Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Review Article

Plumbagin: A Potential Candidate for Future Research and Development

Author(s): Niyatee Thakor* and Bhavyata Janathia

Volume 23, Issue 15, 2022

Published on: 13 May, 2022

Page: [1800 - 1812] Pages: 13

DOI: 10.2174/1389201023666211230113146

Price: $65

Abstract

Plumbagin has gained a lot of attention in research due to its various therapeutic actions. It is a secondary metabolite obtained from different plant families, such as Plumbaginaceae, Droseraceae, and Ebenceae. Various studies on plumbagin have revealed that it is a natural gift for mankind in treating chronic diseases, like cancer, diabetes, malaria, bacterial infection, and controlling cardiovascular disease. However, there are several challenges in developing plumbagin as a therapeutic agent. The first and foremost is its limited solubility and oral bioavailability. The second limitation is its toxicity. Plumbagin has a narrow therapeutic window, and literature reveals that the compound has moderate toxicity in animals. However, data are insufficient to prove that plumbagin is unsafe for humans. Despite the many therapeutic benefits of plumbagin, it remains unexploited for mankind. Thus, a systematic review of its toxicity, pharmacology, and safety is required to be performed. This review work signifies the depth of therapeutic applications proven via research, its different modes of isolation and separation of chemical constituents, and its modification. A thorough review of promising therapeutic targets via docking studies is also presented. Different methods used to quantify plumbagin from the plant are reviewed. An overview of attempts to design novel formulations which could enhance its bioavailability is also presented. The review paper will help the scientist to exploit the drug to its optimum, which will help to overcome the challenges faced during its design and developmental stages.

Keywords: Plumbagin, isolation, pharmacology, novel delivery system, molecular docking, low oral bioavailability.

Graphical Abstract

[1]
Roy, A.; Bharadvaja, N. A review on pharmaceutically important medical plant: Plumbago zeylanica. J. Ayurvedic Herbal Med., 2017, 3(4), 225-228.
[2]
Tyagi, R.; Menghani, E. A review on Plumbago zeylanica: a compelling herb. Int. J. Pharm Sci Res., 2014, A(5), 119-126.
[3]
Pant, M.; Lal, A.; Rana, S.; Rani, A. Plumbago zeylanica L.: a mini review. Int. J. Pharm Appl., 2012, 3(3), 399-405.
[4]
Rana, A.C. Plumbago zeylanica: A Phytopharmacological review. Int. J. Pharm. Sci. Res., 2011, 2(2), 247-255.
[5]
Ganesan, K.; Gani, S.B. Ethnomedical and pharmacological potentials of plumbago zeylanica L-A review. Am. J. Phytomedicine Clin. Ther., 2013, 313-337.
[6]
D’Astafort, D. Chemische Versuche mit dem Plumbagin der scharfen Materie aus der Wurzel von Plumbago europaea. Arch. Pharm. (Weinheim), 1829, 29, 245-250.
[7]
Thomson, A.S. A Statistical Enquiry on Fever, &c. J. Stat. Soc. Lond., 1838, 1(5), 278-279.
[http://dx.doi.org/10.2307/2337984]
[8]
Padhye, S.; Dandawate, P.; Yusufi, M.; Ahmad, A.; Sarkar, F.H. Perspectives on medicinal properties of plumbagin and its analogs. Med. Res. Rev., 2012, 32(6), 1131-1158.
[http://dx.doi.org/10.1002/med.20235] [PMID: 23059762]
[9]
Budavari, S. The Merck Index; Merck & Co. Inc.: New Jersey, USA, 1996, p. 784.
[10]
Nahálka, J.; Blanárik, P.; Gemeiner, P.; Matúsova, E.; Partlová, I. The chemical/osmotic conditions for growth and plumbagin accumulation of Drosophyllum lusitanicum Link. suspension cultures. Biotechnol. Lett., 1996, 18(12), 1453-1458.
[http://dx.doi.org/10.1007/BF00129354]
[11]
Stensen, W.; Jensen, E. Structural Determination of 1,4-Naphthoquinonesby Mass Spectrometry/Mass Spectrometry. J. Mass Spectrometry, 1995, 30, 1126-1132.
[12]
Eyong, K.; Kuete, V.; Efferth, T. Quinones and benzophenones from the medicinal plants of Africa. In: Medicinal Plant Research in Africa; Elsevier, 2013; pp. 351-391.
[13]
Badwaik, H.; Kumari, L.; Nakhate, K.; Verma, V.; Sakure, K. Phytoconstituent plumbagin:Chemical, biotechnologicaland pharmaceutical aspects. Studies in natural Product chemistry.Elsevier; , 2019, 63, pp. 416-460.
[14]
Rajalakshmi, S.; Vyawahare, N.; Pawar, A.; Mahaparale, P.; Chellampillai, B. Current development in novel drug delivery system in novel drug delivery systems of bioactive molecule plumbagin. Artif. Cells, Nanomedicine Biotechnol., 2018, 46((sup1)), 209-2.
[15]
Harborne, JB Methods of extraction and isolation. Phytochemical Methods, 1998, 3, 60-66.
[16]
Chudhary, Z.; Khera, R.A.; Hanif, M.A.; Ayub, M.A.; Hamrouni, L. Walnut. In: Medicinal Plants of South Asia; Elsevier, 2020; pp. 671-684.
[17]
Hussain, H.; Green, I.R. Lapachol and lapachone analogs: a journey of two decades of patent research(1997-2016). Expert Opin. Ther. Pat., 2017, 27(10), 1111-1121.
[http://dx.doi.org/10.1080/13543776.2017.1339792] [PMID: 28586252]
[18]
Thakur, A. Juglone: A therapeutic phytochemical from Juglans regia L. J. Med. Plants Res., 2011, 5(22), 5324-5330.
[19]
Kapadia, N.S.; Isarani, S.A.; Shah, M.B. A simple method for isolation of plumbagin from roots of Plumbago rosea. Pharm. Biol., 2005, 43(6), 551-553.
[http://dx.doi.org/10.1080/13880200500220888]
[20]
Bothiraja, C.; Joshi, P.P.; Dama, G.Y.; Pawar, A.P. Rapid method for isolation of plumbagin, an alternative medicine from roots of Plum-bago zeylanica. Eur. J. Integr. Med., 2011, 3(1), 39-42.
[http://dx.doi.org/10.1016/j.eujim.2011.02.008]
[21]
Akhade, M.S.; Agrawal, P.A.; Laddha, K.S. Development and validation of RP-HPLC method for simultaneous estimation of picroside I, plumbagin, and Z-guggulsterone in tablet formulation. Indian J. Pharm. Sci., 2013, 75(4), 476-482.
[http://dx.doi.org/10.4103/0250-474X.119835] [PMID: 24302803]
[22]
Madhavan, V.; Basnett, H.; Kumar, A.C.; Yoganarasimhan, S.N. Fingerprinting of plumbagin in lic>drosera burmannii vahl using high performance thin layer chromatography. Indian J. Pharm. Sci., 2008, 70(6), 798-800.
[http://dx.doi.org/10.4103/0250-474X.49127] [PMID: 21369446]
[23]
Sheeja, E.; Joshi, S.B.; Jain, D.C. Quantitative estimation of plumbagin in various parts of Plumbago rosea and Plumbago zeylanica. Asian J. Chem., 2010, 22(1), 593-596.
[24]
Muralidharan, K.; Jayanthi, M.; Surendran, R.; Balasubramanian, M.; Girija, S. Effect of sample extraction, preparation methods on HPLC quantification of plumbagin in in vivo and in vitro plant parts of Plumbago zeylanica L. Afr. J. Biotechnol., 2018, 17(33), 1021-1030.
[http://dx.doi.org/10.5897/AJB2018.16561]
[25]
de Paiva, S.R.; Lima, L.A.; Figueiredo, M.R.; Kaplan, M.A. Plumbagin quantification in roots of Plumbago scandens L. obtained by different extraction techniques. An. Acad. Bras. Cienc., 2004, 76(3), 499-504.
[http://dx.doi.org/10.1590/S0001-37652004000300004] [PMID: 15334248]
[26]
Venkateswarulu, N.; Shameer, S.; Bramhachari, P.V.; Basha, S.T.; Nagaraju, C.; Vijaya, T. Isolation and characterization of plumbagin (5-hydroxyl-2-methylnaptalene-1, 4-dione) producing endophytic fungi Cladosporium delicatulum from endemic medicinal plants. Biotechnol. Reports, 2018, 20, e00282.
[27]
Israni, S.; Kapadia, N.; Lahiri, S.; Yadav, G.; Shah, M. An UV-Visible spectrophotometric method for theestimation of plumbagin. Int. J. Chemtech Res., 2010, 2(2), 856-859.
[28]
Jain, A.; Hamrapurkar, P.; Parate, A.; Labana, S.; Madrewar, D.; Sonandkar, A. Quantification and isolation of plumbagin (Plumbago zeylanica Linn.) by high-performance thin-layer chromatography. J. Planar Chromatogr. Mod. TLC, 2014, 27(3), 181-185.
[http://dx.doi.org/10.1556/JPC.27.2014.3.6]
[29]
Pereira, G.; Arvindekar, A.; Laddha, K. Determination of plumbagin in plant extracts and polyherbal formulations by high-performance liquid chromatography with fluorescence detection. Anal. Lett., 2015, 48(18), 2811-2818.
[http://dx.doi.org/10.1080/00032719.2015.1052973]
[30]
Unnikrishnan, K.P.; Raja, S.S.; Balachandran, I. A reverse phase HPLC-UV and HPTLC methods for determination of plumbagin in Plum-bago indica and Plumbago zeylanica. Indian J. Pharm. Sci., 2008, 70(6), 844-847.
[http://dx.doi.org/10.4103/0250-474X.49142] [PMID: 21369461]
[31]
Gupta, M.M.; Verma, R.K.; Uniyal, G.C.; Jain, S.P. Determination of plumbagin by normal-phase high-performance liquid chromatog-raphy. J. Chromatogr. A, 1993, 637(2), 209-212.
[http://dx.doi.org/10.1016/0021-9673(93)83216-F]
[32]
Chauhan, M. A review on morphology, phytochemistry and pharmacological activities of medicinal herb Plumbago zeylanica Linn. J. Pharmacogn. Phytochem., 2014, 3(2), 95-118.
[33]
Pravin, B.; Tushar, D.; Vijay, P.; Kishanchnad, K. Review on plumbagin obtained from Plumbago zeylanica Linn. Int. J. Pharm. Sci. Rev. Res., 2013, 18, 116-120.
[34]
Shyur, L.; Lau, A.S.Y. Advances in botanical research: recent trends in medicinal plants research; Academic Press: London, 2012, p. 62.
[35]
Yin, Z.; Zhang, J.; Chen, L.; Guo, Q.; Yang, B.; Zhang, W.; Kang, W. Anticancer effects and mechanisms of action of plumbagin: review of research advances. BioMed Res. Int., 2020, 1-10.
[36]
Ahmad, A.; Banerjee, S.; Wang, Z.; Kong, D.; Sarkar, F.H. Plumbagin-induced apoptosis of hu-man breast cancer cells is mediated by inactivation of NF-kappaB and Bcl-2. J. Cell. Biochem., 2008, 105(6), 1461-1471.
[http://dx.doi.org/10.1002/jcb.21966] [PMID: 18980240]
[37]
Kawiak, A.; Zawacka-Pankau, J.; Lojkowska, E. Plumbagin induces apoptosis in Her2-overexpressing breast cancer cells through the mitochondrial-mediated pathway. J. Nat. Prod., 2012, 75(4), 747-751.
[http://dx.doi.org/10.1021/np3000409] [PMID: 22512718]
[38]
Wang, F.; Wang, Q.; Zhou, Z-W.; Yu, S-N.; Pan, S-T.; He, Z-X.; Zhang, X.; Wang, D.; Yang, Y-X.; Yang, T.; Sun, T.; Li, M.; Qiu, J.X.; Zhou, S.F. Plumbagin induces cell cycle arrest and autophagy and suppresses epithelial to mesenchymal transition involving PI3K/Akt/mTOR-mediated pathway in human pancreatic cancer cells. Drug Des. Devel. Ther., 2015, 9, 537-560.
[PMID: 25632222]
[39]
Chen, C.A.; Chang, H.H.; Kao, C.Y.; Tsai, T.H.; Chen, Y.J. Plumbagin, isolated from Plumbago zeylanica, induces cell death through apoptosis in human pancreatic cancer cells. Pancreatology, 2009, 9(6), 797-809.
[http://dx.doi.org/10.1159/000210028] [PMID: 20110748]
[40]
Hsu, Y.L.; Cho, C.Y.; Kuo, P.L.; Huang, Y.T.; Lin, C.C. Plumbagin (5-hydroxy-2-methyl-1,4-naphthoquinone) induces apoptosis and cell cycle arrest in A549 cells through p53 accumulation via c-Jun NH2-terminal kinase-mediated phosphorylation at serine 15 in vitro and in vivo. J. Pharmacol. Exp. Ther., 2006, 318(2), 484-494.
[http://dx.doi.org/10.1124/jpet.105.098863] [PMID: 16632641]
[41]
Gomathinayagam, R.; Sowmyalakshmi, S.; Mardhatillah, F.; Kumar, R.; Akbarsha, M.A.; Damodaran, C. Anticancer mechanism of plumbagin, a natural compound, on non-small cell lung cancer cells. Anticancer Res., 2008, 28(2A), 785-792.
[PMID: 18507021]
[42]
Acharya, B.R.; Bhattacharyya, B.; Chakrabarti, G. The natural naphthoquinone plumbagin exhibits antiproliferative activity and disrupts the microtubule network through tubulin binding. Biochemistry, 2008, 47(30), 7838-7845.
[http://dx.doi.org/10.1021/bi800730q] [PMID: 18597479]
[43]
Khaw, A.K.; Sameni, S.; Venkatesan, S.; Kalthur, G.; Hande, M.P. Plumbagin alters telomere dynamics, induces DNA damage and cell death in human brain tumour cells. Mutat. Res. Genet. Toxicol. Environ. Mutagen., 2015, 793, 86-95.
[http://dx.doi.org/10.1016/j.mrgentox.2015.06.004] [PMID: 26520377]
[44]
Nair, S.; Nair, R.R.; Srinivas, P.; Srinivas, G.; Pillai, M.R. Radiosensitizing effects of plumbagin in cervical cancer cells is through modulation of apoptotic pathway. Mol. Carcinog., 2008, 47(1), 22-33.
[http://dx.doi.org/10.1002/mc.20359] [PMID: 17562542]
[45]
Vijayakumar, R.; Senthilvelan, M.; Ravindran, R.; Devi, R.S. Plumbago zeylanica action on blood coagulation profile with and without blood volume reduction. Vascul. Pharmacol., 2006, 45(2), 86-90.
[http://dx.doi.org/10.1016/j.vph.2006.02.001] [PMID: 16531123]
[46]
Sunil, C.; Duraipandiyan, V.; Agastian, P.; Ignacimuthu, S. Antidiabetic effect of plumbagin isolated from Plumbago zeylanica L. root and its effect on GLUT4 translocation in streptozotocin-induced diabetic rats. Food Chem. Toxicol., 2012, 50(12), 4356-4363.
[http://dx.doi.org/10.1016/j.fct.2012.08.046] [PMID: 22960630]
[47]
Lajubutu, B.A.; Pinney, R.J.; Roberts, M.F.; Odelola, H.A.; Oso, B.A. Antibacterial activity of diosquinone and plumbagin from the root of Diospyrosmespiliformis (Hostch) (Ebenaceae). Phytother. Res., 1995, 9, 346-350.
[http://dx.doi.org/10.1002/ptr.2650090508]
[48]
de Paiva, S.R.; Figueiredo, M.R.; Aragão, T.V.; Kaplan, M.A. Antimicrobial activity in vitro of plumbagin isolated from Plumbago species. Mem. Inst. Oswaldo Cruz, 2003, 98(7), 959-961.
[http://dx.doi.org/10.1590/S0074-02762003000700017] [PMID: 14762525]
[49]
Renuga, G.; Babuthandapani, A. Evaluation on antimicrobial potential of root extracts Plumbago zeylanica Linn against human intestinal microflora. Int. J. Pharm. Biol Res., 2013, 4, 146-158.
[50]
Kaewbumrung, S.; Panichayupakaranant, P. Isolation of three antibacterial naphthoquinones from Plumbago indica roots and development of a validated quantitative HPLC analytical method. Nat. Prod. Res., 2012, 26(21), 2020-2023.
[http://dx.doi.org/10.1080/14786419.2011.628670] [PMID: 22010802]
[51]
Kaewbumrung, S.; Panichayupakaranant, P. Antibacterial activity of plumbagin derivative-rich Plumbago indica root extracts and chemical stability. Nat. Prod. Res., 2014, 28(11), 835-837.
[http://dx.doi.org/10.1080/14786419.2013.879585] [PMID: 24483166]
[52]
Rondevaldova, J.; Novy, P.; Kokoska, L. In vitro combinatory antimicrobial effect of plumbagin with oxacillin and tetracycline against Staphylococcus aureus. Phytother. Res., 2015, 29(1), 144-147.
[http://dx.doi.org/10.1002/ptr.5237] [PMID: 25266704]
[53]
Zhang, S.; Li, D.; Yang, J-Y.; Yan, T-B. Plumbagin protects against glucocorticoid-induced osteoporosis through Nrf-2 pathway. Cell Stress Chaperones, 2015, 20(4), 621-629.
[http://dx.doi.org/10.1007/s12192-015-0585-0] [PMID: 25939783]
[54]
Kumar, S.; Gautam, S.; Sharma, A. Antimutagenic and antioxidant properties of plumbagin and other naphthoquinones. Mutat. Res., 2013, 755(1), 30-41.
[http://dx.doi.org/10.1016/j.mrgentox.2013.05.007] [PMID: 23688616]
[55]
Sumsakul, W.; Plengsuriyakarn, T.; Chaijaroenkul, W.; Viyanant, V.; Karbwang, J.; Na-Bangchang, K. Antimalarial activity of plumbagin in vitro and in animal models. BMC Complement. Altern. Med., 2014, 14, 15.
[http://dx.doi.org/10.1186/1472-6882-14-15] [PMID: 24410949]
[56]
Sumsakul, W.; Chaijaroenkul, W.; Na-Bangchang, K. In vitro inhibitory effects of plumbagin, the promising antimalarial candidate, on human cytochrome P450 enzymes. Asian Pac. J. Trop. Med., 2015, 8(11), 914-918.
[http://dx.doi.org/10.1016/j.apjtm.2015.10.016] [PMID: 26614990]
[57]
Luo, P.; Wong, Y.F.; Ge, L.; Zhang, Z.F.; Liu, Y.; Liu, L.; Zhou, H. Anti-inflammatory and analgesic effect of plumbagin through inhibition of nuclear factor-κB activation. J. Pharmacol. Exp. Ther., 2010, 335(3), 735-742.
[http://dx.doi.org/10.1124/jpet.110.170852] [PMID: 20858709]
[58]
Dhingra, D.; Bansal, S. Antidepressant-like activity of plumbagin in unstressed and stressed mice. Pharmacol. Rep., 2015, 67(5), 1024-1032.
[http://dx.doi.org/10.1016/j.pharep.2015.03.001] [PMID: 26398399]
[59]
Tayubi, I.A.; Desai, A.; Madar, I.H.; Al Ssadh, H. Hepatoprotective activity of Plumbago zeylanica Linn. Against carbon tetrachloride induced hepatotoxicity in rats. Int. J. Scientific Innov., 2018, 5(2), 94-98.
[60]
Kanchana, N.; Sadiq, A.M. Hepatoprotective effect of Plumbago zeylanica on paracetamol induced liver toxicity in rats. Int. J. Pharm. Pharm. Sci., 2011, 3(1), 151-154.
[61]
Hsieh, Y.J.; Lin, L.C.; Tsai, T.H. Measurement, and pharmacokinetic study of plumbagin in a conscious freely moving rat using liquid chromatography/tandem mass spectrometry. J. Chromatography B., 2006, 844(1), 1-5.
[62]
Demma, J.; Hallberg, K.; Hellman, B. Genotoxicity of plumbagin and its effects on catechol and NQNO-induced DNA damage in mouse lymphoma cells. Toxicol. In vitro, 2009, 23(2), 266-271.
[http://dx.doi.org/10.1016/j.tiv.2008.12.007] [PMID: 19124069]
[63]
Kumar, D.; Patil, P.A.; Roy, S.; Kholkute, S.D.; Hegde, H.V.; Nair, V. Comparative toxicity profiles of Plumbago zeylanica L. root petroleum ether, acetone and hydroalcoholic extracts in Wistar rats. Pharmacolog. Study, 2015, 36(3), 329-334.
[64]
Maurya, S.K.; Seth, A.; Laloo, D.; Singh, N.K.; Gautam, D.N.; Singh, A.K. Śodhana: An Ayurvedic process for detoxification and modification of therapeutic activities of poisonous medicinal plants. Anc. Sci. Life, 2015, 34(4), 188-197.
[http://dx.doi.org/10.4103/0257-7941.160862] [PMID: 26283803]
[65]
Jamal, M.S.; Parveen, S.; Beg, M.A.; Suhail, M.; Chaudhary, A.G.; Damanhouri, G.A.; Abuzenadah, A.M.; Rehan, M. Anticancer compound plumbagin and its molecular targets: a structural insight into the inhibitory mechanisms using computational approaches. PLoS One, 2014, 9(2), e87309.
[http://dx.doi.org/10.1371/journal.pone.0087309] [PMID: 24586269]
[66]
Dissanayake, D.M.I.H.; Perera, D.D.B.D.; Peiris, L.D.C. Molecular docking studies of plumbagin from root bark of plumbago indica l. against staphylococcus aureus Proceedings of the 6th International Conference on Multidisciplinary Approaches (iCMA)December2019.
[67]
Thasni, K.A.; Ratheeshkumar, T.; Rojini, G.; Sivakumar, K.C.; Nair, R.K.; Srinivas, G.; Banerji, A.; Somasundaram, V.; Srinivas, P. Structure activity relationship of plumbagin in BRCA1 related cancer cells. Mol. Carcinog., 2013, 52(5), 392-403.
[http://dx.doi.org/10.1002/mc.21877] [PMID: 22290577]
[68]
Dandawate, P.; Khan, E.; Padhye, S.; Gaba, H.; Sinha, S.; Deshpande, J.; Venkateswara Swamy, K.; Khetmalas, M.; Ahmad, A.; Sarkar, F.H. Synthesis, characterization, molecular docking and cytotoxic activity of novel plumbagin hydrazones against breast cancer cells. Bioorg. Med. Chem. Lett., 2012, 22(9), 3104-3108.
[http://dx.doi.org/10.1016/j.bmcl.2012.03.060] [PMID: 22483392]
[69]
Qais, F.A.; Husain, F.M.; Khan, R.A.; Ahmad, I.; Hassan, I. Deciphering the interaction of plumbagin with human serum albumin: A combined biophysical and molecular docking study. J. King Saud Univ. Sci., 2020, 32(6), 2854-2862.
[http://dx.doi.org/10.1016/j.jksus.2020.07.008]
[70]
Tuli, H.S.; Bhatia, G.K.; Sood, S.; Debnath, P.; Aggarwal, D.; Upadhyay, S.K. In silico analysis and molecular docking studies of plumbagin and piperine ligands as potential inhibitors of alpha-glucosidase receptor. Biointerface Res. Appl. Chem., 2021, 11(2), 9629-9637.
[71]
Liu, X.; Niu, M.; Xu, X.; Cai, W.; Zeng, L.; Zhou, X.; Yu, R.; Xu, K. CRM1 is a direct cellular target of the natural anti-cancer agent plumbagin. J. Pharmacol. Sci., 2014, 124(4), 486-493.
[http://dx.doi.org/10.1254/jphs.13240FP] [PMID: 24739265]
[72]
Kong, X.; Luo, J.; Xu, T.; Zhou, Y.; Pan, Z.; Xie, Y.; Zhao, L.; Lu, Y.; Han, X.; Li, Z.; Liu, L. Plumbagin enhances TRAIL-induced apoptosis of human leukemic Kasumi-1 cells through upregulation of TRAIL death receptor expression, activation of caspase-8 and inhibition of cFLIP. Oncol. Rep., 2017, 37(6), 3423-3432.
[http://dx.doi.org/10.3892/or.2017.5627] [PMID: 28498435]
[73]
Sandur, S.K.; Ichikawa, H.; Sethi, G.; Ahn, K.S.; Aggarwal, B.B. Plumbagin (5-hydroxy-2-methyl-1,4-naphthoquinone) suppresses NF-kappaB activation and NF-kappaB-regulated gene products through modulation of p65 and IkappaBalpha kinase activation, leading to potentiation of apoptosis induced by cytokine and chemotherapeutic agents. J. Biol. Chem., 2006, 281(25), 17023-17033.
[http://dx.doi.org/10.1074/jbc.M601595200] [PMID: 16624823]
[74]
Rondeau, G.; Abedinpour, P.; Chrastina, A.; Pelayo, J.; Borgstrom, P.; Welsh, J. Differential gene expression induced by anti-cancer agent plumbagin is mediated by androgen receptor in prostate cancer cells. Sci. Rep., 2018, 8(1), 2694.
[http://dx.doi.org/10.1038/s41598-018-20451-9] [PMID: 29426892]
[75]
Kuo, P.L.; Hsu, Y.L.; Cho, C.Y. Plumbagin induces G2-M arrest and autophagy by inhibiting the AKT/mammalian target of rapamycin pathway in breast cancer cells. Mol. Cancer Ther., 2006, 5(12), 3209-3221.
[http://dx.doi.org/10.1158/1535-7163.MCT-06-0478] [PMID: 17172425]
[76]
Son, T.G.; Camandola, S.; Arumugam, T.V.; Cutler, R.G.; Telljohann, R.S.; Mughal, M.R.; Moore, T.A.; Luo, W.; Yu, Q.S.; Johnson, D.A.; Johnson, J.A.; Greig, N.H.; Mattson, M.P. Plumbagin, a novel Nrf2/ARE activator, protects against cerebral ischemia. J. Neurochem., 2010, 112(5), 1316-1326.
[http://dx.doi.org/10.1111/j.1471-4159.2009.06552.x] [PMID: 20028456]
[77]
Tiwari, S.B.; Pai, R.M.; Udupa, N. Temperature sensitive liposomes of plumbagin: characterization and in vivo evaluation in mice bearing melanoma B16F1. J. Drug Target., 2002, 10(8), 585-591.
[http://dx.doi.org/10.1080/1061186021000054924] [PMID: 12683662]
[78]
Sunil Kumar, M.R.; Aithal, B.K.; Udupa, N.; Sreenivasulu Reddy, M.; Raakesh, V.; Murthy, R.S.R.; Prudhvi Raju, D.; Satish Rao, B.S. Formulation of plumbagin loaded long circulating pegylated liposomes: in vivo evaluation in C57BL/6J mice bearing B16F1 melanoma. Drug Deliv., 2011, 18, 511-522.
[http://dx.doi.org/10.3109/10717544.2011.595840]
[79]
D’Souza, R.; Singh, U.V.; Aithal, K.S.; Udupa, N. Antifertility activity of niosomal HPbCD-Plumbagin complex. Indian J. Pharm. Sci., 1998, 60, 36-40.
[80]
Oommen, E.; Dinesh Shenoy, B.; Udupa, N.; Kamath, R.; Uma Devi, P. Antitumour efficacy of cyclodextrin-complexed and harmac encapsulated plumbagin in mice bearing melanoma B16F1. Pharm. Pharmacol. Commun., 1999, 5, 281-285.
[http://dx.doi.org/10.1211/146080899128734857]
[81]
Naresh, R.A.; Udupa, N.; Devi, P.U. Niosomal plumbagin with reduced toxicity and improved anticancer activity in BALB/C mice. J. Pharm. Pharmacol., 1996, 48(11), 1128-1132.
[http://dx.doi.org/10.1111/j.2042-7158.1996.tb03907.x] [PMID: 8961159]
[82]
Kini, D.P.; Pandey, S.; Shenoy, B.D.; Singh, U.V.; Udupa, N.; Umadevi, P.; Kamath, R.; Nagaraj-kumari, K.; Ramanarayan, K. Antitumor and antifertility activities of plumbagin controlled release formulations. Indian J. Exp. Biol., 1997, 35(4), 374-379.
[PMID: 9315238]
[83]
Indhumathi, D.; Remya, P.N.; Sangeetha, S. Formulation trails on nanoparticular preparation for easy scale up through different techniques. J. Chemical Pharm. Sci., 2013, 6, 170-174.
[84]
Govindan, L.; Anbazhagan, S.; Altemimi, A.B.; Lakshminarayanan, K.; Kuppan, S.; Pratap-Singh, A.; Kandasamy, M. Efficacy of Antimicrobial and Larvicidal Activities of Green Synthesized Silver Nanoparticles Using Leaf Extract of Plumbago auriculata Lam. Plants, 2020, 9(11), 1577.
[http://dx.doi.org/10.3390/plants9111577] [PMID: 33202641]
[85]
Srinivas, P.; Patra, C.R.; Bhattacharya, S.; Mukhopadhyay, D. Cytotoxicity of naphthoquinones and their capacity to generate reactive oxygen species is quenched when conjugated with gold nanoparticles. Int. J. Nanomedicine, 2011, 6, 2113-2122.
[http://dx.doi.org/10.2147/IJN.S24074] [PMID: 22114475]
[86]
Appadurai, P.; Rathinasamy, K. Plumbagin-silver nanoparticle formulations enhance the cellular uptake of plumbagin and its antiproliferative activities. IET Nanobiotechnol., 2015, 9(5), 264-272.
[http://dx.doi.org/10.1049/iet-nbt.2015.0008] [PMID: 26435279]
[87]
Hafeez, B.B.; Kashyap, V.K.; Boya, V.; Ganju, A.; Sikander, M.; Yallapu, M.; Jaggi, M.; Chauhan, S. Novel nanoparticle formulation of Plumbagin for pancreatic cancer treatment. In: Proceedings of the 107th Annual Meeting of the American Association for Cancer Research, 2016 Apr 16–20New Orleans, LA. Philadelphia(PA): AACR. Cancer Res.2016, p. 76.
[88]
Shahida, S.D.; Affrose, A.; Suresh Kumar, B. Annaraj, Jamespandi; Pitchumani, Kasi Synthesis, characterization, and DNA binding studies of nano plumbagin. J. Nanomater., 2014, 2014, 1-9.
[http://dx.doi.org/10.1155/2014/179149]
[89]
Duraipandy, N.; Lakra, R.; Kunnavakkam Vinjimur, S.; Samanta, D. K, P.S.; Kiran, M.S. Caging of plumbagin on silver nanoparticles imparts selectivity and sensitivity to plumbagin for targeted cancer cell apoptosis. Metallomics, 2014, 6(11), 2025-2033.
[http://dx.doi.org/10.1039/C4MT00165F] [PMID: 25188862]
[90]
Bothiraja, C.; Kapare, H.S.; Pawar, A.P.; Shaikh, K.S. Development of plumbagin-loaded phospholipid-Tween® 80 mixed micelles: formulation, optimization, effect on breast cancer cells and human blood/serum compatibility testing. Ther. Deliv., 2013, 4(10), 1247-1259.
[http://dx.doi.org/10.4155/tde.13.92] [PMID: 24116910]
[91]
Pawar, A.; Patel, R.; Arulmozhi, S.; Pawar, A. D-a-Tocopheryl polyethylene glycol 1000 succinate conjugated folic acid nanomicelles: towards enhanced bioavailability, stability, safety, prolonged drug release and synergized anticancer effect of plumbagin. RSC Adv., 2016, 6, 78106-78121.
[http://dx.doi.org/10.1039/C6RA12714B]
[92]
Singh, U.V.; Bisht, K.S.; Rao, S.; Uma Devi, P.; Udupa, N. Plumbagin-loaded PLGA microspheres with and enhanced antitumour efficacy reduced in mice toxicity. Pharm. Pharmacol. Commun., 1996, 2, 407-409.
[93]
Mandala Rayabandla, S.K.; Aithal, K.; Anandam, A.; Shavi, G.; Nayanabhirama, U.; Arumugam, K.; Musmade, P.; Bhat, K.; Bola Sadashiva, S.R. Preparation, in vitro characterization, pharmacokinetic, and pharmacodynamic evaluation of chitosan-based plumbagin microspheres in mice bearing B16F1 melanoma. Drug Deliv., 2010, 17(3), 103-113.
[http://dx.doi.org/10.3109/10717540903548447] [PMID: 20100068]
[94]
Singh, U.V.; Aithal, K.S.; Udupa, N. Inclusion complex of plumbagin with beta cyclodextrin as evidenced by spectral data and molecular modelling. Pharmazie, 1998, 53(3), 208-210.
[95]
Bothiraja, C.; Pawar, A.P.; Mali, A.J.; Shaikh, S.K. Improved pharmaceutical properties of surface modified bioactive plumbagin crystals. Int. J. Surface Sci. Eng., 2013, 7, 181-195.
[http://dx.doi.org/10.1504/IJSURFSE.2013.053708]
[96]
Rajalakshmi, S.; Pawar, A.P.; Mali, A.J.; Bothiraja, C. Crystal engineering of bioactive plumbagin using anti-solvent precipitation, melt solidification and sonocrystallization techniques. Mater. Res. Express, 2014, 1, 1-19.
[http://dx.doi.org/10.1088/2053-1591/1/2/025405]
[97]
Chrastina, A.; Baron, V.T.; Abedinpour, P.; Rondeau, G.; Welsh, J.; Borgström, P. Plumbagin-loaded nanoemulsion drug delivery formulation and evaluation of antiproliferative effect on prostate cancer cells. BioMed Res. Int., 2018, 2018, 9035452.
[http://dx.doi.org/10.1155/2018/9035452] [PMID: 30534567]
[98]
Kamble, P.R.; Shaikh, K.S. Optimization and evaluation of self-nanoemulsifying drug delivery system for enhanced bioavailability of plumbagin. Planta Med., 2022, 88(1), 79-90.
[http://dx.doi.org/10.1055/a-1332-2037] [PMID: 33450771]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy