doi.org/10.1056/NEJMoa1500596] [PMID: 26028255]
[23]
Shitara, K.; Van Cutsem, E.; Bang, Y.J.; Fuchs, C.; Wyrwicz, L.; Lee, K.W.; Kudaba, I.; Garrido, M.; Chung, H.C.; Lee, J.; Castro, H.R.; Mansoor, W.; Braghiroli, M.I.; Karaseva, N.; Caglevic, C.; Villanueva, L.; Goekkurt, E.; Satake, H.; Enzinger, P.; Alsina, M.; Benson, A.; Chao, J.; Ko, A.H.; Wainberg, Z.A.; Kher, U.; Shah, S.; Kang, S.P.; Tabernero, J. Efficacy and safety of pembrolizumab or pembrolizumab plus chemotherapy vs chemotherapy alone for patients with first-line, advanced gastric cancer: The KEYNOTE-062 phase 3 randomized clinical trial. JAMA Oncol., 2020, 6(10), 1571-1580.
[http://dx.doi.org/10.1001/jamaoncol.2020.3370] [PMID: 32880601]
[http://dx.doi.org/10.1001/jamaoncol.2020.3370] [PMID: 32880601]
[24]
Shitara, K.; Van Cutsem, E.; Bang, Y.J.; Fuchs, C.S.; Wyrwicz, L.; Lee, K.W. LBA44 - Pembrolizumab with or without chemotherapy vs chemotherapy in patients with advanced G/GEJ cancer (GC) including outcomes according to Microsatellite Instability-High (MSI-H) status in KEYNOTE-062. Ann. Oncol., 2019, 30, v878-v9.
[http://dx.doi.org/10.1093/annonc/mdz394.035]
[http://dx.doi.org/10.1093/annonc/mdz394.035]
[25]
Van Cutsem, E.; Valderrama, A.; Bang, Y.J.; Fuchs, C.; Shitara, K.; Janjigian, Y.Y. Health-related quality of life (HRQoL) impact of pembrolizumab (P) versus chemotherapy (C) as first-line (1L) treatment in PD-L1–positive advanced gastric or gastroesophageal junction (G/GEJ) adenocarcinoma. Ann. Oncol., 2019, 30, v879.
[http://dx.doi.org/10.1093/annonc/mdz394.036]
[http://dx.doi.org/10.1093/annonc/mdz394.036]
[26]
Results of the JAVELIN Gastric 100 phase 3 trial: avelumab maintenance following first-line (1L) chemotherapy (CTx) vs continuation of CTx for HER2− advanced gastric or gastroesophageal junction cancer. Gastrointestinal Cancers Symposium: American Society of Clinical Oncology, 2020.
[27]
Moehler, M.T.A.P.S. Phase III JAVELIN Gastric 100 Trial Finds No Survival Benefit for Maintenance Avelumab. Available from: https://ascopost.com/issues/march-25-2020-supplement-conference-highlights-gi-cancers/phase-iii-javelin-gastric-100-trial-finds-no-survival-benefit-for-maintenance-avelumab/ (Accessed 24/09/2020).
[28]
Moehler, M.H.; Janjigian, Y.Y.; Adenis, A.; Aucoin, J.-S.; Boku, N.; Chau, I. CheckMate 649: A randomized, multicenter, open-label, phase III study of nivolumab (NIVO) + ipilimumab (IPI) or nivo + chemotherapy (CTX) versus CTX alone in patients with previously untreated advanced (Adv) gastric (G) or gastroesophageal junction (GEJ) cancer. J. Clin. Oncol., 2018, 36(4_suppl), TPS192-TPS.
[http://dx.doi.org/10.1200/JCO.2018.36.4_suppl.TPS192]
[http://dx.doi.org/10.1200/JCO.2018.36.4_suppl.TPS192]
[29]
Kato, K.; Shah, M.A.; Enzinger, P.C.; Bennouna, J.; Shen, L.; Adenis, A. Phase III KEYNOTE-590 study of chemotherapy + pembrolizumab versus chemotherapy + placebo as first-line therapy for patients (Pts) with advanced esophageal or esophagogastric junction (E/EGJ) cancer. Ann. Oncol., 2018, 29, viii- 268-viii269.
[http://dx.doi.org/10.1093/annonc/mdy282.168]
[http://dx.doi.org/10.1093/annonc/mdy282.168]
[30]
Moehler, M.; Shitara, K.; Garrido, M.; Salman, P.; Shen, L.; Wyrwicz, L. LBA6_PR Nivolumab (nivo) plus chemotherapy (chemo) versus chemo as first-line (1L) treatment for advanced gastric cancer/gastroesophageal junction cancer (GC/GEJC)/esophageal adenocarcinoma (EAC): First results of the CheckMate 649 study. Ann. Oncol., 2020, 31, S1191.
[http://dx.doi.org/10.1016/j.annonc.2020.08.2296]
[http://dx.doi.org/10.1016/j.annonc.2020.08.2296]
[31]
Kato, K.; Sun, J.M.; Shah, M.A.; Enzinger, P.C.; Adenis, A.; Doi, T. LBA8_PR Pembrolizumab plus chemotherapy versus chemotherapy as first-line therapy in patients with advanced esophageal cancer: The phase 3 KEYNOTE-590 study. Ann. Oncol., 2020, 31, S1192-S3.
[http://dx.doi.org/10.1016/j.annonc.2020.08.2298]
[http://dx.doi.org/10.1016/j.annonc.2020.08.2298]
[32]
Ochoa de Olza, M.; Navarro Rodrigo, B.; Zimmermann, S.; Coukos, G. Turning up the heat on non-immunoreactive tumours: Opportunities for clinical development. Lancet Oncol., 2020, 21(9), e419-e430.
[http://dx.doi.org/10.1016/S1470-2045(20)30234-5] [PMID: 32888471]
[http://dx.doi.org/10.1016/S1470-2045(20)30234-5] [PMID: 32888471]
[33]
Li, J.; Byrne, K.T.; Yan, F.; Yamazoe, T.; Chen, Z.; Baslan, T.; Richman, L.P.; Lin, J.H.; Sun, Y.H.; Rech, A.J.; Balli, D.; Hay, C.A.; Sela, Y.; Merrell, A.J.; Liudahl, S.M.; Gordon, N.; Norgard, R.J.; Yuan, S.; Yu, S.; Chao, T.; Ye, S.; Eisinger-Mathason, T.S.K.; Faryabi, R.B.; Tobias, J.W.; Lowe, S.W.; Coussens, L.M.; Wherry, E.J.; Vonderheide, R.H.; Stanger, B.Z. Tumor cell-intrinsic factors underlie heterogeneity of immune cell infiltration and response to immunotherapy. Immunity, 2018, 49(1), 178-193.e7.
[http://dx.doi.org/10.1016/j.immuni.2018.06.006] [PMID: 29958801]
[http://dx.doi.org/10.1016/j.immuni.2018.06.006] [PMID: 29958801]
[34]
Sato, H.; Okonogi, N.; Nakano, T. Rationale of combination of anti-PD-1/PD-L1 antibody therapy and radiotherapy for cancer treatment. Int. J. Clin. Oncol., 2020, 25(5), 801-809.
[http://dx.doi.org/10.1007/s10147-020-01666-1] [PMID: 32246277]
[http://dx.doi.org/10.1007/s10147-020-01666-1] [PMID: 32246277]
[35]
Mamdani, H.; Schneider, B.J.; Kasi, P.M.; Abushahin, L.I.; Birdas, T.J.; Kesler, K. Durvalumab following multimodality therapy for locally advanced esophageal and GEJ adenocarcinoma: Updated survival and early translational results from Big Ten Cancer Research Consortium Study. J. Clin. Oncol., 2020, 38(15-suppl), 4572.
[http://dx.doi.org/10.1200/JCO.2020.38.15_suppl.4572]
[http://dx.doi.org/10.1200/JCO.2020.38.15_suppl.4572]
[36]
Hong, M.H.; Kim, H.; Park, S.Y.; Kim, D.J.; Lee, C.G.; Cho, J. A phase II trial of preoperative chemoradiotherapy and pembrolizumab for locally advanced esophageal squamous cell carcinoma (ESCC). J. Clin. Oncol., 2019, 37(15_suppl), 4027.
[http://dx.doi.org/10.1200/JCO.2019.37.15_suppl.4027]
[http://dx.doi.org/10.1200/JCO.2019.37.15_suppl.4027]
[37]
Uboha, N.V.; Maloney, J.D.; McCarthy, D.; Deming, D.A.; LoConte, N.K.; Matkowskyj, K. Safety of neoadjuvant chemoradiation (CRT) in combination with avelumab (A) in the treatment of resectable esophageal and gastroesophageal junction (E/GEJ) cancer. J. Clin. Oncol., 2019, 37(15_suppl), 4041.
[http://dx.doi.org/10.1200/JCO.2019.37.15_suppl.4041]
[http://dx.doi.org/10.1200/JCO.2019.37.15_suppl.4041]
[38]
van den Ende, T.; de Clercq, N.C.; van Berge Henegouwen, M.I.; Gisbertz, S.S.; Meijer, S.L.; Schokker, S. A phase II feasibility trial of neoadjuvant chemoradiotherapy combined with atezolizumab for resectable esophageal adenocarcinoma: The PERFECT trial. J. Clin. Oncol., 2019, 37(15_suppl), 4045.
[http://dx.doi.org/10.1200/JCO.2019.37.15_suppl.4045]
[http://dx.doi.org/10.1200/JCO.2019.37.15_suppl.4045]
[39]
Kelly, R.J.; Ajani, J.A.; Kuzdzal, J.; Zander, T.; Van Cutsem, E.; Piessen, G. LBA9_PR Adjuvant nivolumab in resected esophageal or gastroesophageal junction cancer (EC/GEJC) following neoadjuvant chemoradiation therapy (CRT): First results of the CheckMate 577 study. Ann. Oncol., 2020, 31, S1193-S4.
[http://dx.doi.org/10.1016/j.annonc.2020.08.2299]
[http://dx.doi.org/10.1016/j.annonc.2020.08.2299]
[40]
Fukumura, D.; Kloepper, J.; Amoozgar, Z.; Duda, D.G.; Jain, R.K. Enhancing cancer immunotherapy using antiangiogenics: Opportunities and challenges. Nat. Rev. Clin. Oncol., 2018, 15(5), 325-340.
[http://dx.doi.org/10.1038/nrclinonc.2018.29] [PMID: 29508855]
[http://dx.doi.org/10.1038/nrclinonc.2018.29] [PMID: 29508855]
[41]
Smyth, E.C. Regorafenib in gastric cancer. Transl. Gastroenterol. Hepatol., 2017, 2(3), 16.
[http://dx.doi.org/10.21037/tgh.2017.01.07]
[http://dx.doi.org/10.21037/tgh.2017.01.07]
[42]
Fukuoka, S.; Hara, H.; Takahashi, N.; Kojima, T.; Kawazoe, A.; Asayama, M.; Yoshii, T.; Kotani, D.; Tamura, H.; Mikamoto, Y.; Hirano, N.; Wakabayashi, M.; Nomura, S.; Sato, A.; Kuwata, T.; Togashi, Y.; Nishikawa, H.; Shitara, K. Regorafenib plus nivolumab in patients with advanced gastric or colorectal cancer: an open-label, dose-escalation, and dose-expansion phase Ib Trial (REGONIVO, EPOC1603). J. Clin. Oncol., 2020, 38(18), 2053-2061.
[http://dx.doi.org/10.1200/JCO.19.03296] [PMID: 32343640]
[http://dx.doi.org/10.1200/JCO.19.03296] [PMID: 32343640]
[43]
Hironaka, S.; Kadowaki, S.; Izawa, N.; Nishina, T.; Yamanaka, T.; Minashi, K A phase I/II study of nivolumab, paclitaxel, and ramucirumab as second-line in advanced gastric cancer. J. Clin. Oncol., 2020, 38(4_suppl), 352.
[http://dx.doi.org/10.1200/JCO.2020.38.4_suppl.352]
[http://dx.doi.org/10.1200/JCO.2020.38.4_suppl.352]
[44]
Kawazoe, A.; Fukuoka, S.; Nakamura, Y.; Kuboki, Y.; Wakabayashi, M.; Nomura, S.; Mikamoto, Y.; Shima, H.; Fujishiro, N.; Higuchi, T.; Sato, A.; Kuwata, T.; Shitara, K. Lenvatinib plus pembrolizumab in patients with advanced gastric cancer in the first-line or second-line setting (EPOC1706): an open-label, single-arm, phase 2 trial. Lancet Oncol., 2020, 21(8), 1057-1065.
[http://dx.doi.org/10.1016/S1470-2045(20)30271-0] [PMID: 32589866]
[http://dx.doi.org/10.1016/S1470-2045(20)30271-0] [PMID: 32589866]
[45]
Saeed, A.; Koestler, D.; Williamson, S.K.; Baranda, J.C.; Sun, W.; Al-Rajabi, R.M.d.T A phase Ib trial of cabozantinib in combination with durvalumab (MEDI4736) in previously treated patients with advanced gastroesophageal cancer and other gastrointestinal (GI) malignancies (CAMILLA). J. Clin. Oncol., 2019, 37(8_suppl), TPS56-TPS.
[http://dx.doi.org/10.1200/JCO.2019.37.8_suppl.TPS56]
[http://dx.doi.org/10.1200/JCO.2019.37.8_suppl.TPS56]
[46]
Bang, Y-J.; Golan, T.; Lin, C-C.; Dahan, L.; Fu, S.; Moreno, V. Ramucirumab (Ram) and durvalumab (Durva) treatment of metastatic non-small cell lung cancer (NSCLC), gastric/gastroesophageal junction (G/GEJ) adenocarcinoma, and hepatocellular carcinoma (HCC) following progression on systemic treatment(s). Journal of Clinical Oncology, 2019, 37(15_suppl), 2528.
[http://dx.doi.org/10.1200/JCO.2019.37.15_suppl.2528]
[http://dx.doi.org/10.1200/JCO.2019.37.15_suppl.2528]
[47]
Fonkoua, L.A.K.; Chakrabarti, S.; Sonbol, M.B.; Kasi, P.M.; Starr, J.S.; Liu, A.J. Enhanced efficacy of anti-VEGFR2/taxane therapy after progression on immune checkpoint inhibition (ICI) in patients (pts) with metastatic gastroesophageal adenocarcinoma (mGEA). J. Clin. Oncol., 2020, 38(15-suppl), 4541.
[http://dx.doi.org/10.1200/JCO.2020.38.15_suppl.4541]
[http://dx.doi.org/10.1200/JCO.2020.38.15_suppl.4541]
[48]
Szabados, B.; van Dijk, N.; Tang, Y.Z.; van der Heijden, M.S.; Wimalasingham, A.; Gomez de Liano, A.; Chowdhury, S.; Hughes, S.; Rudman, S.; Linch, M.; Powles, T. Response rate to chemotherapy after immune checkpoint inhibition in metastatic urothelial cancer. Eur. Urol., 2018, 73(2), 149-152.
[http://dx.doi.org/10.1016/j.eururo.2017.08.022] [PMID: 28917596]
[http://dx.doi.org/10.1016/j.eururo.2017.08.022] [PMID: 28917596]
[49]
Shiono, A.; Kaira, K.; Mouri, A.; Yamaguchi, O.; Hashimoto, K.; Uchida, T.; Miura, Y.; Nishihara, F.; Murayama, Y.; Kobayashi, K.; Kagamu, H. Improved efficacy of ramucirumab plus docetaxel after nivolumab failure in previously treated non-small cell lung cancer patients. Thorac. Cancer, 2019, 10(4), 775-781.
[http://dx.doi.org/10.1111/1759-7714.12998] [PMID: 30809973]
[http://dx.doi.org/10.1111/1759-7714.12998] [PMID: 30809973]
[50]
Bang, Y.J.; Van Cutsem, E.; Feyereislova, A.; Chung, H.C.; Shen, L.; Sawaki, A.; Lordick, F.; Ohtsu, A.; Omuro, Y.; Satoh, T.; Aprile, G.; Kulikov, E.; Hill, J.; Lehle, M.; Rüschoff, J.; Kang, Y.K. ToGA Trial Investigators. Trastuzumab in combination with chemotherapy versus chemotherapy alone for treatment of HER2- positive advanced gastric or gastro-oesophageal junction cancer (ToGA): A phase 3, open-label, randomised controlled trial. Lancet, 2010, 376(9742), 687-697.
[http://dx.doi.org/10.1016/S0140-6736(10)61121-X] [PMID: 20728210]
[http://dx.doi.org/10.1016/S0140-6736(10)61121-X] [PMID: 20728210]
[51]
Shen, J.Y.C.; Usher, J.; Samberg, D.; Ishiba, T.; Danenberg, K.; Lenz, H.-J. PD-L1 and HER2 expression in gastric cancer (GC) patients (pts) using cell-free RNA (cfRNA). J. Clin. Oncol., 2016, 34(15_suppl), e15539-e.
[http://dx.doi.org/10.1200/JCO.2016.34.15_suppl.e15539]
[http://dx.doi.org/10.1200/JCO.2016.34.15_suppl.e15539]
[52]
Beer, A.; Taghizadeh, H.; Schiefer, A-I.; Puhr, H.C.; Karner, A.K.; Jomrich, G.; Schoppmann, S.F.; Kain, R.; Preusser, M.; Ilhan-Mutlu, A. PD-L1 and HER2 expression in gastroesophageal cancer: A matched case control study. Pathol. Oncol. Res., 2020, 26(4), 2225-2235.
[http://dx.doi.org/10.1007/s12253-020-00814-2] [PMID: 32372174]
[http://dx.doi.org/10.1007/s12253-020-00814-2] [PMID: 32372174]
[53]
Janjigian, Y.Y.; Maron, S.B.; Chatila, W.K.; Millang, B.; Chavan, S.S.; Alterman, C.; Chou, J.F.; Segal, M.F.; Simmons, M.Z.; Momtaz, P.; Shcherba, M.; Ku, G.Y.; Zervoudakis, A.; Won, E.S.; Kelsen, D.P.; Ilson, D.H.; Nagy, R.J.; Lanman, R.B.; Ptashkin, R.N.; Donoghue, M.T.A.; Capanu, M.; Taylor, B.S.; Solit, D.B.; Schultz, N.; Hechtman, J.F. First-line pembrolizumab and trastuzumab in HER2-positive oesophageal, gastric, or gastro-oesophageal junction cancer: An open-label, single-arm, phase 2 trial. Lancet Oncol., 2020, 21(6), 821-831.
[http://dx.doi.org/10.1016/S1470-2045(20)30169-8] [PMID: 32437664]
[http://dx.doi.org/10.1016/S1470-2045(20)30169-8] [PMID: 32437664]
[54]
Janjigian, Y.Y.; Bang, Y.-J.; Fuchs, C.S.; Qin, S.; Satoh, T.; Shitara, K. KEYNOTE-811 pembrolizumab plus trastuzumab and chemotherapy for HER2+ metastatic gastric or gastroesophageal junction cancer (mG/GEJC): A double-blind, randomized, placebo- controlled phase 3 study. J. Clin. Oncol., 2019, 37(15_suppl), TPS4146-TPS.
[http://dx.doi.org/10.1200/JCO.2019.37.15_suppl.TPS4146]
[http://dx.doi.org/10.1200/JCO.2019.37.15_suppl.TPS4146]
[55]
Takahari, D.; Shoji, H.; Minashi, K.; Hara, H.; Chin, K.; Ooki, A. A phase Ib study of nivolumab plus trastuzumab with S-1/capecitabine plus oxaliplatin for HER2-positive advanced gastric cancer (Ni-HIGH study): Safety evaluation. J. Clin. Oncol., 2020, 38(15_suppl), 4525.
[http://dx.doi.org/10.1200/JCO.2020.38.15_suppl.4525]
[http://dx.doi.org/10.1200/JCO.2020.38.15_suppl.4525]
[56]
Larkin, J.; Chiarion-Sileni, V.; Gonzalez, R.; Grob, J-J.; Rutkowski, P.; Lao, C.D.; Cowey, C.L.; Schadendorf, D.; Wagstaff, J.; Dummer, R.; Ferrucci, P.F.; Smylie, M.; Hogg, D.; Hill, A.; Márquez-Rodas, I.; Haanen, J.; Guidoboni, M.; Maio, M.; Schöffski, P.; Carlino, M.S.; Lebbé, C.; McArthur, G.; Ascierto, P.A.; Daniels, G.A.; Long, G.V.; Bastholt, L.; Rizzo, J.I.; Balogh, A.; Moshyk, A.; Hodi, F.S.; Wolchok, J.D. Five-year survival with combined nivolumab and ipilimumab in advanced melanoma. N. Engl. J. Med., 2019, 381(16), 1535-1546.
[http://dx.doi.org/10.1056/NEJMoa1910836] [PMID: 31562797]
[http://dx.doi.org/10.1056/NEJMoa1910836] [PMID: 31562797]
[57]
Motzer, R.J.; Tannir, N.M.; McDermott, D.F.; Arén Frontera, O.; Melichar, B.; Choueiri, T.K.; Plimack, E.R.; Barthélémy, P.; Porta, C.; George, S.; Powles, T.; Donskov, F.; Neiman, V.; Kollmannsberger, C.K.; Salman, P.; Gurney, H.; Hawkins, R.; Ravaud, A.; Grimm, M.O.; Bracarda, S.; Barrios, C.H.; Tomita, Y.; Castellano, D.; Rini, B.I.; Chen, A.C.; Mekan, S.; McHenry, M.B.; Wind-Rotolo, M.; Doan, J.; Sharma, P.; Hammers, H.J.; Escudier, B. CheckMate 214 Investigators. Nivolumab plus Ipilimumab versus sunitinib in advanced renal-cell carcinoma. N. Engl. J. Med., 2018, 378(14), 1277-1290.
[http://dx.doi.org/10.1056/NEJMoa1712126] [PMID: 29562145]
[http://dx.doi.org/10.1056/NEJMoa1712126] [PMID: 29562145]
[58]
Camacho, L.H. CTLA-4 blockade with ipilimumab: Biology, safety, efficacy, and future considerations. Cancer Med., 2015, 4(5), 661-672.
[http://dx.doi.org/10.1002/cam4.371] [PMID: 25619164]
[http://dx.doi.org/10.1002/cam4.371] [PMID: 25619164]
[59]
Letendre, P.; Monga, V.; Milhem, M.; Zakharia, Y. Ipilimumab: From preclinical development to future clinical perspectives in melanoma. Future Oncol., 2017, 13(7), 625-636.
[http://dx.doi.org/10.2217/fon-2016-0385] [PMID: 27882779]
[http://dx.doi.org/10.2217/fon-2016-0385] [PMID: 27882779]
[60]
Janjigian, Y.Y.; Bendell, J.; Calvo, E.; Kim, J.W.; Ascierto, P.A.; Sharma, P.; Ott, P.A.; Peltola, K.; Jaeger, D.; Evans, J.; de Braud, F.; Chau, I.; Harbison, C.T.; Dorange, C.; Tschaika, M.; Le, D.T. CheckMate-032 study: Efficacy and safety of nivolumab and nivolumab plus ipilimumab in patients with metastatic esophagogastric cancer. J. Clin. Oncol., 2018, 36(28), 2836-2844.
[http://dx.doi.org/10.1200/JCO.2017.76.6212] [PMID: 30110194]
[http://dx.doi.org/10.1200/JCO.2017.76.6212] [PMID: 30110194]
[61]
Al-Batran, S.-E.; Pauligk, C.; Goetze, T.O.; Riera-Knorrenschild, J.; Goekkurt, E.; Angermeier, S. Modified FOLFOX versus modified FOLFOX plus nivolumab and ipilimumab in patients with previously untreated advanced or metastatic adenocarcinoma of the stomach or gastroesophageal junction: Moonlight, a randomized phase 2 trial of the German Gastric Group of the AIO. J. Clin. Oncol., 2019, 37(15_suppl), TPS4144-TPS.
[http://dx.doi.org/10.1200/JCO.2019.37.15_suppl.TPS4144]
[http://dx.doi.org/10.1200/JCO.2019.37.15_suppl.TPS4144]
[62]
Puhr, H.C.; Ilhan-Mutlu, A. New emerging targets in cancer immunotherapy: the role of LAG3. ESMO Open, 2019, 4(2), e000482.
[http://dx.doi.org/10.1136/esmoopen-2018-000482] [PMID: 31231559]
[http://dx.doi.org/10.1136/esmoopen-2018-000482] [PMID: 31231559]
[63]
Andrews, L.P.; Marciscano, A.E.; Drake, C.G.; Vignali, D.A.A. LAG3 (CD223) as a cancer immunotherapy target. Immunol. Rev., 2017, 276(1), 80-96.
[http://dx.doi.org/10.1111/imr.12519] [PMID: 28258692]
[http://dx.doi.org/10.1111/imr.12519] [PMID: 28258692]
[64]
Woo, S.R.; Turnis, M.E.; Goldberg, M.V.; Bankoti, J.; Selby, M.; Nirschl, C.J.; Bettini, M.L.; Gravano, D.M.; Vogel, P.; Liu, C.L.; Tangsombatvisit, S.; Grosso, J.F.; Netto, G.; Smeltzer, M.P.; Chaux, A.; Utz, P.J.; Workman, C.J.; Pardoll, D.M.; Korman, A.J.; Drake, C.G.; Vignali, D.A. Immune inhibitory molecules LAG-3 and PD-1 synergistically regulate T-cell function to promote tumoral immune escape. Cancer Res., 2012, 72(4), 917-927.
[http://dx.doi.org/10.1158/0008-5472.CAN-11-1620] [PMID: 22186141]
[http://dx.doi.org/10.1158/0008-5472.CAN-11-1620] [PMID: 22186141]
[65]
Feeney, K.; Kelly, R.; Lipton, L.R.; Chao, J.; Acosta-Rivera, M.; Earle, D. CA224-060: A randomized, open label, phase II trial of relatlimab (anti-LAG-3) and nivolumab with chemotherapy versus nivolumab with chemotherapy as first-line treatment in patients with gastric or gastroesophageal junction adenocarcinoma. J. Clin. Oncol., 2019, 37(15_suppl), TPS4143-TPS.
[http://dx.doi.org/10.1200/JCO.2019.37.15_suppl.TPS4143]
[http://dx.doi.org/10.1200/JCO.2019.37.15_suppl.TPS4143]
[66]
Aanur, P.; Gutierrez, M.; Kelly, R.J.; Ajani, J.A.; Ku, G.Y.; Denlinger, C.S. FRACTION (Fast Real-time Assessment of Combination Therapies in Immuno-Oncology)-Gastric Cancer (GC): A randomized, open-label, adaptive, phase 2 study of nivolumab in combination with other Immuno-Oncology (IO) agents in patients with advanced GC. J. Clin. Oncol., 2017, 35(15_suppl), TPS4137-TPS.
[http://dx.doi.org/10.1200/JCO.2017.35.15_suppl.TPS4137]
[http://dx.doi.org/10.1200/JCO.2017.35.15_suppl.TPS4137]
[67]
Qin, S.; Xu, L.; Yi, M.; Yu, S.; Wu, K.; Luo, S. Novel immune checkpoint targets: Moving beyond PD-1 and CTLA-4. Mol. Cancer, 2019, 18(1), 155.
[http://dx.doi.org/10.1186/s12943-019-1091-2]
[http://dx.doi.org/10.1186/s12943-019-1091-2]
[68]
Alves Costa Silva, C.; Facchinetti, F.; Routy, B.; Derosa, L. New pathways in immune stimulation: targeting OX40. ESMO Open, 2020, 5(1), e000573.
[http://dx.doi.org/10.1136/esmoopen-2019-000573] [PMID: 32392177]
[http://dx.doi.org/10.1136/esmoopen-2019-000573] [PMID: 32392177]
[69]
Al-Batran, S.-E.; Pauligk, C.; Hofheinz, R.; Lorenzen, S.; Wicki, A.; Siebenhuener, A.R. Perioperative atezolizumab in combination with FLOT versus FLOT alone in patients with resectable esophagogastric adenocarcinoma: DANTE, a randomized, open-label phase II trial of the German Gastric Group of the AIO and the SAKK. J. Clin. Oncol., 2019, 37(15_suppl), TPS4142-TPS.
[http://dx.doi.org/10.1200/JCO.2019.37.15_suppl.TPS4142]
[http://dx.doi.org/10.1200/JCO.2019.37.15_suppl.TPS4142]
[70]
Homann, N.; Lorenzen, S.; Schenk, M.; Thuss-Patience, P.C.; Goekkurt, E.; Hofheinz, R.D. Interim safety analysis of the DANTE trial: Perioperative atezolizumab in combination with FLOT versus FLOT alone in patients with resectable esophagogastric adenocarcinoma-A randomized, open-label phase II trial of the German Gastric Group at the AIO and SAKK. J. Clin. Oncol., 2020, 38(15_suppl), 4549.
[http://dx.doi.org/10.1200/JCO.2020.38.15_suppl.4549]
[http://dx.doi.org/10.1200/JCO.2020.38.15_suppl.4549]
[71]
Davidson, M.; Mansukhani, S.; Starling, N.; Chau, I.; Watkins, D.; Cunningham, D. 674PD - Perioperative FLOT + anti-PD-L1 avelumab (FLOT-A) chemo-immunotherapy in resectable oesophagogastric adenocarcinoma (OGA): Safety and biomarker data from the ICONIC trial safety run-in. Ann. Oncol., 2019, 30, v254.
[http://dx.doi.org/10.1093/annonc/mdz247.002]
[http://dx.doi.org/10.1093/annonc/mdz247.002]
[72]
Bang, Y.J.; Van Cutsem, E.; Fuchs, C.S.; Ohtsu, A.; Tabernero, J.; Ilson, D.H. Phase III KEYNOTE-585 study of chemotherapy (Chemo) + pembrolizumab (Pembro) vs chemo + placebo as neoadjuvant/adjuvant treatment for patients (Pts) with gastric or gastroesophageal junction (G/GEJ) cancer. Ann. Oncol., 2018, 29, viii268.
[http://dx.doi.org/10.1093/annonc/mdy282.167]
[http://dx.doi.org/10.1093/annonc/mdy282.167]
[73]
Smyth, E.; Knödler, M.; Giraut, A.; Mauer, M.; Nilsson, M.; Van Grieken, N.; Wagner, A.D.; Moehler, M.; Lordick, F. VESTIGE: Adjuvant immunotherapy in patients with resected esophageal, gastroesophageal junction and gastric cancer following preoperative chemotherapy with high risk for recurrence (N+ and/or R1): An open label randomized controlled phase-2-study. Front. Oncol., 2020, 9, 1320.
[http://dx.doi.org/10.3389/fonc.2019.01320] [PMID: 32083013]
[http://dx.doi.org/10.3389/fonc.2019.01320] [PMID: 32083013]
[74]
Wei, J.; Liu, Q.; Sha, H.; Qian, H.; Shao, J.; Zhu, L. Personalized neoantigen/cancer testis antigen nanovaccine (PVAC) in combination with PD-1 monoclonal antibody and/or antiangiogenic treatment in patients with metastatic solid tumors. J. Clin. Oncol., 2020, 38(15_suppl), 3134.
[http://dx.doi.org/10.1200/JCO.2020.38.15_suppl.3134]
[http://dx.doi.org/10.1200/JCO.2020.38.15_suppl.3134]
[75]
Zhan, X.; Wang, B.; Li, Z.; Li, J.; Wang, H.; Chen, L. Phase I trial of Claudin 18.2-specific chimeric antigen receptor T cells for advanced gastric and pancreatic adenocarcinoma. J. Clin. Oncol., 2019, 37(15_suppl), 2509.
[http://dx.doi.org/10.1200/JCO.2019.37.15_suppl.2509]
[http://dx.doi.org/10.1200/JCO.2019.37.15_suppl.2509]
[76]
Puhr, H.; Ilhan-Mutlu, A. Molecular profiling in gastroesophageal cancer-clinical routine and future perspective. memo -. Mag. Eur. Med. Oncol., 2020, 13, 440-444.
[http://dx.doi.org/10.1007/s12254-019-00534-7]
[http://dx.doi.org/10.1007/s12254-019-00534-7]
[77]
Kulangara, K.; Hanks, D.A.; Waldroup, S.; Peltz, L.; Shah, S.; Roach, C. Development of the Combined Positive Score (CPS) for the evaluation of PD-L1 in solid tumors with the immunohistochemistry assay PD-L1 IHC 22C3 pharmDx. J. Clin. Oncol., 2017, 35(15_suppl), e14589-e.
[http://dx.doi.org/10.1200/JCO.2017.35.15_suppl.e14589]
[http://dx.doi.org/10.1200/JCO.2017.35.15_suppl.e14589]
[78]
Yamashita, K.; Iwatsuki, M.; Harada, K.; Eto, K.; Hiyoshi, Y.; Ishimoto, T. Prognostic impacts of the combined positive score and the tumor proportion score for programmed death ligand-1 expression by double immunohistochemical staining in patients with advanced gastric cancer. Gastric Cancer, 2020, 23(1), 95-104.
[http://dx.doi.org/10.1007/s10120-019-00999-9]
[http://dx.doi.org/10.1007/s10120-019-00999-9]
[79]
Tabernero, J. Pembrolizumab with or without chemotherapy versus chemotherapy for advanced gastric or gastroesophageal junction (G/GEJ) adenocarcinoma: The phase III KEYNOTE-062 study. ASCO Annual Meeting: American Society of Clinical Oncology, 2019.
[80]
Humphries, M.P. A digital pathology demonstration of an "immune hot" ICOS+/CD45RO+ immunephenotype and the impact on survival in patients with esophageal adenocarcinoma. ASCO Annual Meeting: American Society of Clinical Oncology, 2019.
[81]
Nishikawa, J.; Iizasa, H.; Yoshiyama, H.; Shimokuri, K.; Kobayashi, Y.; Sasaki, S.; Nakamura, M.; Yanai, H.; Sakai, K.; Suehiro, Y.; Yamasaki, T.; Sakaida, I. Clinical importance of Epstein-Barr virus-associated gastric cancer. Cancers (Basel), 2018, 10(6), 167.
[http://dx.doi.org/10.3390/cancers10060167] [PMID: 29843478]
[http://dx.doi.org/10.3390/cancers10060167] [PMID: 29843478]
[82]
Camargo, M.C.; Murphy, G.; Koriyama, C.; Pfeiffer, R.M.; Kim, W.H.; Herrera-Goepfert, R.; Corvalan, A.H.; Carrascal, E.; Abdirad, A.; Anwar, M.; Hao, Z.; Kattoor, J.; Yoshiwara-Wakabayashi, E.; Eizuru, Y.; Rabkin, C.S.; Akiba, S. Determinants of Epstein-Barr virus-positive gastric cancer: An international pooled analysis. Br. J. Cancer, 2011, 105(1), 38-43.
[http://dx.doi.org/10.1038/bjc.2011.215] [PMID: 21654677]
[http://dx.doi.org/10.1038/bjc.2011.215] [PMID: 21654677]
[83]
Tavakoli, A.; Monavari, S.H.; Solaymani Mohammadi, F.; Kiani, S.J.; Armat, S.; Farahmand, M. Association between Epstein-Barr virus infection and gastric cancer: a systematic review and meta-analysis. BMC Cancer, 2020, 20(1), 493.
[http://dx.doi.org/10.1186/s12885-020-07013-x] [PMID: 32487043]
[http://dx.doi.org/10.1186/s12885-020-07013-x] [PMID: 32487043]
[84]
Cancer Genome Atlas Research Network. Comprehensive molecular characterization of gastric adenocarcinoma. Nature, 2014, 513(7517), 202-209.
[http://dx.doi.org/10.1038/nature13480] [PMID: 25079317]
[http://dx.doi.org/10.1038/nature13480] [PMID: 25079317]
[85]
Cho, J.; Kang, M.S.; Kim, K.M. Epstein-Barr virus-associated gastric carcinoma and specific features of the accompanying immune response. J. Gastric Cancer, 2016, 16(1), 1-7.
[http://dx.doi.org/10.5230/jgc.2016.16.1.1] [PMID: 27104020]
[http://dx.doi.org/10.5230/jgc.2016.16.1.1] [PMID: 27104020]
[86]
Ma, C.; Patel, K.; Singhi, A.D.; Ren, B.; Zhu, B.; Shaikh, F.; Sun, W. Programmed death-ligand 1 expression is common in gastric cancer associated with Epstein-Barr virus or microsatellite instability. Am. J. Surg. Pathol., 2016, 40(11), 1496-1506.
[http://dx.doi.org/10.1097/PAS.0000000000000698] [PMID: 27465786]
[http://dx.doi.org/10.1097/PAS.0000000000000698] [PMID: 27465786]
[87]
Derks, S.; Liao, X.; Chiaravalli, A.M.; Xu, X.; Camargo, M.C.; Solcia, E.; Sessa, F.; Fleitas, T.; Freeman, G.J.; Rodig, S.J.; Rabkin, C.S.; Bass, A.J. Abundant PD-L1 expression in Epstein-Barr Virus-infected gastric cancers. Oncotarget, 2016, 7(22), 32925-32932.
[http://dx.doi.org/10.18632/oncotarget.9076] [PMID: 27147580]
[http://dx.doi.org/10.18632/oncotarget.9076] [PMID: 27147580]
[88]
Kim, S.T.; Cristescu, R.; Bass, A.J.; Kim, K.M.; Odegaard, J.I.; Kim, K.; Liu, X.Q.; Sher, X.; Jung, H.; Lee, M.; Lee, S.; Park, S.H.; Park, J.O.; Park, Y.S.; Lim, H.Y.; Lee, H.; Choi, M.; Talasaz, A.; Kang, P.S.; Cheng, J.; Loboda, A.; Lee, J.; Kang, W.K. Comprehensive molecular characterization of clinical responses to PD-1 inhibition in metastatic gastric cancer. Nat. Med., 2018, 24(9), 1449-1458.
[http://dx.doi.org/10.1038/s41591-018-0101-z] [PMID: 30013197]
[http://dx.doi.org/10.1038/s41591-018-0101-z] [PMID: 30013197]
[89]
Xie, T.; Liu, Y.; Zhang, Z.; Zhang, X.; Gong, J.; Qi, C.; Li, J.; Shen, L.; Peng, Z. Positive status of epstein-barr virus as a biomarker for gastric cancer immunotherapy: A prospective observational study. J. Immunother., 2020, 43(4), 139-144.
[http://dx.doi.org/10.1097/CJI.0000000000000316] [PMID: 32134806]
[http://dx.doi.org/10.1097/CJI.0000000000000316] [PMID: 32134806]
[90]
Engstrand, L.; Graham, D.Y. Microbiome and gastric cancer. Dig. Dis. Sci., 2020, 65(3), 865-873.
[http://dx.doi.org/10.1007/s10620-020-06101-z] [PMID: 32040665]
[http://dx.doi.org/10.1007/s10620-020-06101-z] [PMID: 32040665]
[91]
Brawner, K.M.; Morrow, C.D.; Smith, P.D. Gastric microbiome and gastric cancer. Cancer J., 2014, 20(3), 211-216.
[http://dx.doi.org/10.1097/PPO.0000000000000043] [PMID: 24855010]
[http://dx.doi.org/10.1097/PPO.0000000000000043] [PMID: 24855010]
[92]
Fessler, J; Matson, V; Gajewski, TF Exploring the emerging role of the microbiome in cancer immunotherapy. J. Immunother. Cancer, 2019, 7(1), 108.
[http://dx.doi.org/10.1186/s40425-019-0574-4]
[http://dx.doi.org/10.1186/s40425-019-0574-4]
[93]
Maron, S.B.; Vanderbilt, C.; Sabwa, S.; Bowman, A.; Chatila, W.K.; Tang, L.H. PD-L1 positive esophagogastric (EG) cancer is associated with distinct bacteria. J. Clin. Oncol., 2020, 38(15_suppl), 4568.
[http://dx.doi.org/10.1200/JCO.2020.38.15_suppl.4568]
[http://dx.doi.org/10.1200/JCO.2020.38.15_suppl.4568]
[94]
Pinato, D.J.; Howlett, S.; Ottaviani, D.; Urus, H.; Patel, A.; Mineo, T.; Brock, C.; Power, D.; Hatcher, O.; Falconer, A.; Ingle, M.; Brown, A.; Gujral, D.; Partridge, S.; Sarwar, N.; Gonzalez, M.; Bendle, M.; Lewanski, C.; Newsom-Davis, T.; Allara, E.; Bower, M. Association of prior antibiotic treatment with survival and response to immune checkpoint inhibitor therapy in patients with cancer. JAMA Oncol., 2019, 5(12), 1774-1778.
[http://dx.doi.org/10.1001/jamaoncol.2019.2785] [PMID: 31513236]
[http://dx.doi.org/10.1001/jamaoncol.2019.2785] [PMID: 31513236]
[95]
Rizvi, N.A.; Hellmann, M.D.; Snyder, A.; Kvistborg, P.; Makarov, V.; Havel, J.J.; Lee, W.; Yuan, J.; Wong, P.; Ho, T.S.; Miller, M.L.; Rekhtman, N.; Moreira, A.L.; Ibrahim, F.; Bruggeman, C.; Gasmi, B.; Zappasodi, R.; Maeda, Y.; Sander, C.; Garon, E.B.; Merghoub, T.; Wolchok, J.D.; Schumacher, T.N.; Chan, T.A. Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science, 2015, 348(6230), 124-128.
[http://dx.doi.org/10.1126/science.aaa1348] [PMID: 25765070]
[http://dx.doi.org/10.1126/science.aaa1348] [PMID: 25765070]
[96]
Kim, J.Y.; Kronbichler, A.; Eisenhut, M.; Hong, S.H.; van der Vliet, H.J.; Kang, J.; Shin, J.I.; Gamerith, G. Tumor mutational burden and efficacy of immune checkpoint inhibitors: A systematic review and meta-analysis. Cancers (Basel), 2019, 11(11), 1798.
[http://dx.doi.org/10.3390/cancers11111798] [PMID: 31731749]
[http://dx.doi.org/10.3390/cancers11111798] [PMID: 31731749]
[97]
Fuchs, C.S.; Özgüroğlu, M.; Bang, Y.-J.; Di Bartolomeo, M.; Mandalà, M.; Ryu, M.-h. The association of molecular biomarkers with efficacy of pembrolizumab versus paclitaxel in patients with gastric cancer (GC) from KEYNOTE-061. J. Clin. Oncol., 2020, 38(15_suppl), 4512.
[http://dx.doi.org/10.1200/JCO.2020.38.15_suppl.4512]
[http://dx.doi.org/10.1200/JCO.2020.38.15_suppl.4512]
[98]
Shitara, K.; Özgüroğlu, M.; Bang, Y.-J.; Bartolomeo, M.D.; Mandalà, M.; Ryu, M.-h. The association of tissue tumor mutational burden (tTMB) using the Foundation Medicine genomic platform with efficacy of pembrolizumab versus paclitaxel in patients (pts) with gastric cancer (GC) from KEYNOTE-061. J. Clin. Oncol., 2020, 38(15_suppl), 4537.
[http://dx.doi.org/10.1200/JCO.2020.38.15_suppl.4537]
[http://dx.doi.org/10.1200/JCO.2020.38.15_suppl.4537]
[99]
Administration FaD. FDA approves pembrolizumab for adults and children with TMB-H solid tumors. 2020. Available from: https://www.fda.gov/drugs/drug-approvals-and-databases/fda-approves-pembrolizumab-adults-and-children-tmb-h-solid-tumors (Accessed 01/11/2020).
[100]
Grenader, T.; Waddell, T.; Peckitt, C.; Oates, J.; Starling, N.; Cunningham, D.; Bridgewater, J. Prognostic value of neutrophil-to- lymphocyte ratio in advanced oesophago-gastric cancer: Exploratory analysis of the REAL-2 trial. Ann. Oncol., 2016, 27(4), 687-692.
[http://dx.doi.org/10.1093/annonc/mdw012] [PMID: 26787231]
[http://dx.doi.org/10.1093/annonc/mdw012] [PMID: 26787231]
[101]
Zhou, D.; Wu, Y.; Zhu, Y.; Lin, Z.; Yu, D.; Zhang, T. The prognostic value of neutrophil-to-lymphocyte ratio and monocyte-to- lymphocyte ratio in metastatic gastric cancer treated with systemic chemotherapy. J. Cancer, 2020, 11(14), 4205-4212.
[http://dx.doi.org/10.7150/jca.39575] [PMID: 32368303]
[http://dx.doi.org/10.7150/jca.39575] [PMID: 32368303]
[102]
Hirahara, T.; Arigami, T.; Yanagita, S.; Matsushita, D.; Uchikado, Y.; Kita, Y.; Mori, S.; Sasaki, K.; Omoto, I.; Kurahara, H.; Maemura, K.; Okubo, K.; Uenosono, Y.; Ishigami, S.; Natsugoe, S. Combined neutrophil-lymphocyte ratio and platelet-lymphocyte ratio predicts chemotherapy response and prognosis in patients with advanced gastric cancer. BMC Cancer, 2019, 19(1), 672.
[http://dx.doi.org/10.1186/s12885-019-5903-y] [PMID: 31286873]
[http://dx.doi.org/10.1186/s12885-019-5903-y] [PMID: 31286873]
[103]
Ogata, T.; Satake, H.; Ogata, M.; Hatachi, Y.; Inoue, K.; Hamada, M.; Yasui, H. Neutrophil-to-lymphocyte ratio as a predictive or prognostic factor for gastric cancer treated with nivolumab: A multicenter retrospective study. Oncotarget, 2018, 9(77), 34520-34527.
[http://dx.doi.org/10.18632/oncotarget.26145] [PMID: 30349646]
[http://dx.doi.org/10.18632/oncotarget.26145] [PMID: 30349646]
[104]
Morelli, C.; Formica, V.; Patrikidou, A.; Murias, C.; Butt, S.-U.-R.; Nardecchia, A. Gastric inflammatory prognostic index (GIPI) to predict efficacy of PD-1/PD-L1 immune checkpoint inhibitors in metastatic Gastroesophageal Junction (GOJ)/Gastric Cancer (GC) patients. J. Clin. Oncol., 2020, 38(15-suppl), 4530.
[http://dx.doi.org/10.1200/JCO.2020.38.15_suppl.4530]
[http://dx.doi.org/10.1200/JCO.2020.38.15_suppl.4530]
[105]
Formica, V.; Morelli, C.; Patrikidou, A.; Murias, C.; Butt, S.; Nardecchia, A.; Lucchetti, J.; Renzi, N.; Shiu, K.K.; Roselli, M.; Arkenau, H.T. Gastric Inflammatory Prognostic Index (GIPI) in patients with metastatic gastro-esophageal junction/gastric cancer treated with PD-1/PD-L1 immune checkpoint inhibitors. Target. Oncol., 2020, 15(3), 327-336.
[http://dx.doi.org/10.1007/s11523-020-00723-z] [PMID: 32449030]
[http://dx.doi.org/10.1007/s11523-020-00723-z] [PMID: 32449030]