Generic placeholder image

Infectious Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5265
ISSN (Online): 2212-3989

Mini-Review Article

Therapeutic Status of Famotidine in COVID-19 Patients: A Review

Author(s): Moein Mohseni, Vahid Raissi, Yasamin Sharifan, Kimia Barikro, Sasan Amiri, Maedeh Sadat Mohseni, Farid Raeisi, Kimia Masoumi, Sina Khodakarami and Omid Raiesi*

Volume 22, Issue 3, 2022

Published on: 18 February, 2022

Article ID: e070122200096 Pages: 8

DOI: 10.2174/1871526522666220107125511

Price: $65

Abstract

The novel coronavirus, SARS-coV-2, which emerged in Wuhan in November 2019, has increasingly spread worldwide. More than 272 million cases of infection have been identified. COVID-19 has affected 223 countries and territories across the world. The principal target of the SARS-CoV-2 infection is the lower respiratory tract. Series of moderate to non-specific severe clinical signs and symptoms appear two to fourteen days after exposure to SARS-CoV-2 in patients with COVID-19 disease, including cough, breath deficiency, and at least two of these symptoms: headache, fever, chills, repeated rigor, myalgia, oropharyngitis, anosmia, and ageusia. No therapeutic agents have been validated to have substantial efficacy in the clinical care of COVID-19 patients in large-scale trials, despite worsening infected rates of COVID-19. Early clinical evidence from many sources suggests that treatment with famotidine may decrease COVID-19-related morbidity and mortality. The mechanism by which famotidine could improve the outcomes of COVID-19 is currently unknown. A more recent postulated mechanism is that the effect of famotidine is mediated by histamine-2 receptor antagonism or inverse agonism, inferring that the SARS-CoV-2, resulting in COVID-19 infection, at least partially leads to the abnormal release of histamine and perhaps dysfunction of mast cells.

Keywords: COVID-19, SARS-coV-2, histamine-2 receptor antagonism, famotidine, therapeutic, respiratory syndrome disease.

Graphical Abstract

[1]
Mukherjee R, Bhattacharya A, Bojkova D, et al. Famotidine inhibits toll-like receptor 3-mediated inflammatory signaling in SARS-CoV-2 infection. J Biol Chem 2021; 297(2): 100925.
[http://dx.doi.org/10.1016/j.jbc.2021.100925] [PMID: 34214498]
[2]
Tabanejad Z, Darvish S, Borjian Boroujeni Z, et al. Seroepidemiological study of novel coronavirus disease (CoVID-19) in Tehran, Iran. Infect Epidemiol Microbiol 2021. 7(2).
[3]
Malone RW, Tisdall P, Fremont-Smith P, et al. COVID-19: Famotidine, histamine, mast cells, and mechanisms. Front Pharmacol 2021; 12: 633680.
[http://dx.doi.org/10.3389/fphar.2021.633680] [PMID: 33833683]
[4]
Lee PI, Hsueh PR. Emerging threats from zoonotic coronaviruses-from SARS and MERS to 2019-nCoV. J Microbiol Immunol Infect 2020; 53(3): 365-7.
[http://dx.doi.org/10.1016/j.jmii.2020.02.001] [PMID: 32035811]
[5]
Zhou P, Yang XL, Wang XG, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 2020; 579(7798): 270-3.
[6]
Jean SS, Lee PI, Hsueh PR. Treatment options for COVID-19: The reality and challenges. J Microbiol Immunol Infect 2020; 53(3): 436-43.
[http://dx.doi.org/10.1016/j.jmii.2020.03.034] [PMID: 32307245]
[7]
Shi H, Han X, Jiang N, et al. Radiological findings from 81 patients with COVID-19 pneumonia in Wuhan, China: A descriptive study. Lancet Infect Dis 2020; 20(4): 425-34.
[http://dx.doi.org/10.1016/S1473-3099(20)30086-4] [PMID: 32105637]
[8]
Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020; 395(10223): 497-506.
[http://dx.doi.org/10.1016/S0140-6736(20)30183-5] [PMID: 31986264]
[9]
Boopathi S, Poma AB, Kolandaivel P. Novel 2019 coronavirus structure, mechanism of action, antiviral drug promises and rule out against its treatment. J Biomol Struct Dyn 2021; 39(9): 3409-18.
[PMID: 32306836]
[10]
Wiersinga WJ, Rhodes A, Cheng AC, Peacock SJ, Prescott HC. Pathophysiology, transmission, diagnosis, and treatment of coronavirus disease 2019 (COVID-19): A review. JAMA 2020; 324(8): 782-93.
[http://dx.doi.org/10.1001/jama.2020.12839] [PMID: 32648899]
[11]
Dabbous HM, Abd-Elsalam S, El-Sayed MH, et al. Efficacy of favipiravir in COVID-19 treatment: A multi-center randomized study. Arch Virol 2021; 166(3): 949-54.
[http://dx.doi.org/10.1007/s00705-021-04956-9] [PMID: 33492523]
[12]
Murai Y, Kawasuji H, Takegoshi Y, et al. A case of COVID-19 diagnosed with favipiravir-induced drug fever based on a positive drug-induced lymphocyte stimulation test. Int J Infect Dis 2021; 106: 33-5.
[http://dx.doi.org/10.1016/j.ijid.2021.03.048] [PMID: 33746092]
[13]
Aleem A, Kothadia J. Remdesivir. StatPearls 2021.
[14]
Cascella M, Rajnik M, Aleem A, Dulebohn S, Di Napoli R. Features, evaluation, and treatment of coronavirus (COVID-19). StatPearls 2021.
[15]
Chakraborty C, Bhattacharya M, Sharma AR. Present variants of concern and variants of interest of severe acute respiratory syndrome coronavirus 2: Their significant mutations in S-glycoprotein, infectivity, re-infectivity, immune escape and vaccines activity. Rev Med Virol 2021; e2270.
[http://dx.doi.org/10.1002/rmv.2270]
[16]
Jewell BL. Monitoring differences between the SARS-CoV-2 B.1.1.7 variant and other lineages. Lancet Public Health 2021; 6(5): e267-8.
[http://dx.doi.org/10.1016/S2468-2667(21)00073-6] [PMID: 33857454]
[17]
Yang W, Shaman J. Epidemiological characteristics of three SARS-CoV-2 variants of concern and implications for future COVID-19 pandemic outcomes. medRxiv 2021.
[http://dx.doi.org/10.1101/2021.05.19.21257476]
[18]
Funk T, Pharris A, Spiteri G, et al. Characteristics of SARS-CoV-2 variants of concern B.1.1.7, B.1.351 or P.1: Data from seven EU/EEA countries, weeks 38/2020 to 10/2021. Euro Surveill 2021; 26(16): 2100348.
[http://dx.doi.org/10.2807/1560-7917.ES.2021.26.16.2100348] [PMID: 33890566]
[19]
Alexandar S, Ravisankar M, Kumar RS, Jakkan K. A Comprehensive Review on Covid-19 Delta variant. Int J Clin Pharmacol Res 2021; 5: 83-5.
[20]
Hetemäki I, Kääriäinen S, Alho P, et al. An outbreak caused by the SARS-CoV-2 Delta variant (B.1.617.2) in a secondary care hospital in Finland, May 2021. Euro Surveill 2021; 26(30): 2100636.
[http://dx.doi.org/10.2807/1560-7917.ES.2021.26.30.2100636] [PMID: 34328076]
[21]
Vaughan A. Delta to dominate world. Elsevier 2021.
[http://dx.doi.org/10.1016/S0262-4079(21)01121-0]
[22]
Uriu K, Kimura I, Shirakawa K, et al. Neutralization of the SARS-CoV-2 Mu variant by convalescent and vaccine serum. N Engl J Med 2021; 385(25): 2397-9.
[http://dx.doi.org/10.1056/NEJMc2114706] [PMID: 34731554]
[23]
Centers for disease control and prevention. Control CfD. Quarantine and Isolation. 2021.
[24]
Salama C, Han J, Yau L, et al. Tocilizumab in patients hospitalized with Covid-19 pneumonia. N Engl J Med 2021; 384(1): 20-30.
[http://dx.doi.org/10.1056/NEJMoa2030340] [PMID: 33332779]
[25]
Ennis M, Tiligada K. Histamine receptors and COVID-19. Inflamm Res 2021; 70(1): 67-75.
[http://dx.doi.org/10.1007/s00011-020-01422-1] [PMID: 33206207]
[26]
McCullough AJ, Graham DY, Knuff TE, et al. Suppression of nocturnal acid secretion with famotidine accelerates gastric ulcer healing. Gastroenterology 1989; 97(4): 860-6.
[http://dx.doi.org/10.1016/0016-5085(89)91489-3] [PMID: 2570730]
[27]
Vinayek R, Howard JM, Maton PN, et al. Famotidine in the therapy of gastric hypersecretory states. Am J Med 1986; 81(4B): 49-59.
[http://dx.doi.org/10.1016/0002-9343(86)90600-5] [PMID: 2877575]
[28]
Keithley JK. Histamine H2-receptor antagonists. Nurs Clin North Am 1991; 26(2): 361-73.
[PMID: 1675461]
[29]
Hudson N, Taha AS, Russell RI, et al. Famotidine for healing and maintenance in nonsteroidal anti-inflammatory drug-associated gastroduodenal ulceration. Gastroenterology 1997; 112(6): 1817-22.
[http://dx.doi.org/10.1053/gast.1997.v112.pm9178671] [PMID: 9178671]
[30]
Nguyen K, Dersnah GD, Ahlawat R. Famotidine. StatPearls 2020.
[31]
Mukai K, Tsai M, Saito H, Galli SJ. Mast cells as sources of cytokines, chemokines, and growth factors. Immunol Rev 2018; 282(1): 121-50.
[http://dx.doi.org/10.1111/imr.12634] [PMID: 29431212]
[32]
Metcalfe DD, Baram D, Mekori YA. Mast cells. Physiol Rev 1997; 77(4): 1033-79.
[http://dx.doi.org/10.1152/physrev.1997.77.4.1033] [PMID: 9354811]
[33]
Almoosa Z, Saad M, Qara S, et al. Favipiravir versus standard of care in patients with severe COVID-19 infections: A retrospective comparative study. J Infect Public Health 2021; 14(9): 1247-53.
[http://dx.doi.org/10.1016/j.jiph.2021.08.022] [PMID: 34464921]
[34]
Mather JF, Seip RL, McKay RG. Impact of famotidine use on clinical outcomes of hospitalized patients with COVID-19. Am J Gastroenterol 2020; 115(10): 1617-23.
[http://dx.doi.org/10.14309/ajg.0000000000000832] [PMID: 32852338]
[35]
Berlin RG, Clineschmidt BV, Majka JA. Famotidine: An appraisal of its mode of action and safety. Am J Med 1986; 81(4B): 8-12.
[http://dx.doi.org/10.1016/0002-9343(86)90594-2] [PMID: 2877577]
[36]
Anand K, Ziebuhr J, Wadhwani P, Mesters JR, Hilgenfeld R. Coronavirus main proteinase (3CLpro) structure: Basis for design of anti-SARS drugs. Science 2003; 300(5626): 1763-7.
[http://dx.doi.org/10.1126/science.1085658] [PMID: 12746549]
[37]
Wu C, Liu Y, Yang Y, et al. Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods. Acta Pharm Sin B 2020; 10(5): 766-88.
[http://dx.doi.org/10.1016/j.apsb.2020.02.008] [PMID: 32292689]
[38]
Kritas SK, Ronconi G, Caraffa A, Gallenga CE, Ross R, Conti P. Mast cells contribute to coronavirus-induced inflammation: New anti-inflammatory strategy. J Biol Regul Homeost Agents 2020; 34(1): 9-14.
[PMID: 32013309]
[39]
Richter JE. Review article: The management of heartburn in pregnancy. Aliment Pharmacol Ther 2005; 22(9): 749-57.
[http://dx.doi.org/10.1111/j.1365-2036.2005.02654.x] [PMID: 16225482]
[40]
Giacomelli A, Pezzati L, Conti F, et al. Self-reported olfactory and taste disorders in patients with severe acute respiratory coronavirus 2 infection: A cross-sectional study. Clin Infect Dis 2020; 71(15): 889-90.
[http://dx.doi.org/10.1093/cid/ciaa330] [PMID: 32215618]
[41]
Eliezer M, Hautefort C, Hamel AL, et al. Sudden and complete olfactory loss function as a possible symptom of COVID-19. JAMA Otolaryngol Head Neck Surg 2020; 146(7): 674-5.
[http://dx.doi.org/10.1001/jamaoto.2020.0832] [PMID: 32267483]
[42]
Jean-Charles PY, Kaur S, Shenoy SK. GPCR signaling via β-arrestin-dependent mechanisms. J Cardiovasc Pharmacol 2017; 70(3): 142.
[http://dx.doi.org/10.1097/FJC.0000000000000482] [PMID: 28328745]
[43]
Freedberg DE, Conigliaro J, Wang TC, et al. Famotidine use is associated with improved clinical outcomes in hospitalized COVID-19 patients: A propensity score matched retrospective cohort study. Gastroenterology 2020; 159(3): 1129-31.
[http://dx.doi.org/10.1053/j.gastro.2020.05.053] [PMID: 32446698]
[44]
Janowitz T, Gablenz E, Pattinson D, et al. Famotidine use and quantitative symptom tracking for COVID-19 in non-hospitalised patients: A case series. Gut 2020; 69(9): 1592-7.
[http://dx.doi.org/10.1136/gutjnl-2020-321852] [PMID: 32499303]
[45]
Cheung KS, Hung IFN, Leung WK. Association between famotidine use and COVID-19 severity in Hong Kong: A territory-wide study. Gastroenterology 2021; 160(5): 1898-9.
[http://dx.doi.org/10.1053/j.gastro.2020.05.098] [PMID: 32682763]
[46]
Sun C, Chen Y, Hu L, et al. Does Famotidine reduce the risk of progression to severe disease, death, and intubation for COVID-19 patients? A systemic review and meta-analysis. Dig Dis Sci 2021; 66(11): 3929-37.
[http://dx.doi.org/10.1007/s10620-021-06872-z] [PMID: 33625613]
[47]
Tomera K, Malone R, Kittah J. Hospitalized COVID-19 patients treated with celecoxib and high dose famotidine adjuvant therapy show significant clinical responses. SSRN 2020.
[48]
Poluzzi E, Raschi E, Moretti U, De Ponti F. Drug-induced torsades de pointes: Data mining of the public version of the FDA Adverse Event Reporting System (AERS). Pharmacoepidemiol Drug Saf 2009; 18(6): 512-8.
[http://dx.doi.org/10.1002/pds.1746] [PMID: 19358226]
[49]
Echizen H, Ishizaki T. Clinical pharmacokinetics of famotidine. Clin Pharmacokinet 1991; 21(3): 178-94.
[http://dx.doi.org/10.2165/00003088-199121030-00003] [PMID: 1764869]
[50]
Vaughn CJ. Drugs and lactation database: Lactmed. J Electron Resour Med Libr 2012; 9(4): 272-7.
[http://dx.doi.org/10.1080/15424065.2012.735134]
[51]
LIVERPOOL. U.O. COVID19-druginteractions. 2021.
[52]
Humphries TJ. Famotidine: A notable lack of drug interactions. Scand J Gastroenterol Suppl 1987; 134(134): 55-60.
[http://dx.doi.org/10.3109/00365528709090142] [PMID: 2889260]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy