Generic placeholder image

Current Cancer Drug Targets

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Review Article

Current Treatment and Future Trends of Immunotherapy in Breast Cancer

Author(s): Mitchell J. Elliott, Brooke Wilson and David W. Cescon*

Volume 22, Issue 8, 2022

Published on: 09 June, 2022

Page: [667 - 677] Pages: 11

DOI: 10.2174/1568009622666220317091723

Price: $65

Abstract

Immunotherapy continues to redefine the solid tumor treatment landscape, with inhibitors of the PD-L1/PD-1 immune checkpoint having the most widespread impact. As the most common cancer diagnosed worldwide, there is significant interest in the development of immunotherapy for the treatment of breast cancer in both the early and metastatic settings. Recently reported results of several clinical trials have identified potential roles for immunotherapy agents alone or in combination with standard treatment for early and metastatic disease. While trials to date have been promising, immunotherapy has only been shown to benefit a select group of patients with breast cancer, defined by tumor subtype, PD-L1 expression, and line of therapy. With over 250 trials ongoing, emerging data will enable the further refinement of breast cancer immunotherapy strategies. The integration of multiple putative biomarkers and consideration of dynamic markers of early response or resistance may inform optimal patient selection for immunotherapy investigation and integration into clinical practice. This review will summarize the current evidence for immune-checkpoint blockade (ICB) in the treatment of early and metastatic breast cancer, highlighting current and potential future biomarkers of therapeutic response.

Keywords: Breast cancer, immunotherapy, immune checkpoint blockade, PD-L1, PD-1, triple negative breast cancer, TNBC.

Graphical Abstract

[1]
Gradishar, W.J. NCCN clinical practice guidelines in oncology (NCCN Guidelines®): Breast cancer version 4. 2021. Available from: https://www.nccn.org/guidelines/category_1
[2]
Thorsson, V.; Gibbs, D.L.; Brown, S.D.; Wolf, D.; Bortone, D.S. Ou Yang, T.H.; Porta-Pardo, E.; Gao, G.F.; Plaisier, C.L.; Eddy, J.A.; Ziv, E.; Culhane, A.C.; Paull, E.O.; Sivakumar, I.K.A.; Gentles, A.J.; Malhotra, R.; Farshidfar, F.; Colaprico, A.; Parker, J.S.; Mose, L.E.; Vo, N.S.; Liu, J.; Liu, Y.; Rader, J.; Dhankani, V.; Reynolds, S.M.; Bowlby, R.; Califano, A.; Cherniack, A.D.; Anastassiou, D.; Bedognetti, D.; Mokrab, Y.; Newman, A.M.; Rao, A.; Chen, K.; Krasnitz, A.; Hu, H.; Malta, T.M.; Noushmehr, H.; Pedamallu, C.S.; Bullman, S.; Ojesina, A.I.; Lamb, A.; Zhou, W.; Shen, H.; Choueiri, T.K.; Weinstein, J.N.; Guinney, J.; Saltz, J.; Holt, R.A.; Rabkin, C.S.; Lazar, A.J.; Serody, J.S.; Demicco, E.G.; Disis, M.L.; Vincent, B.G.; Shmulevich, I. The immune landscape of cancer. Immunity, 2019, 51(2), 411-412.
[http://dx.doi.org/10.1016/j.immuni.2019.08.004] [PMID: 31433971]
[3]
Azizi, E.; Carr, A.J.; Plitas, G.; Cornish, A.E.; Konopacki, C.; Prabhakaran, S.; Nainys, J.; Wu, K.; Kiseliovas, V.; Setty, M.; Choi, K.; Fromme, R.M.; Dao, P.; McKenney, P.T.; Wasti, R.C.; Kadaveru, K.; Mazutis, L.; Rudensky, A.Y.; Pe’er, D. Single-cell map of diverse immune phenotypes in the breast tumor microenvironment. Cell, 2018, 174(5), 1293-1308.e36.
[http://dx.doi.org/10.1016/j.cell.2018.05.060] [PMID: 29961579]
[4]
Loi, S.; Sirtaine, N.; Piette, F.; Salgado, R.; Viale, G.; Van Eenoo, F.; Rouas, G.; Francis, P.; Crown, J.P.; Hitre, E.; de Azambuja, E.; Quinaux, E.; Di Leo, A.; Michiels, S.; Piccart, M.J.; Sotiriou, C. Prognostic and predictive value of tumor-infiltrating lymphocytes in a phase III randomized adjuvant breast cancer trial in node-positive breast cancer comparing the addition of docetaxel to doxorubicin with doxorubicin-based chemotherapy: BIG 02-98. J. Clin. Oncol., 2013, 31(7), 860-867.
[http://dx.doi.org/10.1200/JCO.2011.41.0902] [PMID: 23341518]
[5]
Dieci, M.V.; Criscitiello, C.; Goubar, A.; Viale, G.; Conte, P.; Guarneri, V.; Ficarra, G.; Mathieu, M.C.; Delaloge, S.; Curigliano, G.; Andre, F. Prognostic value of tumor-infiltrating lymphocytes on residual disease after primary chemotherapy for triple-negative breast cancer: A retrospective multicenter study. Ann. Oncol., 2015, 26(7), 1518.
[http://dx.doi.org/10.1093/annonc/mdv241] [PMID: 26109735]
[6]
Loi, S.; Michiels, S.; Salgado, R.; Sirtaine, N.; Jose, V.; Fumagalli, D.; Kellokumpu-Lehtinen, P.L.; Bono, P.; Kataja, V.; Desmedt, C.; Piccart, M.J.; Loibl, S.; Denkert, C.; Smyth, M.J.; Joensuu, H.; Sotiriou, C. Tumor infiltrating lymphocytes are prognostic in triple negative breast cancer and predictive for trastuzumab benefit in early breast cancer: Results from the FinHER trial. Ann. Oncol., 2014, 25(8), 1544-1550.
[http://dx.doi.org/10.1093/annonc/mdu112] [PMID: 24608200]
[7]
Gonzalez-Angulo, A.M. Faculty Opinions recommendation of Prognostic value of tumor-infiltrating lymphocytes in triple-negative breast cancers from two phase III randomized adjuvant breast cancer trials: ECOG 2197 and ECOG 1199. J. Clin. Oncol., 2014, 32(27), 2959-2966.
[http://dx.doi.org/10.3410/f.718509074.793498113]
[8]
Adams, S.; Schmid, P.; Rugo, H.S.; Winer, E.P.; Loirat, D.; Awada, A.; Cescon, D.W.; Iwata, H.; Campone, M.; Nanda, R.; Hui, R.; Curigliano, G.; Toppmeyer, D.; O’Shaughnessy, J.; Loi, S.; Paluch-Shimon, S.; Tan, A.R.; Card, D.; Zhao, J.; Karantza, V.; Cortés, J. Pembrolizumab monotherapy for previously treated metastatic triple-negative breast cancer: Cohort A of the phase II KEYNOTE-086 study. Ann. Oncol., 2019, 30(3), 397-404.
[http://dx.doi.org/10.1093/annonc/mdy517] [PMID: 30475950]
[9]
Adams, S.; Loi, S.; Toppmeyer, D.; Cescon, D.W.; De Laurentiis, M.; Nanda, R.; Winer, E.P.; Mukai, H.; Tamura, K.; Armstrong, A.; Liu, M.C.; Iwata, H.; Ryvo, L.; Wimberger, P.; Rugo, H.S.; Tan, A.R.; Jia, L.; Ding, Y.; Karantza, V.; Schmid, P. Pembrolizumab monotherapy for previously untreated, PD-L1-positive, metastatic triple-negative breast cancer: cohort B of the phase II KEYNOTE-086 study. Ann. Oncol., 2019, 30(3), 405-411.
[http://dx.doi.org/10.1093/annonc/mdy518] [PMID: 30475947]
[10]
Winer, E.P.; Lipatov, O.; Im, S.A.; Goncalves, A.; Muñoz-Couselo, E.; Lee, K.S.; Schmid, P.; Tamura, K.; Testa, L.; Witzel, I.; Ohtani, S.; Turner, N.; Zambelli, S.; Harbeck, N.; Andre, F.; Dent, R.; Zhou, X.; Karantza, V.; Mejia, J.; Cortes, J. Pembrolizumab versus investigator-choice chemotherapy for metastatic triple-negative breast cancer (KEYNOTE-119): A randomised, open-label, phase 3 trial. Lancet Oncol., 2021, 22(4), 499-511.
[http://dx.doi.org/10.1016/S1470-2045(20)30754-3] [PMID: 33676601]
[11]
Amir, E.; Cescon, D.W. Pembrolizumab monotherapy in metastatic triple-negative breast cancer. Lancet Oncol., 2021, 22(4), 415-417.
[http://dx.doi.org/10.1016/S1470-2045(21)00019-X] [PMID: 33676605]
[12]
Clouthier, D.L.; Lien, S.C.; Yang, S.Y.C.; Nguyen, L.T.; Manem, V.S.K.; Gray, D.; Ryczko, M.; Razak, A.R.A.; Lewin, J.; Lheureux, S.; Colombo, I.; Bedard, P.L.; Cescon, D.; Spreafico, A.; Butler, M.O.; Hansen, A.R.; Jang, R.W.; Ghai, S.; Weinreb, I.; Sotov, V.; Gadalla, R.; Noamani, B.; Guo, M.; Elston, S.; Giesler, A.; Hakgor, S.; Jiang, H.; McGaha, T.; Brooks, D.G.; Haibe-Kains, B.; Pugh, T.J.; Ohashi, P.S.; Siu, L.L. An interim report on the investigator-initiated phase 2 study of pembrolizumab immunological response evaluation (INSPIRE). J. Immunother. Cancer, 2019, 7(1), 72.
[http://dx.doi.org/10.1186/s40425-019-0541-0] [PMID: 30867072]
[13]
KEYTRUDA® (pembrolizumab) 2017. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/125514s014lbl.pdf
[14]
FDA Approves Merck’s KEYTRUDA® (pembrolizumab) in combination with chemotherapy for patients with locally recurrent unresectable or metastatic triple-negative breast cancer whose tumors express PD-L1 (CPS ≥10). Available from: https://www.merck.com/news/fda-approves-mercks-keytruda-pembrolizumab-in-combination-with-chemotherapy-for-patients-with-locally-recurrent-unresectable-or-metastatic-triple%E2%80%91negative-breast-cancer-whose/
[15]
Iwata, H. 49MO IMpassion130: Final OS analysis from the pivotal phase III study of atezolizumab+ nab-paclitaxel vs. placebo+ nab-paclitaxel in previously untreated locally advanced or metastatic triple-negative breast cancer. Ann. Oncol., 2020, 31, S1261-S1262.
[http://dx.doi.org/10.1016/j.annonc.2020.10.069]
[16]
Miles, D.W. LBA15 Primary results from IMpassion131, a double-blind placebo-controlled randomised phase III trial of first-line paclitaxel (PAC) ± atezolizumab (atezo) for unresectable locally advanced/metastatic triple-negative breast cancer (mTNBC). Ann. Oncol., 2020, 31, S1147-S1148.
[http://dx.doi.org/10.1016/j.annonc.2020.08.2243]
[17]
Cortes, J. KEYNOTE-355: Randomized, double-blind, phase III study of pembrolizumab chemotherapy versus placebo chemotherapy for previously untreated locally recurrent inoperable or metastatic triple-negative breast cancer. J. Clin. Oncol., 2020, 38, 1000.
[http://dx.doi.org/10.1200/JCO.2020.38.15_suppl.1000]
[18]
FDA. TECENTRIQ® (atezolizumab) injection, for intravenous use Initial U.S. Approval: 2016. 2016. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/761034s010lbl.pdf
[19]
Schmid, P.; Adams, S.; Rugo, H.S.; Schneeweiss, A.; Barrios, C.H.; Iwata, H.; Diéras, V.; Hegg, R. Im, S.A.; Shaw Wright, G.; Henschel, V.; Molinero, L.; Chui, S.Y.; Funke, R.; Husain, A.; Winer, E.P.; Loi, S.; Emens, L.A. Atezolizumab and nab-paclitaxel in advanced triple-negative breast cancer. N. Engl. J. Med., 2018, 379(22), 2108-2121.
[http://dx.doi.org/10.1056/NEJMoa1809615] [PMID: 30345906]
[20]
Cortés, J. LBA16 KEYNOTE-355: Final results from a randomized, double-blind phase III study of first-line pembrolizumab+ chemotherapy vs. placebo+ chemotherapy for metastatic TNBC. Ann. Oncol., 2021, 32, S1289-S1290.
[http://dx.doi.org/10.1016/j.annonc.2021.08.2089]
[21]
Gennari, A.; André, F.; Barrios, C.H.; Cortés, J.; de Azambuja, E.; DeMichele, A.; Dent, R.; Fenlon, D.; Gligorov, J.; Hurvitz, S.A. Im, S.A.; Krug, D.; Kunz, W.G.; Loi, S.; Penault-Llorca, F.; Ricke, J.; Robson, M.; Rugo, H.S.; Saura, C.; Schmid, P.; Singer, C.F.; Spanic, T.; Tolaney, S.M.; Turner, N.C.; Curigliano, G.; Loibl, S.; Paluch-Shimon, S.; Harbeck, N. ESMO Clinical Practice Guideline for the diagnosis, staging and treatment of patients with metastatic breast cancer. Ann. Oncol., 2021, 32(12), 1475-1495.
[http://dx.doi.org/10.1016/j.annonc.2021.09.019] [PMID: 34678411]
[22]
Center for Drug Evaluation & Research. FDA approves pembrolizumab for high-risk early-stage triple-negative b. 2021. Available from: https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-pembrolizumab-high-risk-early-stage-triple-negative-breast-cancer
[23]
Nanda, R. Abstract P6-10-03: KEYNOTE-012: Long-lasting responses in a phase Ib study of pembrolizumab for metastatic triple-negative breast cancer (mTNBC). Cancer Res., 2017, 77(Suppl 4), P6-10-03..
[http://dx.doi.org/10.1158/1538-7445.SABCS16-P6-10-03]
[24]
Emens, L.A.; Cruz, C.; Eder, J.P.; Braiteh, F.; Chung, C.; Tolaney, S.M.; Kuter, I.; Nanda, R.; Cassier, P.A.; Delord, J.P.; Gordon, M.S.; ElGabry, E.; Chang, C.W.; Sarkar, I.; Grossman, W.; O’Hear, C.; Fassò, M.; Molinero, L.; Schmid, P. Long-term clinical outcomes and biomarker analyses of atezolizumab therapy for patients with metastatic triple-negative breast cancer: A phase 1 study. JAMA Oncol., 2019, 5(1), 74-82.
[http://dx.doi.org/10.1001/jamaoncol.2018.4224] [PMID: 30242306]
[25]
Havel, J.J.; Chowell, D.; Chan, T.A. The evolving landscape of biomarkers for checkpoint inhibitor immunotherapy. Nat. Rev. Cancer, 2019, 19(3), 133-150.
[http://dx.doi.org/10.1038/s41568-019-0116-x] [PMID: 30755690]
[26]
Bianchini, G.; Balko, J.M.; Mayer, I.A.; Sanders, M.E.; Gianni, L. Triple-negative breast cancer: Challenges and opportunities of a heterogeneous disease. Nat. Rev. Clin. Oncol., 2016, 13(11), 674-690.
[http://dx.doi.org/10.1038/nrclinonc.2016.66] [PMID: 27184417]
[27]
O’Donnell, J.S.; Teng, M.W.L.; Smyth, M.J. Cancer immunoediting and resistance to T cell-based immunotherapy. Nat. Rev. Clin. Oncol., 2019, 16(3), 151-167.
[http://dx.doi.org/10.1038/s41571-018-0142-8] [PMID: 30523282]
[28]
Tolaney, S.M.; Barroso-Sousa, R.; Keenan, T.; Li, T.; Trippa, L.; Vaz-Luis, I.; Wulf, G.; Spring, L.; Sinclair, N.F.; Andrews, C.; Pittenger, J.; Richardson, E.T., III; Dillon, D.; Lin, N.U.; Overmoyer, B.; Partridge, A.H.; Van Allen, E.; Mittendorf, E.A.; Winer, E.P.; Krop, I.E. Effect of eribulin with or without pembrolizumab on progression-free survival for patients with hormone receptor-positive, erbb2-negative metastatic breast cancer: A randomized clinical trial. JAMA Oncol., 2020, 6(10), 1598-1605.
[http://dx.doi.org/10.1001/jamaoncol.2020.3524] [PMID: 32880602]
[29]
Pérez-García, J.M.; Llombart-Cussac, A.; Cortés, G. M.; Curigliano, G.; López-Miranda, E.; Alonso, J.L.; Bermejo, B.; Calvo, L.; Carañana, V.; de la Cruz Sánchez, S.; M Vázquez, R.; Prat, A.; R Borrego, M.; Sampayo-Cordero, M.; Seguí-Palmer, M.Á.; Soberino, J.; Malfettone, A.; Schmid, P.; Cortés, J. Pembrolizumab plus eribulin in hormone-receptor-positive, HER2-negative, locally recurrent or metastatic breast cancer (KELLY): An open-label, multicentre, single-arm, phase trial. Eur. J. Cancer, 2021, 148, 382-394.
[http://dx.doi.org/10.1016/j.ejca.2021.02.028] [PMID: 33794440]
[30]
Rugo, H.S. A phase Ib study of abemaciclib in combination with pembrolizumab for patients with Hormone Receptor positive (HR), human epidermal growth factor receptor 2 negative (HER2-) locally advanced or Metastatic Breast Cancer (MBC) (NCT02779751): Interim results. J. Clin. Oncol., 2020, 38, 1051-1051.
[http://dx.doi.org/10.1200/JCO.2020.38.15_suppl.1051]
[31]
Banchereau, R.; Leng, N.; Zill, O.; Sokol, E.; Liu, G.; Pavlick, D.; Maund, S.; Liu, L.F.; Kadel, E., III; Baldwin, N.; Jhunjhunwala, S.; Nickles, D.; Assaf, Z.J.; Bower, D.; Patil, N.; McCleland, M.; Shames, D.; Molinero, L.; Huseni, M.; Sanjabi, S.; Cummings, C.; Mellman, I.; Mariathasan, S.; Hegde, P.; Powles, T. Molecular determinants of response to PD-L1 blockade across tumor types. Nat. Commun., 2021, 12(1), 3969.
[http://dx.doi.org/10.1038/s41467-021-24112-w] [PMID: 34172722]
[32]
Wei, H.; Zhao, L.; Li, W.; Fan, K.; Qian, W.; Hou, S.; Wang, H.; Dai, M.; Hellstrom, I.; Hellstrom, K.E.; Guo, Y. Combinatorial PD-1 blockade and CD137 activation has therapeutic efficacy in murine cancer models and synergizes with cisplatin. PLoS One, 2013, 8(12), e84927.
[http://dx.doi.org/10.1371/journal.pone.0084927] [PMID: 24367702]
[33]
Lu, H.; Yang, Y.; Gad, E.; Inatsuka, C.; Wenner, C.A.; Disis, M.L.; Standish, L.J. TLR2 agonist PSK activates human NK cells and enhances the antitumor effect of HER2-targeted monoclonal antibody therapy. Clin. Cancer Res., 2011, 17(21), 6742-6753.
[http://dx.doi.org/10.1158/1078-0432.CCR-11-1142] [PMID: 21918170]
[34]
Park, S.; Jiang, Z.; Mortenson, E.D.; Deng, L.; Radkevich-Brown, O.; Yang, X.; Sattar, H.; Wang, Y.; Brown, N.K.; Greene, M.; Liu, Y.; Tang, J.; Wang, S.; Fu, Y.X. The therapeutic effect of anti-HER2/neu antibody depends on both innate and adaptive immunity. Cancer Cell, 2010, 18(2), 160-170.
[http://dx.doi.org/10.1016/j.ccr.2010.06.014] [PMID: 20708157]
[35]
Dirix, L.Y.; Takacs, I.; Jerusalem, G.; Nikolinakos, P.; Arkenau, H.T.; Forero-Torres, A.; Boccia, R.; Lippman, M.E.; Somer, R.; Smakal, M.; Emens, L.A.; Hrinczenko, B.; Edenfield, W.; Gurtler, J.; von Heydebreck, A.; Grote, H.J.; Chin, K.; Hamilton, E.P. Avelumab, an anti-PD-L1 antibody, in patients with locally advanced or metastatic breast cancer: a phase 1b JAVELIN Solid Tumor study. Breast Cancer Res. Treat., 2018, 167(3), 671-686.
[http://dx.doi.org/10.1007/s10549-017-4537-5] [PMID: 29063313]
[36]
Chia, S.; Bedard, P.L.; Hilton, J.; Amir, E.; Gelmon, K.; Goodwin, R.; Villa, D.; Cabanero, M.; Tu, D.; Tsao, M.; Seymour, L. A phase Ib trial of durvalumab in combination with trastuzumab in HER2-positive metastatic breast cancer (CCTG IND.229). Oncologist, 2019, 24(11), 1439-1445.
[http://dx.doi.org/10.1634/theoncologist.2019-0321] [PMID: 31420468]
[37]
Emens, L.A.; Esteva, F.J.; Beresford, M.; Saura, C.; De Laurentiis, M.; Kim, S.B.; Im, S.A.; Wang, Y.; Salgado, R.; Mani, A.; Shah, J.; Lambertini, C.; Liu, H.; de Haas, S.L.; Patre, M.; Loi, S. Trastuzumab emtansine plus atezolizumab versus trastuzumab emtansine plus placebo in previously treated, HER2-positive advanced breast cancer (KATE2): A phase 2, multicentre, randomised, double-blind trial. Lancet Oncol., 2020, 21(10), 1283-1295.
[http://dx.doi.org/10.1016/S1470-2045(20)30465-4] [PMID: 33002436]
[38]
Bachelot, T.; Filleron, T.; Bieche, I.; Arnedos, M.; Campone, M.; Dalenc, F.; Coussy, F.; Sablin, M.P.; Debled, M.; Lefeuvre-Plesse, C.; Goncalves, A.; Reynier, M.M.; Jacot, W.; You, B.; Barthelemy, P.; Verret, B.; Isambert, N.; Tchiknavorian, X.; Levy, C.; Thery, J.C.; L’Haridon, T.; Ferrero, J.M.; Mege, A.; Del Piano, F.; Rouleau, E.; Tran-Dien, A.; Adam, J.; Lusque, A.; Jimenez, M.; Jacquet, A.; Garberis, I.; Andre, F. Durvalumab compared to maintenance chemotherapy in metastatic breast cancer: The randomized phase II SAFIR02-BREAST IMMUNO trial. Nat. Med., 2021, 27(2), 250-255.
[http://dx.doi.org/10.1038/s41591-020-01189-2] [PMID: 33462450]
[39]
Antonia, S.J.; Villegas, A.; Daniel, D.; Vicente, D.; Murakami, S.; Hui, R.; Kurata, T.; Chiappori, A.; Lee, K.H.; de Wit, M.; Cho, B.C.; Bourhaba, M.; Quantin, X.; Tokito, T.; Mekhail, T.; Planchard, D.; Kim, Y.C.; Karapetis, C.S.; Hiret, S.; Ostoros, G.; Kubota, K.; Gray, J.E.; Paz-Ares, L.; de Castro Carpeño, J.; Faivre-Finn, C.; Reck, M.; Vansteenkiste, J.; Spigel, D.R.; Wadsworth, C.; Melillo, G.; Taboada, M.; Dennis, P.A. Özgüroğlu, M. Overall survival with durvalumab after chemoradiotherapy in stage III NSCLC. N. Engl. J. Med., 2018, 379(24), 2342-2350.
[http://dx.doi.org/10.1056/NEJMoa1809697] [PMID: 30280658]
[40]
Cortazar, P.; Zhang, L.; Untch, M.; Mehta, K.; Costantino, J.P.; Wolmark, N.; Bonnefoi, H.; Cameron, D.; Gianni, L.; Valagussa, P.; Swain, S.M.; Prowell, T.; Loibl, S.; Wickerham, D.L.; Bogaerts, J.; Baselga, J.; Perou, C.; Blumenthal, G.; Blohmer, J.; Mamounas, E.P.; Bergh, J.; Semiglazov, V.; Justice, R.; Eidtmann, H.; Paik, S.; Piccart, M.; Sridhara, R.; Fasching, P.A.; Slaets, L.; Tang, S.; Gerber, B.; Geyer, C.E., Jr; Pazdur, R.; Ditsch, N.; Rastogi, P.; Eiermann, W.; von Minckwitz, G. Pathological complete response and long-term clinical benefit in breast cancer: The CTNeoBC pooled analysis. Lancet, 2014, 384(9938), 164-172.
[http://dx.doi.org/10.1016/S0140-6736(13)62422-8] [PMID: 24529560]
[41]
Esserman, L.J.; Berry, D.A.; Cheang, M.C.; Yau, C.; Perou, C.M.; Carey, L.; DeMichele, A.; Gray, J.W.; Conway-Dorsey, K.; Lenburg, M.E.; Buxton, M.B.; Davis, S.E.; van’t Veer, L.J.; Hudis, C.; Chin, K.; Wolf, D.; Krontiras, H.; Montgomery, L.; Tripathy, D.; Lehman, C.; Liu, M.C.; Olopade, O.I.; Rugo, H.S.; Carpenter, J.T.; Livasy, C.; Dressler, L.; Chhieng, D.; Singh, B.; Mies, C.; Rabban, J.; Chen, Y.Y.; Giri, D.; Au, A.; Hylton, N. Chemotherapy response and recurrence-free survival in neoadjuvant breast cancer depends on biomarker profiles: Results from the I-SPY 1 TRIAL (CALGB 150007/150012; ACRIN 6657). Breast Cancer Res. Treat., 2012, 132(3), 1049-1062.
[http://dx.doi.org/10.1007/s10549-011-1895-2] [PMID: 22198468]
[42]
Esserman, L.J.; Berry, D.A.; DeMichele, A.; Carey, L.; Davis, S.E.; Buxton, M.; Hudis, C.; Gray, J.W.; Perou, C.; Yau, C.; Livasy, C.; Krontiras, H.; Montgomery, L.; Tripathy, D.; Lehman, C.; Liu, M.C.; Olopade, O.I.; Rugo, H.S.; Carpenter, J.T.; Dressler, L.; Chhieng, D.; Singh, B.; Mies, C.; Rabban, J.; Chen, Y.Y.; Giri, D.; van ’t Veer, L.; Hylton, N. Pathologic complete response predicts recurrence-free survival more effectively by cancer subset: Results from the I-SPY 1 TRIAL--CALGB 150007/150012, ACRIN 6657. J. Clin. Oncol., 2012, 30(26), 3242-3249.
[http://dx.doi.org/10.1200/JCO.2011.39.2779] [PMID: 22649152]
[43]
Fisher, B.; Bryant, J.; Wolmark, N.; Mamounas, E.; Brown, A.; Fisher, E.R.; Wickerham, D.L.; Begovic, M.; DeCillis, A.; Robidoux, A.; Margolese, R.G.; Cruz, A.B., Jr; Hoehn, J.L.; Lees, A.W.; Dimitrov, N.V.; Bear, H.D. Effect of preoperative chemotherapy on the outcome of women with operable breast cancer. J. Clin. Oncol., 1998, 16(8), 2672-2685.
[http://dx.doi.org/10.1200/JCO.1998.16.8.2672] [PMID: 9704717]
[44]
Fisher, B.; Brown, A.; Mamounas, E.; Wieand, S.; Robidoux, A.; Margolese, R.G.; Cruz, A.B., Jr; Fisher, E.R.; Wickerham, D.L.; Wolmark, N.; DeCillis, A.; Hoehn, J.L.; Lees, A.W.; Dimitrov, N.V. Effect of preoperative chemotherapy on local-regional disease in women with operable breast cancer: Findings from National Surgical Adjuvant Breast and Bowel Project B-18. J. Clin. Oncol., 1997, 15(7), 2483-2493.
[http://dx.doi.org/10.1200/JCO.1997.15.7.2483] [PMID: 9215816]
[45]
Mittendorf, E.A.; Zhang, H.; Barrios, C.H.; Saji, S.; Jung, K.H.; Hegg, R.; Koehler, A.; Sohn, J.; Iwata, H.; Telli, M.L.; Ferrario, C.; Punie, K.; Penault-Llorca, F.; Patel, S.; Duc, A.N.; Liste-Hermoso, M.; Maiya, V.; Molinero, L.; Chui, S.Y.; Harbeck, N. Neoadjuvant atezolizumab in combination with sequential nab-paclitaxel and anthracycline-based chemotherapy versus placebo and chemotherapy in patients with early-stage triple-negative breast cancer (IMpassion031): A randomised, double-blind, phase 3 trial. Lancet, 2020, 396(10257), 1090-1100.
[http://dx.doi.org/10.1016/S0140-6736(20)31953-X] [PMID: 32966830]
[46]
United States Food and Drug Administration. United states food and drug administration (US FDA). Pembrolizumab - Oncologic drugs advisory committee briefing document: high-risk, early-stage triple-negative breast cancer. 2021. Available from: https://www.fda.gov/media/145654/download
[47]
Schmid, P.; Cortes, J.; Pusztai, L.; McArthur, H.; Kümmel, S.; Bergh, J.; Denkert, C.; Park, Y.H.; Hui, R.; Harbeck, N.; Takahashi, M.; Foukakis, T.; Fasching, P.A.; Cardoso, F.; Untch, M.; Jia, L.; Karantza, V.; Zhao, J.; Aktan, G.; Dent, R.; O’Shaughnessy, J. Pembrolizumab for early triple-negative breast cancer. N. Engl. J. Med., 2020, 382(9), 810-821.
[http://dx.doi.org/10.1056/NEJMoa1910549] [PMID: 32101663]
[48]
Gianni, L. Abstract GS3-04: Pathologic complete response (pCR) to neoadjuvant treatment with or without atezolizumab in triple negative, early high-risk and locally advanced breast cancer. NeoTRIPaPDL1 Michelangelo randomized study. Cancer Res., 2020, 80(Suppl. 4), GS3-GS04.
[http://dx.doi.org/10.1158/1538-7445.SABCS19-GS3-04]
[49]
Merck announces phase 3 KEYNOTE-522 trial met dual primary endpoint of event-free survival (EFS) in patients with high-risk early-stage triple-negative breast cancer (TNBC) - 2021. Available from: https://www.merck.com/news/merck-announces-phase-3-keynote-522-trial-met-dual-primary-endpoint-of-event-free-survival-efs-in-patients-with-high-risk-early-stage-triple-negative-breast-cancer-tnbc/
[50]
Schmid, P. VP7-2021: KEYNOTE-522: Phase III study of neoadjuvant pembrolizumab+ chemotherapy vs. placebo+ chemotherapy, followed by adjuvant pembrolizumab vs. placebo for early-stage TNBC. Ann. Oncol., 2021, 32, 1198-1200.
[http://dx.doi.org/10.1016/j.annonc.2021.06.014]
[51]
Loibl, S. Durvalumab improves long-term outcome in TNBC: results from the phase II randomized GeparNUEVO study investigating neodjuvant durvalumab in addition to an anthracycline/taxane based neoadjuvant chemotherapy in early triple-negative breast cancer (TNBC). J. Clin. Oncol., 2021, 39(Suppl. 5), 506.
[52]
Nanda, R.; Liu, M.C.; Yau, C.; Shatsky, R.; Pusztai, L.; Wallace, A.; Chien, A.J.; Forero-Torres, A.; Ellis, E.; Han, H.; Clark, A.; Albain, K.; Boughey, J.C.; Jaskowiak, N.T.; Elias, A.; Isaacs, C.; Kemmer, K.; Helsten, T.; Majure, M.; Stringer-Reasor, E.; Parker, C.; Lee, M.C.; Haddad, T.; Cohen, R.N.; Asare, S.; Wilson, A.; Hirst, G.L.; Singhrao, R.; Steeg, K.; Asare, A.; Matthews, J.B.; Berry, S.; Sanil, A.; Schwab, R.; Symmans, W.F.; van ’t Veer, L.; Yee, D.; DeMichele, A.; Hylton, N.M.; Melisko, M.; Perlmutter, J.; Rugo, H.S.; Berry, D.A.; Esserman, L.J. Effect of pembrolizumab plus neoadjuvant chemotherapy on pathologic complete response in women with early-stage breast cancer: An analysis of the ongoing phase 2 adaptively randomized I-SPY2 trial. JAMA Oncol., 2020, 6(5), 676-684.
[http://dx.doi.org/10.1001/jamaoncol.2019.6650] [PMID: 32053137]
[53]
Cardoso, F. KEYNOTE-756: Randomized, double-blind, phase 3 study of pembrolizumab vs. placebo combined with neoadjuvant chemotherapy and adjuvant endocrine therapy for high-risk, early-stage estrogen receptor–positive, human epidermal growth factor receptor 2–negative (ER/HER2-) breast cancer. J. Clin. Oncol., 2019, 37, TPS601-TPS601.
[http://dx.doi.org/10.1200/JCO.2019.37.15_suppl.TPS601]
[54]
Loi, S. A phase III trial of nivolumab with neoadjuvant chemotherapy and adjuvant endocrine therapy in ER+/HER2- primary breast cancer: CheckMate 7FL. J. Clin. Oncol., 2020.
[http://dx.doi.org/10.1200/JCO.2020.38.15_suppl.TPS604]
[55]
Wimberly, H.; Brown, J.R.; Schalper, K.; Haack, H.; Silver, M.R.; Nixon, C.; Bossuyt, V.; Pusztai, L.; Lannin, D.R.; Rimm, D.L. PD-L1 expression correlates with tumor-infiltrating lymphocytes and response to neoadjuvant chemotherapy in breast cancer. Cancer Immunol. Res., 2015, 3(4), 326-332.
[http://dx.doi.org/10.1158/2326-6066.CIR-14-0133] [PMID: 25527356]
[56]
Kim, A.; Lee, S.J.; Kim, Y.K.; Park, W.Y.; Park, D.Y.; Kim, J.Y.; Lee, C.H.; Gong, G.; Huh, G.Y.; Choi, K.U. Programmed death-ligand 1 (PD-L1) expression in tumour cell and tumour infiltrating lymphocytes of HER2-positive breast cancer and its prognostic value. Sci. Rep., 2017, 7(1), 11671.
[http://dx.doi.org/10.1038/s41598-017-11905-7] [PMID: 28916815]
[57]
Stagg, J.; Loi, S.; Divisekera, U.; Ngiow, S.F.; Duret, H.; Yagita, H.; Teng, M.W.; Smyth, M.J. Anti-ErbB-2 mAb therapy requires type I and II interferons and synergizes with anti-PD-1 or anti-CD137 mAb therapy. Proc. Natl. Acad. Sci. USA, 2011, 108(17), 7142-7147.
[http://dx.doi.org/10.1073/pnas.1016569108] [PMID: 21482773]
[58]
Müller, P.; Kreuzaler, M.; Khan, T.; Thommen, D.S.; Martin, K.; Glatz, K.; Savic, S.; Harbeck, N.; Nitz, U.; Gluz, O.; von Bergwelt-Baildon, M.; Kreipe, H.; Reddy, S.; Christgen, M.; Zippelius, A. Trastuzumab emtansine (T-DM1) renders HER2+ breast cancer highly susceptible to CTLA-4/PD-1 blockade. Sci. Transl. Med., 2015, 7(315), 315ra188.
[http://dx.doi.org/10.1126/scitranslmed.aac4925] [PMID: 26606967]
[59]
Huober, J. VP6-2021: IMpassion050: A phase III study of neoadjuvant atezolizumab pertuzumab trastuzumab chemotherapy (neoadj A PH CT) in high-risk, HER2-positive early breast cancer (EBC). Ann. Oncol., 2021, 32(8), 1061-1062.
[http://dx.doi.org/10.1016/j.annonc.2021.05.800]
[60]
Schmid, P.; Rugo, H.S.; Adams, S.; Schneeweiss, A.; Barrios, C.H.; Iwata, H.; Diéras, V.; Henschel, V.; Molinero, L.; Chui, S.Y.; Maiya, V.; Husain, A.; Winer, E.P.; Loi, S.; Emens, L.A. Atezolizumab plus nab-paclitaxel as first-line treatment for unresectable, locally advanced or metastatic triple-negative breast cancer (IMpassion130): Updated efficacy results from a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol., 2020, 21(1), 44-59.
[http://dx.doi.org/10.1016/S1470-2045(19)30689-8] [PMID: 31786121]
[61]
Rugo, H. Abstract PD1-07: Exploratory analytical harmonization of PD-L1 immunohistochemistry assays in advanced triple-negative breast cancer: A retrospective substudy of IMpassion130. Cancer Res., 2020, 80(Suppl. 4), PD1-PD07.
[62]
Chen, D.S.; Mellman, I. Elements of cancer immunity and the cancer-immune set point. Nature, 2017, 541(7637), 321-330.
[http://dx.doi.org/10.1038/nature21349] [PMID: 28102259]
[63]
McGrail, D.J.; Pilié, P.G.; Rashid, N.U.; Voorwerk, L.; Slagter, M.; Kok, M.; Jonasch, E.; Khasraw, M.; Heimberger, A.B.; Lim, B.; Ueno, N.T.; Litton, J.K.; Ferrarotto, R.; Chang, J.T.; Moulder, S.L.; Lin, S.Y. High tumor mutation burden fails to predict immune checkpoint blockade response across all cancer types. Ann. Oncol., 2021, 32(5), 661-672.
[http://dx.doi.org/10.1016/j.annonc.2021.02.006] [PMID: 33736924]
[64]
Blenman, K.R.M. Abstract P3-09-05: Predictive markers of response to durvalumab concurrent with nab-paclitaxel and dose dense doxorubicin cyclophosphamide (ddAC) neoadjuvant therapy for triple negative breast cancer (TNBC). Cancer Res., 2020, 80(Suppl. 4), 3-0905.
[http://dx.doi.org/10.1158/1538-7445.SABCS19-P3-09-05]
[65]
Mao, Y.; Qu, Q.; Zhang, Y.; Liu, J.; Chen, X.; Shen, K. The value of tumor infiltrating lymphocytes (TILs) for predicting response to neoadjuvant chemotherapy in breast cancer: A systematic review and meta-analysis. PLoS One, 2014, 9(12), e115103.
[http://dx.doi.org/10.1371/journal.pone.0115103] [PMID: 25501357]
[66]
Loi, S. Relationship between tumor infiltrating lymphocyte (TIL) levels and response to pembrolizumab (pembro) in metastatic triple-negative breast cancer (mTNBC): Results from KEYNOTE-086. Ann. Oncol., 2017, 28(Suppl. 5), V608.
[http://dx.doi.org/10.1093/annonc/mdx440.005]
[67]
Thommen, D.S.; Schumacher, T.N. T cell dysfunction in cancer. Cancer Cell, 2018, 33(4), 547-562.
[http://dx.doi.org/10.1016/j.ccell.2018.03.012] [PMID: 29634943]
[68]
Emens, L.A.; Molinero, L.; Loi, S.; Rugo, H.S.; Schneeweiss, A.; Diéras, V.; Iwata, H.; Barrios, C.H.; Nechaeva, M.; Nguyen-Duc, A.; Chui, S.Y.; Husain, A.; Winer, E.P.; Adams, S.; Schmid, P. Atezolizumab and nab-Paclitaxel in advanced triple-negative breast cancer: Biomarker evaluation of the IMpassion130 study. J. Natl. Cancer Inst., 2021, 113(8), 1005-1016.
[http://dx.doi.org/10.1093/jnci/djab004] [PMID: 33523233]
[69]
Glodzik, D.; Bosch, A.; Hartman, J.; Aine, M.; Vallon-Christersson, J.; Reuterswärd, C.; Karlsson, A.; Mitra, S.; Niméus, E.; Holm, K.; Häkkinen, J.; Hegardt, C.; Saal, L.H.; Larsson, C.; Malmberg, M.; Rydén, L.; Ehinger, A.; Loman, N.; Kvist, A.; Ehrencrona, H.; Nik-Zainal, S.; Borg, Å.; Staaf, J. Comprehensive molecular comparison of BRCA1 hypermethylated and BRCA1 mutated triple negative breast cancers. Nat. Commun., 2020, 11(1), 3747.
[http://dx.doi.org/10.1038/s41467-020-17537-2] [PMID: 32719340]
[70]
Yarchoan, M.; Johnson, B.A., III; Lutz, E.R.; Laheru, D.A.; Jaffee, E.M. Targeting neoantigens to augment antitumour immunity. Nat. Rev. Cancer, 2017, 17(9), 569.
[http://dx.doi.org/10.1038/nrc.2017.74] [PMID: 28835723]
[71]
Emens, L.A. The tumor microenvironment (TME) and atezolizumab + nab-paclitaxel (A+nP) activity in metastatic triple-negative breast cancer (mTNBC): IMpassion130. J. Clin. Orthod., 2021, 39, 1006-1006.
[http://dx.doi.org/10.1200/JCO.2021.39.15_suppl.1006]
[72]
Loi, S. Abstract LB-225: RNA molecular signatures as predictive biomarkers of response to monotherapy pembrolizumab in patients with metastatic triple-negative breast cancer: KEYNOTE-086. Cancer Res., 2019, 79(Suppl. 13), LB-225.
[http://dx.doi.org/10.1158/1538-7445.SABCS18-LB-225]
[73]
Loi, S. Abstract PD14-07: Association between biomarkers and response to pembrolizumab in patients with metastatic triple-negative breast cancer (mTNBC): Exploratory analysis from KEYNOTE-086. Cancer Res., 2021, 81(Suppl. 4), PD14-PD07.
[http://dx.doi.org/10.1158/1538-7445.SABCS20-PD14-07]
[74]
Bratman, S.V. Personalized circulating tumor DNA analysis as a predictive biomarker in solid tumor patients treated with pembrolizumab. Nat. Can., 2020, 1, 873-881.
[http://dx.doi.org/10.1038/s43018-020-0096-5]
[75]
Tan, T.; Wang, L.; Cescon, D.; Amir, E.; Warr, D.; Elser, C.; Butler, M.; Razak, A.; Hansen, A.; Spreafico, A.; Siu, L.; Bedard, P. Outcomes of advanced triple negative breast cancer patients enrolled in immune oncology clinical trials. In: Society for Immunotherapy of Cancer (SITC) - Abstracts (2018) 894 (Society for Immunotherapy of Cancer (SITC)., 2018.
[76]
Kim, K.; Kim, H.S.; Kim, J.Y.; Jung, H.; Sun, J.M.; Ahn, J.S.; Ahn, M.J.; Park, K.; Lee, S.H.; Choi, J.K. Predicting clinical benefit of immunotherapy by antigenic or functional mutations affecting tumour immunogenicity. Nat. Commun., 2020, 11(1), 951.
[http://dx.doi.org/10.1038/s41467-020-14562-z] [PMID: 32075964]
[77]
Gibney, G.T.; Weiner, L.M.; Atkins, M.B. Predictive biomarkers for checkpoint inhibitor-based immunotherapy. Lancet Oncol., 2016, 17(12), e542-e551.
[http://dx.doi.org/10.1016/S1470-2045(16)30406-5] [PMID: 27924752]
[78]
Kichenadasse, G.; Miners, J.O.; Mangoni, A.A.; Rowland, A.; Hopkins, A.M.; Sorich, M.J. Association between body mass index and overall survival with immune checkpoint inhibitor therapy for advanced non-small cell lung cancer. JAMA Oncol., 2020, 6(4), 512-518.
[http://dx.doi.org/10.1001/jamaoncol.2019.5241] [PMID: 31876896]
[79]
Tilg, H.; Moschen, A.R. Adipocytokines: Mediators linking adipose tissue, inflammation and immunity. Nat. Rev. Immunol., 2006, 6(10), 772-783.
[http://dx.doi.org/10.1038/nri1937] [PMID: 16998510]
[80]
Abella, V.; Scotece, M.; Conde, J.; Pino, J.; Gonzalez-Gay, M.A.; Gómez-Reino, J.J.; Mera, A.; Lago, F.; Gómez, R.; Gualillo, O. Leptin in the interplay of inflammation, metabolism and immune system disorders. Nat. Rev. Rheumatol., 2017, 13(2), 100-109.
[http://dx.doi.org/10.1038/nrrheum.2016.209] [PMID: 28053336]
[81]
La Cava, A.; Matarese, G. The weight of leptin in immunity. Nat. Rev. Immunol., 2004, 4(5), 371-379.
[http://dx.doi.org/10.1038/nri1350] [PMID: 15122202]
[82]
Reck, M.; Rodríguez-Abreu, D.; Robinson, A.G.; Hui, R. Csőszi, T.; Fülöp, A.; Gottfried, M.; Peled, N.; Tafreshi, A.; Cuffe, S.; O’Brien, M.; Rao, S.; Hotta, K.; Leiby, M.A.; Lubiniecki, G.M.; Shentu, Y.; Rangwala, R.; Brahmer, J.R. Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer. N. Engl. J. Med., 2016, 375(19), 1823-1833.
[http://dx.doi.org/10.1056/NEJMoa1606774] [PMID: 27718847]
[83]
Nanda, R.; Chow, L.Q.; Dees, E.C.; Berger, R.; Gupta, S.; Geva, R.; Pusztai, L.; Pathiraja, K.; Aktan, G.; Cheng, J.D.; Karantza, V.; Buisseret, L. Pembrolizumab in patients with advanced triple-negative breast cancer: Phase Ib keynote-012 study. J. Clin. Oncol., 2016, 34(21), 2460-2467.
[http://dx.doi.org/10.1200/JCO.2015.64.8931] [PMID: 27138582]
[84]
Larkin, J.; Chiarion-Sileni, V.; Gonzalez, R.; Grob, J.J.; Rutkowski, P.; Lao, C.D.; Cowey, C.L.; Schadendorf, D.; Wagstaff, J.; Dummer, R.; Ferrucci, P.F.; Smylie, M.; Hogg, D.; Hill, A.; Márquez-Rodas, I.; Haanen, J.; Guidoboni, M.; Maio, M.; Schöffski, P.; Carlino, M.S.; Lebbé, C.; McArthur, G.; Ascierto, P.A.; Daniels, G.A.; Long, G.V.; Bastholt, L.; Rizzo, J.I.; Balogh, A.; Moshyk, A.; Hodi, F.S.; Wolchok, J.D. Five-year survival with combined nivolumab and ipilimumab in advanced melanoma. N. Engl. J. Med., 2019, 381(16), 1535-1546.
[http://dx.doi.org/10.1056/NEJMoa1910836] [PMID: 31562797]
[85]
Snyder, A.; Makarov, V.; Merghoub, T.; Yuan, J.; Zaretsky, J.M.; Desrichard, A.; Walsh, L.A.; Postow, M.A.; Wong, P.; Ho, T.S.; Hollmann, T.J.; Bruggeman, C.; Kannan, K.; Li, Y.; Elipenahli, C.; Liu, C.; Harbison, C.T.; Wang, L.; Ribas, A.; Wolchok, J.D.; Chan, T.A. Genetic basis for clinical response to CTLA-4 blockade in melanoma. N. Engl. J. Med., 2014, 371(23), 2189-2199.
[http://dx.doi.org/10.1056/NEJMoa1406498] [PMID: 25409260]
[86]
Fares, C.M.; Van Allen, E.M.; Drake, C.G.; Allison, J.P.; Hu-Lieskovan, S. Mechanisms of resistance to immune checkpoint blockade: Why does checkpoint inhibitor immunotherapy not work for all patients? Am. Soc. Clin. Oncol. Educ. Book, 2019, 39, 147-164.
[http://dx.doi.org/10.1200/EDBK_240837] [PMID: 31099674]
[87]
Shin, D.S.; Zaretsky, J.M.; Escuin-Ordinas, H.; Garcia-Diaz, A.; Hu-Lieskovan, S.; Kalbasi, A.; Grasso, C.S.; Hugo, W.; Sandoval, S.; Torrejon, D.Y.; Palaskas, N.; Rodriguez, G.A.; Parisi, G.; Azhdam, A.; Chmielowski, B.; Cherry, G.; Seja, E.; Berent-Maoz, B.; Shintaku, I.P.; Le, D.T.; Pardoll, D.M.; Diaz, L.A., Jr; Tumeh, P.C.; Graeber, T.G.; Lo, R.S.; Comin-Anduix, B.; Ribas, A. Primary resistance to PD-1 blockade mediated by JAK1/2 mutations. Cancer Discov., 2017, 7(2), 188-201.
[http://dx.doi.org/10.1158/2159-8290.CD-16-1223] [PMID: 27903500]
[88]
Roh, W.; Chen, P.L.; Reuben, A.; Spencer, C.N.; Prieto, P.A.; Miller, J.P.; Gopalakrishnan, V.; Wang, F.; Cooper, Z.A.; Reddy, S.M.; Gumbs, C.; Little, L.; Chang, Q.; Chen, W.S.; Wani, K.; De Macedo, M.P.; Chen, E.; Austin-Breneman, J.L.; Jiang, H.; Roszik, J.; Tetzlaff, M.T.; Davies, M.A.; Gershenwald, J.E.; Tawbi, H.; Lazar, A.J.; Hwu, P.; Hwu, W.J.; Diab, A.; Glitza, I.C.; Patel, S.P.; Woodman, S.E.; Amaria, R.N.; Prieto, V.G.; Hu, J.; Sharma, P.; Allison, J.P.; Chin, L.; Zhang, J.; Wargo, J.A.; Futreal, P.A. Integrated molecular analysis of tumor biopsies on sequential CTLA-4 and PD-1 blockade reveals markers of response and resistance. Sci. Transl. Med., 2017, 9(379), eaah3560.
[http://dx.doi.org/10.1126/scitranslmed.aah3560] [PMID: 28251903]
[89]
Hernando-Calvo, A.; Cescon, D.W.; Bedard, P.L. Novel classes of immunotherapy for breast cancer. Breast Cancer Res. Treat., 2021, 19(1), 15-29.
[http://dx.doi.org/10.1007/s10549-021-06405-2] [PMID: 34623509]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy