Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Review Article

Antisense Agents against Antibiotic-resistant Bacteria

Author(s): Javad Nezhadi, Sepehr Taghizadeh, Ehsaneh Khodadadi, Mehdi Yousefi, Khudaverdi Ganbarov, Bahman Yousefi, Hamed Ebrahimzadeh Leylabadlo, Mohammad Asgharzadeh, Asghar Tanomand, Fahimeh Kazeminava and Hossein Samadi Kafil*

Volume 23, Issue 15, 2022

Published on: 13 May, 2022

Page: [1813 - 1823] Pages: 11

DOI: 10.2174/1389201023666220114160216

Price: $65

Abstract

The dramatically increasing levels of antibiotic resistance are being seen worldwide and are a significant threat to public health. Antibiotic and drug resistance is seen in various bacterial species. Antibiotic resistance is associated with increased morbidity and mortality and increased treatment costs. Antisense-related technologies include oligonucleotides that interfere with gene transcription and expression; these oligonucleotides can help treat antibiotic-resistant bacteria. The important oligonucleotides include Peptide Nucleic Acids (PNAs), Phosphorodiamidate Morpholino Oligomers (PPMOs), and Locked Nucleic Acids (LNAs). Typically, the size of these structures (oligonucleotides) is 10 to 20 bases. PNAs, PPMOs, and LNAs are highlighted in this review as targets for genes that cause the gene to be destroyed and impede bacterial growth. These results open a new perspective for therapeutic intervention. Future studies need to examine different aspects of antisense agents, such as the safety, toxicity, and pharmacokinetic properties of antisense agents in clinical treatment.

Keywords: Antibiotic resistance, nucleic acids analogs, PNAs, PPMOs, LNAs, bases.

Graphical Abstract

[1]
Lin, J.; Nishino, K.; Roberts, M.C.; Tolmasky, M.; Aminov, R.I.; Zhang, L. Mechanisms of antibiotic resistance. Front. Microbiol., 2015, 6, 34.
[http://dx.doi.org/10.3389/fmicb.2015.00034] [PMID: 25699027]
[2]
Aghapour, Z.; Gholizadeh, P.; Ganbarov, K.; Bialvaei, A.Z.; Mahmood, S.S.; Tanomand, A.; Yousefi, M.; Asgharzadeh, M.; Yousefi, B.; Kafil, H.S. Molecular mechanisms related to colistin resistance in Enterobacteriaceae. Infect. Drug Resist., 2019, 12, 965-975.
[http://dx.doi.org/10.2147/IDR.S199844] [PMID: 31190901]
[3]
Li, B.; Webster, T.J. Bacteria antibiotic resistance: New challenges and opportunities for implant-associated orthopedic infections. J. Orthop. Res., 2018, 36(1), 22-32.
[PMID: 28722231]
[4]
Bialvaei, A.Z.; Kafil, H.S.; Asgharzadeh, M.; Yousef Memar, M.; Yousefi, M. Current methods for the identification of carbapenemases. J. Chemother., 2016, 28(1), 1-19.
[http://dx.doi.org/10.1179/1973947815Y.0000000063] [PMID: 26256147]
[5]
Spellberg, B.; Bartlett, J.; Wunderink, R.; Gilbert, D.N. Novel approaches are needed to develop tomorrow’s antibacterial therapies. Am. J. Respir. Crit. Care Med., 2015, 191(2), 135-140.
[http://dx.doi.org/10.1164/rccm.201410-1894OE] [PMID: 25590154]
[6]
Marston, H.D.; Dixon, D.M.; Knisely, J.M.; Palmore, T.N.; Fauci, A.S. Antimicrobial Resistance. JAMA, 2016, 316(11), 1193-1204.
[http://dx.doi.org/10.1001/jama.2016.11764] [PMID: 27654605]
[7]
Bai, H.; Luo, X.; Bobbarala, V. Antisense antibacterials: From proof-of-concept to therapeutic perspectives; Search Antibact Agents, 2012, pp. 319-344.
[8]
Narenji, H.; Gholizadeh, P.; Aghazadeh, M.; Rezaee, M.A.; Asgharzadeh, M.; Kafil, H.S. Peptide nucleic acids (PNAs): Currently potential bactericidal agents. Biomed. Pharmacother., 2017, 93, 580-588.
[http://dx.doi.org/10.1016/j.biopha.2017.06.092] [PMID: 28686972]
[9]
Goh, S.; Stach, J.; Good, L. Antisense effects of PNAs in bacteria.Peptide Nucleic Acids; Springer, 2014, pp. 223-236.
[http://dx.doi.org/10.1007/978-1-62703-553-8_18]
[10]
Yan, Q.; Lin, M.; Huang, W.; Teymournejad, O.; Johnson, J.M.; Hays, F.A.; Liang, Z.; Li, G.; Rikihisa, Y. Ehrlichia type IV secretion system effector Etf-2 binds to active RAB5 and delays endosome maturation. Proc. Natl. Acad. Sci. USA, 2018, 115(38), E8977-E8986.
[http://dx.doi.org/10.1073/pnas.1806904115] [PMID: 30181274]
[11]
Narenji, H.; Teymournejad, O.; Rezaee, M.A.; Taghizadeh, S.; Mehramuz, B.; Aghazadeh, M.; Asgharzadeh, M.; Madhi, M.; Gholizadeh, P.; Ganbarov, K.; Yousefi, M.; Pakravan, A.; Dal, T.; Ahmadi, R.; Samadi Kafil, H. Antisense peptide nucleic acids againstftsZ andefaA genes inhibit growth and biofilm formation of Enterococcusfaecalis. Microb. Pathog., 2020, 139, 103907.
[http://dx.doi.org/10.1016/j.micpath.2019.103907] [PMID: 31811888]
[12]
Nejad, A.J.; Shahrokhi, N.; Nielsen, P.E. Targeting of the Essential acpP, ftsZ, and rne Genes in Carbapenem-Resistant Acinetobacter baumannii by Antisense PNA Precision Antibacterials. Biomedicines, 2021, 9(4), 429.
[http://dx.doi.org/10.3390/biomedicines9040429] [PMID: 33921011]
[13]
Bai, H.; You, Y.; Yan, H.; Meng, J.; Xue, X.; Hou, Z.; Zhou, Y.; Ma, X.; Sang, G.; Luo, X. Antisense inhibition of gene expression and growth in gram-negative bacteria by cell-penetrating peptide conjugates of peptide nucleic acids targeted to rpoD gene. Biomaterials, 2012, 33(2), 659-667.
[http://dx.doi.org/10.1016/j.biomaterials.2011.09.075] [PMID: 22000398]
[14]
Zaffaroni, N.; Villa, R.; Folini, M. Therapeutic uses of peptide nucleic acids (PNA) in oncology.Peptide Nucleic Acids, Morpholinos and Related Antisense Biomolecules; Springer, 2006, pp. 171-180.
[http://dx.doi.org/10.1007/0-387-32956-0_10]
[15]
Järver, P.; O’Donovan, L.; Gait, M.J. A chemical view of oligonucleotides for exon skipping and related drug applications. Nucleic Acid Ther., 2014, 24(1), 37-47.
[http://dx.doi.org/10.1089/nat.2013.0454] [PMID: 24171481]
[16]
Moustafa, D.A.; Wu, A.W.; Zamora, D.; Daly, S.M.; Sturge, C.R.; Pybus, C.; Geller, B.L.; Goldberg, J.B.; Greenberg, D.E. Peptide-conjugated phosphorodiamidate morpholino oligomers retain activity against multidrug-resistant Pseudomonas aeruginosa in vitro and in vivo. MBio, 2021, 12(1), e02411-e02420.
[http://dx.doi.org/10.1128/mBio.02411-20] [PMID: 33436433]
[17]
Thorpe, C.; Epple, S.; Woods, B.; El-Sagheer, A.H.; Brown, T. Synthesis and biophysical properties of carbamate-locked nucleic acid (LNA) oligonucleotides with potential antisense applications. Org. Biomol. Chem., 2019, 17(21), 5341-5348.
[http://dx.doi.org/10.1039/C9OB00691E] [PMID: 31099373]
[18]
Kaur, H.; Babu, B.R.; Maiti, S. Perspectives on chemistry and therapeutic applications of Locked Nucleic Acid (LNA). Chem. Rev., 2007, 107(11), 4672-4697.
[http://dx.doi.org/10.1021/cr050266u] [PMID: 17944519]
[19]
Sharma, G.; Sharma, S.; Sharma, P.; Chandola, D.; Dang, S.; Gupta, S.; Gabrani, R. Escherichia coli biofilm: Development and therapeutic strategies. J. Appl. Microbiol., 2016, 121(2), 309-319.
[http://dx.doi.org/10.1111/jam.13078] [PMID: 26811181]
[20]
Zahedi Bialvaei, A.; Rahbar, M.; Yousefi, M.; Asgharzadeh, M.; Samadi Kafil, H. Linezolid: A promising option in the treatment of Gram-positives. J. Antimicrob. Chemother., 2017, 72(2), 354-364.
[http://dx.doi.org/10.1093/jac/dkw450] [PMID: 27999068]
[21]
Chatterjee, M.; Anju, C.P.; Biswas, L.; Anil Kumar, V.; Gopi Mohan, C.; Biswas, R. Antibiotic resistance in Pseudomonas aeruginosa and alternative therapeutic options. Int. J. Med. Microbiol., 2016, 306(1), 48-58.
[http://dx.doi.org/10.1016/j.ijmm.2015.11.004] [PMID: 26687205]
[22]
Marwick, C. First “antisense” drug will treat CMV retinitis. JAMA, 1998, 280(10), 871-871.
[http://dx.doi.org/10.1001/jama.280.10.871-JMN0909-6-1] [PMID: 9739955]
[23]
Islam, M.A.; Khatun, M.M.; Sriranganathan, N.; Boyle, S.M. Essential Gene (s) Targeted by Peptide Nucleic Acids Kills Mycobacterium smegmatis in Culture and in Infected Macrophages. Adv. Infect. Dis., 2021, 11(2), 156-164.
[http://dx.doi.org/10.4236/aid.2021.112015]
[24]
Oliphant, C.M.; Eroschenko, K. Antibiotic resistance, part 2: Gram-negative pathogens. J. Nurse Pract., 2015, 11(1), 79-86.
[http://dx.doi.org/10.1016/j.nurpra.2014.10.008]
[25]
Koziel, J.; Maciag-Gudowska, A.; Mikolajczyk, T.; Bzowska, M.; Sturdevant, D.E.; Whitney, A.R.; Shaw, L.N.; DeLeo, F.R.; Potempa, J. Phagocytosis of Staphylococcus aureus by macrophages exerts cytoprotective effects manifested by the upregulation of antiapoptotic factors. PLoS One, 2009, 4(4), e5210.
[http://dx.doi.org/10.1371/journal.pone.0005210] [PMID: 19381294]
[26]
Appelbaum, P.C. The emergence of vancomycin-intermediate and vancomycin-resistant Staphylococcus aureus. Clin. Microbiol. Infect., 2006, 12(Suppl. 1), 16-23.
[http://dx.doi.org/10.1111/j.1469-0691.2006.01344.x] [PMID: 16445720]
[27]
Otter, J.A.; French, G.L. Molecular epidemiology of community-associated meticillin-resistant Staphylococcus aureus in Europe. Lancet Infect. Dis., 2010, 10(4), 227-239.
[http://dx.doi.org/10.1016/S1473-3099(10)70053-0] [PMID: 20334846]
[28]
Ji, Y.; Yin, D.; Fox, B.; Holmes, D.J.; Payne, D.; Rosenberg, M. Validation of antibacterial mechanism of action using regulated antisense RNA expression in Staphylococcus aureus. FEMS Microbiol. Lett., 2004, 231(2), 177-184.
[http://dx.doi.org/10.1016/S0378-1097(03)00931-5] [PMID: 14987762]
[29]
Nekhotiaeva, N.; Awasthi, S.K.; Nielsen, P.E.; Good, L. Inhibition of Staphylococcus aureus gene expression and growth using antisense peptide nucleic acids. Mol. Ther., 2004, 10(4), 652-659.
[http://dx.doi.org/10.1016/j.ymthe.2004.07.006] [PMID: 15451449]
[30]
Meng, J.; Wang, H.; Hou, Z.; Chen, T.; Fu, J.; Ma, X.; He, G.; Xue, X.; Jia, M.; Luo, X. Novel anion liposome-encapsulated antisense oligonucleotide restores susceptibility of methicillin-resistant Staphylococcus aureus and rescues mice from lethal sepsis by targeting mecA. Antimicrob. Agents Chemother., 2009, 53(7), 2871-2878.
[http://dx.doi.org/10.1128/AAC.01542-08] [PMID: 19433567]
[31]
Bai, H.; Zhou, Y.; Hou, Z.; Xue, X.; Meng, J.; Luo, X. Targeting bacterial RNA polymerase: Promises for future antisense antibiotics development. Infect Disord-Drug Targets Former Curr Drug Targets-Infect Disord., 2011, 11(2), 175-187.
[http://dx.doi.org/10.2174/187152611795589708] [PMID: 21470098]
[32]
Abushahba, M.F.; Mohammad, H.; Seleem, M.N. Targeting multidrug-resistant staphylococci with an anti-rpoA peptide nucleic acid conjugated to the HIV-1 TAT cell penetrating peptide. Mol. Ther. Nucleic Acids, 2016, 5(7), e339.
[http://dx.doi.org/10.1038/mtna.2016.53] [PMID: 27434684]
[33]
Bai, H.; Sang, G.; You, Y.; Xue, X.; Zhou, Y.; Hou, Z.; Meng, J.; Luo, X. Targeting RNA polymerase primary σ70 as a therapeutic strategy against methicillin-resistant Staphylococcus aureus by antisense peptide nucleic acid. PLoS One, 2012, 7(1), e29886.
[http://dx.doi.org/10.1371/journal.pone.0029886] [PMID: 22253815]
[34]
Chen, W.; Dong, B.; Liu, W.; Liu, Z. Recent Advances in Peptide Nucleic Acids as Antibacterial Agents. Curr. Med. Chem., 2021, 28(6), 1104-1125.
[http://dx.doi.org/10.2174/0929867327666200602132504] [PMID: 32484766]
[35]
Gaynes, R.; Edwards, J.R.; Edwards, J.R. Overview of nosocomial infections caused by gram-negative bacilli. Clin. Infect. Dis., 2005, 41(6), 848-854.
[http://dx.doi.org/10.1086/432803] [PMID: 16107985]
[36]
Khan, A.U.; Maryam, L.; Zarrilli, R. Structure, Genetics and Worldwide Spread of New Delhi Metallo-β-lactamase (NDM): A threat to public health. BMC Microbiol., 2017, 17(1), 101.
[http://dx.doi.org/10.1186/s12866-017-1012-8] [PMID: 28449650]
[37]
Yu, D.; Banting, G.; Neumann, N. A Review of the Taxonomy, Genetics and Biology of the Genus Escherichia and the Type Species Escherichia coli. Can. J. Microbiol., 2021, 67(8), 533-571.
[38]
Piotrowska, U.; Sobczak, M.; Oledzka, E. Current state of a dual behaviour of antimicrobial peptides-Therapeutic agents and promising delivery vectors. Chem. Biol. Drug Des., 2017, 90(6), 1079-1093.
[http://dx.doi.org/10.1111/cbdd.13031] [PMID: 28548370]
[39]
Rahal, J.J. Antimicrobial resistance among and therapeutic options against gram-negative pathogens. Clin. Infect. Dis., 2009, 49(Suppl. 1), S4-S10.
[http://dx.doi.org/10.1086/599810] [PMID: 19619021]
[40]
Sharma, C.; Awasthi, S.K. Versatility of peptide nucleic acids (PNAs): Role in chemical biology, drug discovery, and origins of life. Chem. Biol. Drug Des., 2017, 89(1), 16-37.
[http://dx.doi.org/10.1111/cbdd.12833] [PMID: 27490868]
[41]
Nezhadi, J.; Narenji, H.; Soroush Barhaghi, M.H.; Rezaee, M.A.; Ghotaslou, R.; Pirzadeh, T.; Tanomand, A.; Ganbarov, K.; Bastami, M.; Madhi, M.; Yousefi, M.; Kafil, H.S. Peptide nucleic acid-mediated re-sensitization of colistin resistance Escherichia coli KP81 harboring mcr-1 plasmid. Microb. Pathog., 2019, 135, 103646.
[http://dx.doi.org/10.1016/j.micpath.2019.103646] [PMID: 31344478]
[42]
Hatamoto, M.; Nakai, K.; Ohashi, A.; Imachi, H. Sequence-specific bacterial growth inhibition by peptide nucleic acid targeted to the mRNA binding site of 16S rRNA. Appl. Microbiol. Biotechnol., 2009, 84(6), 1161-1168.
[http://dx.doi.org/10.1007/s00253-009-2099-0] [PMID: 19578844]
[43]
Gruegelsiepe, H.; Brandt, O.; Hartmann, R.K. Antisense inhibition of RNase P: Mechanistic aspects and application to live bacteria. J. Biol. Chem., 2006, 281(41), 30613-30620.
[http://dx.doi.org/10.1074/jbc.M603346200] [PMID: 16901906]
[44]
Good, L.; Awasthi, S.K.; Dryselius, R.; Larsson, O.; Nielsen, P.E. Bactericidal antisense effects of peptide-PNA conjugates. Nat. Biotechnol., 2001, 19(4), 360-364.
[http://dx.doi.org/10.1038/86753] [PMID: 11283595]
[45]
Xue-Wen, H.; Jie, P.; Xian-Yuan, A.; Hong-Xiang, Z. Inhibition of bacterial translation and growth by peptide nucleic acids targeted to domain II of 23S rRNA. J. Pept. Sci., 2007, 13(4), 220-226.
[http://dx.doi.org/10.1002/psc.835] [PMID: 17266023]
[46]
Good, L.; Nielsen, P.E. Peptide nucleic acid (PNA) antisense effects in Escherichia coli. Curr. Issues Mol. Biol., 1999, 1(1-2), 111-116.
[PMID: 11475695]
[47]
Vilchèze, C.; Morbidoni, H.R.; Weisbrod, T.R.; Iwamoto, H.; Kuo, M.; Sacchettini, J.C.; Jacobs, W.R., Jr Inactivation of the inhA-encoded fatty acid synthase II (FASII) enoylacyl carrier protein reductase induces accumulation of the FASI end products and cell lysis of Mycobacterium smegmatis. J. Bacteriol., 2000, 182(14), 4059-4067.
[http://dx.doi.org/10.1128/JB.182.14.4059-4067.2000] [PMID: 10869086]
[48]
Kulyté, A.; Nekhotiaeva, N.; Awasthi, S.K.; Good, L. Inhibition of Mycobacterium smegmatis gene expression and growth using antisense peptide nucleic acids. J. Mol. Microbiol. Biotechnol., 2005, 9(2), 101-109.
[http://dx.doi.org/10.1159/000088840] [PMID: 16319499]
[49]
Best, C.A.; Best, T.J. Mycobacterium smegmatis infection of the hand. Hand (N. Y.), 2009, 4(2), 165-166.
[http://dx.doi.org/10.1007/s11552-008-9147-6] [PMID: 19030939]
[50]
Ghosh, S.; Cotta, K.B.; Hande, A.A.; Fernandes, M.; Mehra, S. PNA-mediated efflux inhibition as a therapeutic strategy towards overcoming drug resistance in Mycobacterium smegmatis. Microb. Pathog., 2021, 151, 104737.
[http://dx.doi.org/10.1016/j.micpath.2021.104737] [PMID: 33453316]
[51]
Abouzeed, Y.M.; Baucheron, S.; Cloeckaert, A. ramR mutations involved in efflux-mediated multidrug resistance in Salmonella enterica serovar Typhimurium. Antimicrob. Agents Chemother., 2008, 52(7), 2428-2434.
[http://dx.doi.org/10.1128/AAC.00084-08] [PMID: 18443112]
[52]
Velge, P.; Cloeckaert, A.; Barrow, P. Emergence of Salmonella epidemics: The problems related to Salmonella enterica serotype Enteritidis and multiple antibiotic resistance in other major serotypes. Vet. Res., 2005, 36(3), 267-288.
[http://dx.doi.org/10.1051/vetres:2005005] [PMID: 15845226]
[53]
Soofi, M.A.; Seleem, M.N. Targeting essential genes in Salmonella enterica serovar typhimurium with antisense peptide nucleic acid. Antimicrob. Agents Chemother., 2012, 56(12), 6407-6409.
[http://dx.doi.org/10.1128/AAC.01437-12] [PMID: 23006748]
[54]
Mondhe, M.; Chessher, A.; Goh, S.; Good, L.; Stach, J.E. Species-selective killing of bacteria by antimicrobial peptide-PNAs. PLoS One, 2014, 9(2), e89082.
[http://dx.doi.org/10.1371/journal.pone.0089082] [PMID: 24558473]
[55]
Goh, S.; Boberek, J.M.; Nakashima, N.; Stach, J.; Good, L. Concurrent growth rate and transcript analyses reveal essential gene stringency in Escherichia coli. PLoS One, 2009, 4(6), e6061.
[http://dx.doi.org/10.1371/journal.pone.0006061] [PMID: 19557168]
[56]
Peleg, A.Y.; Seifert, H.; Paterson, D.L. Acinetobacter baumannii: Emergence of a successful pathogen. Clin. Microbiol. Rev., 2008, 21(3), 538-582.
[http://dx.doi.org/10.1128/CMR.00058-07] [PMID: 18625687]
[57]
Kempf, M.; Rolain, J-M. Emergence of resistance to carbapenems in Acinetobacter baumannii in Europe: Clinical impact and therapeutic options. Int. J. Antimicrob. Agents, 2012, 39(2), 105-114.
[http://dx.doi.org/10.1016/j.ijantimicag.2011.10.004] [PMID: 22113193]
[58]
Gedefie, A.; Demsis, W.; Ashagrie, M.; Kassa, Y.; Tesfaye, M.; Tilahun, M.; Bisetegn, H.; Sahle, Z. Acinetobacter baumannii biofilm formation and its role in disease pathogenesis: A review. Infect. Drug Resist., 2021, 14, 3711-3719.
[http://dx.doi.org/10.2147/IDR.S332051] [PMID: 34531666]
[59]
Wang, H.; He, Y.; Xia, Y.; Wang, L.; Liang, S. Inhibition of gene expression and growth of multidrug-resistant Acinetobacter baumannii by antisense peptide nucleic acids. Mol. Biol. Rep., 2014, 41(11), 7535-7541.
[http://dx.doi.org/10.1007/s11033-014-3643-2] [PMID: 25091942]
[60]
Lambert, P.A. Mechanisms of antibiotic resistance in Pseudomonas aeruginosa. J. R. Soc. Med., 2002, 95(Suppl. 41), 22-26.
[PMID: 12216271]
[61]
Adamson, D.H.; Krikstopaityte, V.; Coote, P.J. Enhanced efficacy of putative efflux pump inhibitor/antibiotic combination treatments versus MDR strains of Pseudomonas aeruginosa in a Galleria mellonella in vivo infection model. J. Antimicrob. Chemother., 2015, 70(8), 2271-2278.
[http://dx.doi.org/10.1093/jac/dkv111] [PMID: 25921513]
[62]
Zhang, H.; Zhang, Q. Clinical efficacy and safety of colistin treatment in patients with pulmonary infection caused by Pseudomonas aeruginosa or Acinetobacter baumannii: A meta-analysis. Arch. Med. Sci., 2015, 11(1), 34-42.
[http://dx.doi.org/10.5114/aoms.2015.48158] [PMID: 25861288]
[63]
Ahya, V.N.; Doyle, A.M.; Mendez, J.D.; Lipson, D.A.; Christie, J.D.; Blumberg, E.A.; Pochettino, A.; Nelson, L.; Bloom, R.D.; Kotloff, R.M. Renal and vestibular toxicity due to inhaled tobramycin in a lung transplant recipient. J. Heart Lung Transplant., 2005, 24(7), 932-935.
[http://dx.doi.org/10.1016/j.healun.2004.05.008] [PMID: 15982625]
[64]
Saderi, H.; Owlia, P. Detection of multidrug resistant (MDR) and extremely drug resistant (XDR) P. aeruginosa isolated from patients in Tehran, Iran. Iran. J. Pathol., 2015, 10(4), 265-271.
[PMID: 26351496]
[65]
Parkins, M.D.; Floto, R.A. Emerging bacterial pathogens and changing concepts of bacterial pathogenesis in cystic fibrosis. J. Cyst. Fibros., 2015, 14(3), 293-304.
[http://dx.doi.org/10.1016/j.jcf.2015.03.012] [PMID: 25881770]
[66]
Diaz Caballero, J.; Clark, S.T.; Coburn, B.; Zhang, Y.; Wang, P.W.; Donaldson, S.L.; Tullis, D.E.; Yau, Y.C.; Waters, V.J.; Hwang, D.M.; Guttman, D.S. Selective sweeps and parallel pathoadaptation drive Pseudomonas aeruginosa evolution in the cystic fibrosis lung. MBio, 2015, 6(5), e00981-e15.
[http://dx.doi.org/10.1128/mBio.00981-15] [PMID: 26330513]
[67]
Hudziak, R.M.; Barofsky, E.; Barofsky, D.F.; Weller, D.L.; Huang, S.B.; Weller, D.D. Resistance of morpholino phosphorodiamidate oligomers to enzymatic degradation. Antisense Nucleic Acid Drug Dev., 1996, 6(4), 267-272.
[http://dx.doi.org/10.1089/oli.1.1996.6.267] [PMID: 9012862]
[68]
Wu, R.P.; Youngblood, D.S.; Hassinger, J.N.; Lovejoy, C.E.; Nelson, M.H.; Iversen, P.L.; Moulton, H.M. Cell-penetrating peptides as transporters for morpholino oligomers: Effects of amino acid composition on intracellular delivery and cytotoxicity. Nucleic Acids Res., 2007, 35(15), 5182-5191.
[http://dx.doi.org/10.1093/nar/gkm478] [PMID: 17670797]
[69]
Howard, J.J.; Sturge, C.R.; Moustafa, D.A.; Daly, S.M.; Marshall-Batty, K.R.; Felder, C.F.; Zamora, D.; Yabe-Gill, M.; Labandeira-Rey, M.; Bailey, S.M.; Wong, M.; Goldberg, J.B.; Geller, B.L.; Greenberg, D.E. Inhibition of Pseudomonas aeruginosa by peptide-conjugated phosphorodiamidate morpholino oligomers. Antimicrob. Agents Chemother., 2017, 61(4), e01938-e16.
[http://dx.doi.org/10.1128/AAC.01938-16] [PMID: 28137807]
[70]
Sully, E.K.; Geller, B.L. Antisense antimicrobial therapeutics. Curr. Opin. Microbiol., 2016, 33, 47-55.
[http://dx.doi.org/10.1016/j.mib.2016.05.017] [PMID: 27375107]
[71]
Sturge, C.R.; Felder-Scott, C.F.; Pifer, R.; Pybus, C.; Jain, R.; Geller, B.L.; Greenberg, D.E. AcrAB-TolC inhibition by peptide-conjugated phosphorodiamidate morpholino oligomers restores antibiotic activity in vitro and in vivo. ACS Infect. Dis., 2019, 5(8), 1446-1455.
[http://dx.doi.org/10.1021/acsinfecdis.9b00123] [PMID: 31119935]
[72]
Biswas, S.; Brunel, J-M.; Dubus, J-C.; Reynaud-Gaubert, M.; Rolain, J-M. Colistin: An update on the antibiotic of the 21st century. Expert Rev. Anti Infect. Ther., 2012, 10(8), 917-934.
[http://dx.doi.org/10.1586/eri.12.78] [PMID: 23030331]
[73]
Liu, Y-Y.; Wang, Y.; Walsh, T.R.; Yi, L-X.; Zhang, R.; Spencer, J.; Doi, Y.; Tian, G.; Dong, B.; Huang, X.; Yu, L.F.; Gu, D.; Ren, H.; Chen, X.; Lv, L.; He, D.; Zhou, H.; Liang, Z.; Liu, J.H.; Shen, J. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: A microbiological and molecular biological study. Lancet Infect. Dis., 2016, 16(2), 161-168.
[http://dx.doi.org/10.1016/S1473-3099(15)00424-7] [PMID: 26603172]
[74]
Hinchliffe, P.; Yang, Q.E.; Portal, E.; Young, T.; Li, H.; Tooke, C.L.; Carvalho, M.J.; Paterson, N.G.; Brem, J.; Niumsup, P.R.; Tansawai, U.; Lei, L.; Li, M.; Shen, Z.; Wang, Y.; Schofield, C.J.; Mulholland, A.J.; Shen, J.; Fey, N.; Walsh, T.R.; Spencer, J. Insights into the mechanistic basis of plasmid-mediated colistin resistance from crystal structures of the catalytic domain of MCR-1. Sci. Rep., 2017, 7(1), 39392.
[http://dx.doi.org/10.1038/srep39392] [PMID: 28059088]
[75]
Ma, G.; Zhu, Y.; Yu, Z.; Ahmad, A.; Zhang, H. High resolution crystal structure of the catalytic domain of MCR-1. Sci. Rep., 2016, 6(1), 39540.
[http://dx.doi.org/10.1038/srep39540] [PMID: 28000749]
[76]
Daly, S.M.; Sturge, C.R.; Felder-Scott, C.F.; Geller, B.L.; Greenberg, D.E. MCR-1 inhibition with peptide-conjugated phosphorodiamidate morpholino oligomers restores sensitivity to polymyxin in Escherichia coli. MBio, 2017, 8(6), e01315-e01317.
[http://dx.doi.org/10.1128/mBio.01315-17] [PMID: 29114023]
[77]
Nordmann, P.; Poirel, L.; Walsh, T.R.; Livermore, D.M. The emerging NDM carbapenemases. Trends Microbiol., 2011, 19(12), 588-595.
[http://dx.doi.org/10.1016/j.tim.2011.09.005] [PMID: 22078325]
[78]
Yong, D.; Toleman, M.A.; Giske, C.G.; Cho, H.S.; Sundman, K.; Lee, K.; Walsh, T.R. Characterization of a new metallo-β-lactamase gene, bla(NDM-1), and a novel erythromycin esterase gene carried on a unique genetic structure in Klebsiella pneumoniae sequence type 14 from India. Antimicrob. Agents Chemother., 2009, 53(12), 5046-5054.
[http://dx.doi.org/10.1128/AAC.00774-09] [PMID: 19770275]
[79]
Dortet, L.; Poirel, L.; Nordmann, P. Worldwide dissemination of the NDM-type carbapenemases in Gram-negative bacteria. BioMed Res. Int., 2014, 2014, 249856.
[80]
Dortet, L.; Nordmann, P.; Poirel, L. Association of the emerging carbapenemase NDM-1 with a bleomycin resistance protein in Enterobacteriaceae and Acinetobacter baumannii. Antimicrob. Agents Chemother., 2012, 56(4), 1693-1697.
[http://dx.doi.org/10.1128/AAC.05583-11] [PMID: 22290943]
[81]
Drawz, S.M.; Bonomo, R.A. Three decades of β-lactamase inhibitors. Clin. Microbiol. Rev., 2010, 23(1), 160-201.
[http://dx.doi.org/10.1128/CMR.00037-09] [PMID: 20065329]
[82]
Queenan, A.M.; Bush, K. Carbapenemases: The versatile β-lactamases. Clin. Microbiol. Rev., 2007, 20(3), 440-458.
[http://dx.doi.org/10.1128/CMR.00001-07] [PMID: 17630334]
[83]
King, D.T.; Worrall, L.J.; Gruninger, R.; Strynadka, N.C. New Delhi metallo-β-lactamase: Structural insights into β-lactam recognition and inhibition. J. Am. Chem. Soc., 2012, 134(28), 11362-11365.
[http://dx.doi.org/10.1021/ja303579d] [PMID: 22713171]
[84]
Woodford, N.; Wareham, D.W. Tackling antibiotic resistance: A dose of common antisense? J. Antimicrob. Chemother., 2009, 63(2), 225-229.
[http://dx.doi.org/10.1093/jac/dkn467] [PMID: 19004840]
[85]
Sully, E.K.; Geller, B.L.; Li, L.; Moody, C.M.; Bailey, S.M.; Moore, A.L.; Wong, M.; Nordmann, P.; Daly, S.M.; Sturge, C.R.; Greenberg, D.E. Peptide-conjugated phosphorodiamidate morpholino oligomer (PPMO) restores carbapenem susceptibility to NDM-1-positive pathogens in vitro and in vivo. J. Antimicrob. Chemother., 2017, 72(3), 782-790.
[PMID: 27999041]
[86]
Stein, D.; Foster, E.; Huang, S.B.; Weller, D.; Summerton, J. A specificity comparison of four antisense types: Morpholino, 2′-O-methyl RNA, DNA, and phosphorothioate DNA. Antisense Nucleic Acid Drug Dev., 1997, 7(3), 151-157.
[http://dx.doi.org/10.1089/oli.1.1997.7.151] [PMID: 9212905]
[87]
Mellbye, B.L.; Puckett, S.E.; Tilley, L.D.; Iversen, P.L.; Geller, B.L. Variations in amino acid composition of antisense peptide-phosphorodiamidate morpholino oligomer affect potency against Escherichia coli in vitro and in vivo. Antimicrob. Agents Chemother., 2009, 53(2), 525-530.
[http://dx.doi.org/10.1128/AAC.00917-08] [PMID: 19015356]
[88]
Greenberg, D.E.; Marshall-Batty, K.R.; Brinster, L.R.; Zarember, K.A.; Shaw, P.A.; Mellbye, B.L.; Iversen, P.L.; Holland, S.M.; Geller, B.L. Antisense phosphorodiamidate morpholino oligomers targeted to an essential gene inhibit Burkholderia cepacia complex. J. Infect. Dis., 2010, 201(12), 1822-1830.
[http://dx.doi.org/10.1086/652807] [PMID: 20438352]
[89]
Kumar, R.; Singh, S.K.; Koshkin, A.A.; Rajwanshi, V.K.; Meldgaard, M.; Wengel, J. The first analogues of LNA (locked nucleic acids): Phosphorothioate-LNA and 2′-thio-LNA. Bioorg. Med. Chem. Lett., 1998, 8(16), 2219-2222.
[http://dx.doi.org/10.1016/S0960-894X(98)00366-7] [PMID: 9873516]
[90]
Soler Bistué, A.J.; Martín, F.A.; Vozza, N.; Ha, H.; Joaquín, J.C.; Zorreguieta, A.; Tolmasky, M.E. Inhibition of aac(6′)-Ib-mediated amikacin resistance by nuclease-resistant external guide sequences in bacteria. Proc. Natl. Acad. Sci. USA, 2009, 106(32), 13230-13235.
[http://dx.doi.org/10.1073/pnas.0906529106] [PMID: 19666539]
[91]
Crinelli, R.; Bianchi, M.; Gentilini, L.; Magnani, M. Design and characterization of decoy oligonucleotides containing locked nucleic acids. Nucleic Acids Res., 2002, 30(11), 2435-2443.
[http://dx.doi.org/10.1093/nar/30.11.2435] [PMID: 12034831]
[92]
Chabot, S.; Orio, J.; Castanier, R.; Bellard, E.; Nielsen, S.J.; Golzio, M.; Teissié, J. LNA-based oligonucleotide electrotransfer for miRNA inhibition. Mol. Ther., 2012, 20(8), 1590-1598.
[http://dx.doi.org/10.1038/mt.2012.95] [PMID: 22617110]
[93]
Anderson, A.S.; Miller, A.A.; Donald, R.G.; Scully, I.L.; Nanra, J.S.; Cooper, D.; Jansen, K.U. Development of a multicomponent Staphylococcus aureus vaccine designed to counter multiple bacterial virulence factors. Hum. Vaccin. Immunother., 2012, 8(11), 1585-1594.
[http://dx.doi.org/10.4161/hv.21872] [PMID: 22922765]
[94]
Bi, E.F.; Lutkenhaus, J. FtsZ ring structure associated with division in Escherichia coli. Nature, 1991, 354(6349), 161-164.
[http://dx.doi.org/10.1038/354161a0] [PMID: 1944597]
[95]
Erickson, H.P.; Anderson, D.E.; Osawa, M. FtsZ in bacterial cytokinesis: Cytoskeleton and force generator all in one. Microbiol. Mol. Biol. Rev., 2010, 74(4), 504-528.
[http://dx.doi.org/10.1128/MMBR.00021-10] [PMID: 21119015]
[96]
Johnson, A.P. Methicillin-resistant Staphylococcus aureus: The European landscape. J. Antimicrob. Chemother., 2011, 66(Suppl. 4), iv43-iv48.
[http://dx.doi.org/10.1093/jac/dkr076] [PMID: 21521706]
[97]
Haydon, D.J.; Stokes, N.R.; Ure, R.; Galbraith, G.; Bennett, J.M.; Brown, D.R.; Baker, P.J.; Barynin, V.V.; Rice, D.W.; Sedelnikova, S.E.; Heal, J.R.; Sheridan, J.M.; Aiwale, S.T.; Chauhan, P.K.; Srivastava, A.; Taneja, A.; Collins, I.; Errington, J.; Czaplewski, L.G. An inhibitor of FtsZ with potent and selective anti-staphylococcal activity. Science, 2008, 321(5896), 1673-1675.
[http://dx.doi.org/10.1126/science.1159961] [PMID: 18801997]
[98]
Meng, J.; Da, F.; Ma, X.; Wang, N.; Wang, Y.; Zhang, H.; Li, M.; Zhou, Y.; Xue, X.; Hou, Z.; Jia, M.; Luo, X. Antisense growth inhibition of methicillin-resistant Staphylococcus aureus by locked nucleic acid conjugated with cell-penetrating peptide as a novel FtsZ inhibitor. Antimicrob. Agents Chemother., 2015, 59(2), 914-922.
[http://dx.doi.org/10.1128/AAC.03781-14] [PMID: 25421468]
[99]
Amantana, A.; Iversen, P.L. Pharmacokinetics and biodistribution of phosphorodiamidate morpholino antisense oligomers. Curr. Opin. Pharmacol., 2005, 5(5), 550-555.
[http://dx.doi.org/10.1016/j.coph.2005.07.001] [PMID: 16087398]
[100]
Tilley, L.D.; Mellbye, B.L.; Puckett, S.E.; Iversen, P.L.; Geller, B.L. Antisense peptide-phosphorodiamidate morpholino oligomer conjugate: Dose-response in mice infected with Escherichia coli. J. Antimicrob. Chemother., 2007, 59(1), 66-73.
[http://dx.doi.org/10.1093/jac/dkl444] [PMID: 17079242]
[101]
Frieden, M.; Orum, H. The application of locked nucleic acids in the treatment of cancer. IDrugs, 2006, 9(10), 706-711.
[PMID: 17016778]
[102]
Braasch, D.; Nulf, C.; Corey, D. Current protocols in nucleic acid chemistry. John Wiley Sons N Y., 2002, 14, 11-14.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy