Generic placeholder image

Anti-Infective Agents

Editor-in-Chief

ISSN (Print): 2211-3525
ISSN (Online): 2211-3533

Mini-Review Article

Disulfiram: A Repurposed Drug in Preclinical and Clinical Development for the Treatment of Infectious Diseases

Author(s): Marco M. Custodio, Jennifer Sparks and Timothy E. Long*

Volume 20, Issue 3, 2022

Published on: 27 April, 2022

Article ID: e040122199856 Pages: 12

DOI: 10.2174/2211352520666220104104747

Price: $65

Abstract

This article reviews preclinical and clinical studies on the repurposed use of disulfiram (Antabuse) as an antimicrobial agent. Preclinical research covered on the alcohol sobriety aid includes uses as an anti-MRSA agent, a carbapenamase inhibitor, antifungal drug for candidiasis, and treatment for parasitic diseases due to protozoa (e.g., giardiasis, leishmaniasis, malaria) and helminthes (e.g., schistosomiasis, trichuriasis). Past, current, and pending clinical studies on disulfiram as a post-Lyme disease syndrome (PTLDS) therapy, an HIV latency reversal agent, and intervention for COVID-19 infections are also reviewed..

Keywords: Disulfiram, antabuse, antimicrobial, MRSA, lyme disease, HIV, COVID.

Graphical Abstract

[1]
Wright, C.; Moore, R.D. Disulfiram treatment of alcoholism. Am. J. Med., 1990, 88(6), 647-655.
[http://dx.doi.org/10.1016/0002-9343(90)90534-K] [PMID: 2189310]
[2]
Williams, E.E. Effects of alcohol on workers with carbon disulfide. J. Am. Med. Assoc., 1937, 109, 1472-1473.
[3]
Kragh, H. From disulfiram to Antabuse: The invention of a drug. Bull. Hist. Chem., 2008, 33, 82-88.
[4]
Glud, E. The treatment of alcoholic patients in Denmark with antabuse with suggestions for its trial in the United States. Q. J. Stud. Alcohol, 1949, 10(2), 185-197.
[http://dx.doi.org/10.15288/qjsa.1949.10.185] [PMID: 18134706]
[5]
Ellis, P.M.; Dronsfield, A.T. Antabuse’s diamond anniversary: still sparkling on? Drug Alcohol Rev., 2013, 32(4), 342-344.
[http://dx.doi.org/10.1111/dar.12018] [PMID: 23194431]
[6]
Johansson, B. A review of the pharmacokinetics and pharmacodynamics of disulfiram and its metabolites. Acta Psychiatr. Scand. Suppl., 1992, 369, 15-26.
[http://dx.doi.org/10.1111/j.1600-0447.1992.tb03310.x ] [PMID: 1471547]
[7]
Shen, M.L.; Lipsky, J.J.; Naylor, S. Role of disulfiram in the in vitro inhibition of rat liver mitochondrial aldehyde dehydrogenase. Biochem. Pharmacol., 2000, 60(7), 947-953.
[http://dx.doi.org/10.1016/S0006-2952(00)00435-4 ] [PMID: 10974203]
[8]
Petersen, E.N. The pharmacology and toxicology of disulfiram and its metabolites. Acta Psychiatr. Scand. Suppl., 1992, 369, 7-13.
[http://dx.doi.org/10.1111/j.1600-0447.1992.tb03309.x ] [PMID: 1471556]
[9]
Schottenfeld, R.S.; Chawarski, M.C.; Cubells, J.F.; George, T.P.; Lappalainen, J.; Kosten, T.R. Randomized clinical trial of disulfiram for cocaine dependence or abuse during buprenorphine treatment. Drug Alcohol Depend., 2014, 136, 36-42.
[http://dx.doi.org/10.1016/j.drugalcdep.2013.12.007 ] [PMID: 24462581]
[10]
Nechushtan, H.; Hamamreh, Y.; Nidal, S.; Gotfried, M.; Baron, A.; Shalev, Y.I.; Nisman, B.; Peretz, T.; Peylan-Ramu, N. A phase IIb trial assessing the addition of disulfiram to chemotherapy for the treatment of metastatic non-small cell lung cancer. Oncologist, 2015, 20(4), 366-367.
[http://dx.doi.org/10.1634/theoncologist.2014-0424] [PMID: 25777347]
[11]
Huang, J.; Chaudhary, R.; Cohen, A.L.; Fink, K.; Goldlust, S.; Boockvar, J.; Chinnaiyan, P.; Wan, L.; Marcus, S.; Campian, J.L. A multi-center phase II study of temozolomide plus disulfiram and copper for recurrent temozolomide-resistant glioblastoma. J. Neurooncol., 2019, 142(3), 537-544.
[http://dx.doi.org/10.1007/s11060-019-03125-y] [PMID: 30771200]
[12]
Lee, S.A.; Elliott, J.H.; McMahon, J.; Hartogenesis, W.; Bumpus, N.N.; Lifson, J.D.; Gorelick, R.J.; Bacchetti, P.; Deeks, S.G.; Lewin, S.R.; Savic, R.M. Population pharmacokinetics and pharmacodynamics of disulfiram on inducing latent HIV-1 transcription in a Phase IIb Tri-al. Clin. Pharmacol. Ther., 2019, 105(3), 692-702.
[http://dx.doi.org/10.1002/cpt.1220] [PMID: 30137649]
[13]
Phillips, M.; Malloy, G.; Nedunchezian, D.; Lukrec, A.; Howard, R.G. Disulfiram inhibits the in vitro growth of methicillin-resistant staph-ylococcus aureus. Antimicrob. Agents Chemother., 1991, 35(4), 785-787.
[http://dx.doi.org/10.1128/AAC.35.4.785] [PMID: 2069390]
[14]
Long, T.E. Repurposing thiram and disulfiram as antibacterial agents for multidrug-resistant Staphylococcus aureus infections. Antimicrob. Agents Chemother., 2017, 61(9), e00898-e17.
[http://dx.doi.org/10.1128/AAC.00898-17] [PMID: 28674046]
[15]
Thakare, R.; Shukla, M.; Kaul, G.; Dasgupta, A.; Chopra, S. Repurposing disulfiram for treatment of Staphylococcus aureus infections. Int. J. Antimicrob. Agents, 2019, 53(6), 709-715.
[http://dx.doi.org/10.1016/j.ijantimicag.2019.03.024 ] [PMID: 30954635]
[16]
Frazier, K.R.; Moore, J.A.; Long, T.E. Antibacterial activity of disulfiram and its metabolites. J. Appl. Microbiol., 2019, 126(1), 79-86.
[http://dx.doi.org/10.1111/jam.14094] [PMID: 30160334]
[17]
Santos, A.L.; Sodre, C.L.; Valle, R.S.; Silva, B.A.; Abi-Chacra, E.A.; Silva, L.V.; Souza-Goncalves, A.L.; Sangenito, L.S.; Goncalves, D.S.; Souza, L.O.; Palmeira, V.F.; d’Avila-Levy, C.M.; Kneipp, L.F.; Kellett, A.; McCann, M.; Branquinha, M.H. Antimicrobial action of chelat-ing agents: repercussions on the microorganism development, virulence and pathogenesis. Curr. Med. Chem., 2012, 19(17), 2715-2737.
[http://dx.doi.org/10.2174/092986712800609788] [PMID: 22455582]
[18]
Lemire, J.A.; Harrison, J.J.; Turner, R.J. Antimicrobial activity of metals: mechanisms, molecular targets and applications. Nat. Rev. Microbiol., 2013, 11(6), 371-384.
[http://dx.doi.org/10.1038/nrmicro3028] [PMID: 23669886]
[19]
Frei, A.; Zuegg, J.; Elliott, A.G.; Baker, M.; Braese, S.; Brown, C.; Chen, F.; G., Dowson C; Dujardin, G; Jung, N; King, AP; Mansour, AM; Massi, M; Moat, J; Mohamed, HA; Renfrew, AK; Rutledge, PJ; Sadler, PJ; Todd, MH; Willans, CE; Wilson, JJ; Cooper, MA; Blaskovich, MAT Metal complexes as a promising source for new antibiotics. Chem. Sci. (Camb.), 2020, 11(10), 2627-2639.
[http://dx.doi.org/10.1039/C9SC06460E]
[20]
Dalecki, A.G.; Crawford, C.L.; Wolschendorf, F. Copper and antibiotics: discovery, modes of action, and opportunities for medicinal ap-plications. Adv. Microb. Physiol., 2017, 70, 193-260.
[http://dx.doi.org/10.1016/bs.ampbs.2017.01.007] [PMID: 28528648]
[21]
Haeili, M.; Moore, C.; Davis, C.J.; Cochran, J.B.; Shah, S.; Shrestha, T.B.; Zhang, Y.; Bossmann, S.H.; Benjamin, W.H.; Kutsch, O.; Wolschendorf, F. Copper complexation screen reveals compounds with potent antibiotic properties against methicillin-resistant Staphylo-coccus aureus. Antimicrob. Agents Chemother., 2014, 58(7), 3727-3736.
[http://dx.doi.org/10.1128/AAC.02316-13] [PMID: 24752262]
[22]
Saputo, S.; Faustoferri, R.C.; Quivey, R.G. Jr A drug repositioning approach reveals that Streptococcus mutans is susceptible to a diverse range of established antimicrobials and nonantibiotics. Antimicrob. Agents Chemother., 2017, 62(1), e01674-17.
[PMID: 29061736]
[23]
Dalecki, A.G.; Haeili, M.; Shah, S.; Speer, A.; Niederweis, M.; Kutsch, O.; Wolschendorf, F. Disulfiram and copper ions kill Mycobacte-rium tuberculosis in a synergistic manner. Antimicrob. Agents Chemother., 2015, 59(8), 4835-4844.
[http://dx.doi.org/10.1128/AAC.00692-15] [PMID: 26033731]
[24]
Totten, A.H.; Crawford, C.L.; Dalecki, A.G.; Xiao, L.; Wolschendorf, F.; Atkinson, T.P. Differential susceptibility of Mycoplasma and Ureaplasma species to compound-enhanced copper toxicity. Front. Microbiol., 2019, 10, 1720.
[http://dx.doi.org/10.3389/fmicb.2019.01720] [PMID: 31417517]
[25]
Ejim, L.; Farha, M.A.; Falconer, S.B.; Wildenhain, J.; Coombes, B.K.; Tyers, M.; Brown, E.D.; Wright, G.D. Combinations of antibiotics and nonantibiotic drugs enhance antimicrobial efficacy. Nat. Chem. Biol., 2011, 7(6), 348-350.
[http://dx.doi.org/10.1038/nchembio.559] [PMID: 21516114]
[26]
Thompson, M.K.; Keithly, M.E.; Goodman, M.C.; Hammer, N.D.; Cook, P.D.; Jagessar, K.L.; Harp, J.; Skaar, E.P.; Armstrong, R.N. Struc-ture and function of the genomically encoded fosfomycin resistance enzyme, FosB, from Staphylococcus aureus. Biochemistry, 2014, 53(4), 755-765.
[http://dx.doi.org/10.1021/bi4015852] [PMID: 24447055]
[27]
Hamblin, K.A.; Flick-Smith, H.; Barnes, K.B.; Pereira-Leal, J.B.; Surkont, J.; Hampson, R.; Atkins, H.S.; Harding, S.V. Disulfiram, an alcohol dependence therapy, can inhibit the in vitro growth of Francisella tularensis. Int. J. Antimicrob. Agents, 2019, 54(1), 85-88.
[http://dx.doi.org/10.1016/j.ijantimicag.2019.04.002] [PMID: 31029736]
[28]
Pothineni, V.R.; Wagh, D.; Babar, M.M.; Inayathullah, M.; Solow-Cordero, D.; Kim, K.M.; Samineni, A.V.; Parekh, M.B.; Tayebi, L.; Rajadas, J. Identification of new drug candidates against Borrelia burgdorferi using high-throughput screening. Drug Des. Devel. Ther., 2016, 10, 1307-1322.
[http://dx.doi.org/10.2147/DDDT.S101486] [PMID: 27103785]
[29]
Potula, H.S.K.; Shahryari, J.; Inayathullah, M.; Malkovskiy, A.V.; Kim, K-M.; Rajadas, J. Repurposing disulfiram (tetraethylthiuram disul-fide) as a potential drug candidate against Borrelia burgdorferi in vitro and in vivo. Antibiotics (Basel), 2020, 9(9), E633.
[http://dx.doi.org/10.3390/antibiotics9090633] [PMID: 32971817]
[30]
Alvarez-Manzo, H.S.; Zhang, Y.; Shi, W.; Zhang, Y. Evaluation of disulfiram drug combinations and identification of other more effective combinations against stationary phase Borrelia burgdorferi. Antibiotics (Basel), 2020, 9(9), E542.
[http://dx.doi.org/10.3390/antibiotics9090542] [PMID: 32858987]
[31]
Kobatake, T.; Ogino, K.; Sakae, H.; Gotoh, K.; Watanabe, A.; Matsushita, O.; Okada, H.; Yokota, K. Antibacterial effects of disulfiram in Helicobacter pylori. Infect. Drug Resist., 2021, 14, 1757-1764.
[http://dx.doi.org/10.2147/IDR.S299177] [PMID: 34012274]
[32]
Hu, H.; Cui, L.; Lu, J.; Wei, K.; Wei, J.; Li, S.; Zou, C.; Chen, T. Intestinal microbiota regulates anti-tumor effect of disulfiram combined with Cu2+ in a mice model. Cancer Med., 2020, 9(18), 6791-6801.
[http://dx.doi.org/10.1002/cam4.3346] [PMID: 32750218]
[33]
Chen, C.; Yang, K.W.; Wu, L.Y.; Li, J.Q.; Sun, L.Y. Disulfiram as a potent metallo-β-lactamase inhibitor with dual functional mechanisms. Chem. Commun. (Camb.), 2020, 56(18), 2755-2758.
[http://dx.doi.org/10.1039/C9CC09074F] [PMID: 32022035]
[34]
Caskey, J.R.; Embers, M.E. Persister development by Borrelia burgdorferi populations in vitro. Antimicrob. Agents Chemother., 2015, 59(10), 6288-6295.
[http://dx.doi.org/10.1128/AAC.00883-15] [PMID: 26248368]
[35]
U.S. National Institutes of Health ClinicalTrials. NCT03891667, Available from: https://clinicaltrials.gov/ct2/show/NCT03891667
[36]
Liegner, K.B. Disulfiram (tetraethylthiuram disulfide) in the treatment of Lyme disease and babesiosis: report of experience in three cases. Antibiotics (Basel), 2019, 8(2), E72.
[http://dx.doi.org/10.3390/antibiotics8020072] [PMID: 31151194]
[37]
Trautmann, A.; Gascan, H.; Ghozzi, R. Potential patient-reported toxicities with disulfiram treatment in late disseminated Lyme disease. Front. Med. (Lausanne), 2020, 7, 133.
[http://dx.doi.org/10.3389/fmed.2020.00133] [PMID: 32373619]
[38]
Horita, Y.; Takii, T.; Yagi, T.; Ogawa, K.; Fujiwara, N.; Inagaki, E.; Kremer, L.; Sato, Y.; Kuroishi, R.; Lee, Y.; Makino, T.; Mizukami, H.; Hasegawa, T.; Yamamoto, R.; Onozaki, K. Antitubercular activity of disulfiram, an antialcoholism drug, against multidrug- and extensive-ly drug-resistant Mycobacterium tuberculosis isolates. Antimicrob. Agents Chemother., 2012, 56(8), 4140-4145.
[http://dx.doi.org/10.1128/AAC.06445-11] [PMID: 22615274]
[39]
Das, S.; Garg, T.; Chopra, S.; Dasgupta, A. Repurposing disulfiram to target infections caused by non-tuberculous mycobacteria. J. Antimicrob. Chemother., 2019, 74(5), 1317-1322.
[http://dx.doi.org/10.1093/jac/dkz018] [PMID: 30753528]
[40]
Arendrup, M.C.; Patterson, T.F. Multidrug-resistant candida: epidemiology, molecular mechanisms, and treatment. J. Infect. Dis., 2017, 216(Suppl. 3), S445-S451.
[http://dx.doi.org/10.1093/infdis/jix131] [PMID: 28911043]
[41]
Khan, S.; Singhal, S.; Mathur, T.; Upadhyay, D.J.; Rattan, A. Antifungal potential of disulfiram. Nippon Ishinkin Gakkai Zasshi, 2007, 48(3), 109-113.
[http://dx.doi.org/10.3314/jjmm.48.109] [PMID: 17667894]
[42]
Ortiz, S.C.; Huang, M.; Hull, C.M. Spore germination as a target for antifungal therapeutics. Antimicrob. Agents Chemother., 2019, 63, e00994-e19.
[http://dx.doi.org/10.1128/AAC.00994-19] [PMID: 31570398]
[43]
Kim, K.; Zilbermintz, L.; Martchenko, M. Repurposing FDA approved drugs against the human fungal pathogen, Candida albicans. Ann. Clin. Microbiol. Antimicrob., 2015, 14, 32.
[http://dx.doi.org/10.1186/s12941-015-0090-4] [PMID: 26054754]
[44]
Kaneko, Y.; Fukazawa, H.; Ohno, H.; Miyazaki, Y. Combinatory effect of fluconazole and FDA-approved drugs against Candida albi-cans. J. Infect. Chemother., 2013, 19(6), 1141-1145.
[http://dx.doi.org/10.1007/s10156-013-0639-0] [PMID: 23807392]
[45]
Krajaejun, T.; Lohnoo, T.; Yingyong, W.; Rujirawat, T.; Kumsang, Y.; Jongkhajornpong, P.; Theerawatanasirikul, S.; Kittichotirat, W.; Reamtong, O.; Yolanda, H. The repurposed drug disulfiram inhibits urease and aldehyde sehydrogenase and prevents growth of the oo-mycete. Antimicrob. Agents Chemother., 2019, 63, e00609-e00619.
[http://dx.doi.org/10.1128/AAC.00609-19] [PMID: 31138572]
[46]
Shukla, S.; Sauna, Z.E.; Prasad, R.; Ambudkar, S.V. Disulfiram is a potent modulator of multidrug transporter Cdr1p of Candida albicans. Biochem. Biophys. Res. Commun., 2004, 322(2), 520-525.
[http://dx.doi.org/10.1016/j.bbrc.2004.07.151] [PMID: 15325261]
[47]
Bar-Yosef, H.; Vivanco Gonzalez, N.; Ben-Aroya, S.; Kron, S.J.; Kornitzer, D. Chemical inhibitors of Candida albicans hyphal morpho-genesis target endocytosis. Sci. Rep., 2017, 7(1), 5692.
[http://dx.doi.org/10.1038/s41598-017-05741-y] [PMID: 28720834]
[48]
Darcis, G.; Van Driessche, B.; Van Lint, C. HIV latency: should we shock or lock? Trends Immunol., 2017, 38(3), 217-228.
[http://dx.doi.org/10.1016/j.it.2016.12.003] [PMID: 28073694]
[49]
Lang, J.M.; Touraine, J.L.; Trepo, C.; Choutet, P.; Kirstetter, M.; Falkenrodt, A.; Herviou, L.; Livrozet, J.M.; Retornaz, G.; Touraine, F. Randomised, double-blind, placebo-controlled trial of ditiocarb sodium (‘Imuthiol’) in human immunodeficiency virus infection. Lancet, 1988, 2(8613), 702-706.
[http://dx.doi.org/10.1016/S0140-6736(88)90184-5] [PMID: 2901566]
[50]
Hersh, E.M.; Brewton, G.; Abrams, D.; Bartlett, J.; Galpin, J.; Gill, P.; Gorter, R.; Gottlieb, M.; Jonikas, J.J.; Landesman, S. Ditiocarb sodi-um (diethyldithiocarbamate) therapy in patients with symptomatic HIV infection and AIDS. A randomized, double-blind, placebo-controlled, multicenter study. JAMA, 1991, 265(12), 1538-1544.
[http://dx.doi.org/10.1001/jama.1991.03460120052035 ] [PMID: 1671884]
[51]
Siliciano, J.D.; Siliciano, R.F. A long-term latent reservoir for HIV-1: discovery and clinical implications. J. Antimicrob. Chemother., 2004, 54(1), 6-9.
[http://dx.doi.org/10.1093/jac/dkh292] [PMID: 15163657]
[52]
Xing, S.; Bullen, C.K.; Shroff, N.S.; Shan, L.; Yang, H.C.; Manucci, J.L.; Bhat, S.; Zhang, H.; Margolick, J.B.; Quinn, T.C.; Margolis, D.M.; Siliciano, J.D.; Siliciano, R.F. Disulfiram reactivates latent HIV-1 in a Bcl-2-transduced primary CD4+ T cell model without induc-ing global T cell activation. J. Virol., 2011, 85(12), 6060-6064.
[http://dx.doi.org/10.1128/JVI.02033-10] [PMID: 21471244]
[53]
Doyon, G.; Zerbato, J.; Mellors, J.W.; Sluis-Cremer, N. Disulfiram reactivates latent HIV-1 expression through depletion of the phospha-tase and tensin homolog. AIDS, 2013, 27(2), F7-F11.
[http://dx.doi.org/10.1097/QAD.0b013e3283570620 ] [PMID: 22739395]
[54]
Kula, A.; Delacourt, N.; Bouchat, S.; Darcis, G.; Avettand-Fenoel, V.; Verdikt, R.; Corazza, F.; Necsoi, C.; Vanhulle, C.; Bendoumou, M.; Burny, A.; De Wit, S.; Rouzioux, C.; Rohr, O.; Van Lint, C. Heterogeneous HIV-1 reactivation patterns of disulfiram and combined disul-firam + romidepsin treatments. J. Acquir. Immune Defic. Syndr., 2019, 80(5), 605-613.
[http://dx.doi.org/10.1097/QAI.0000000000001958 ] [PMID: 30768485]
[55]
Mohammadi, P.; di Iulio, J.; Muñoz, M.; Martinez, R.; Bartha, I.; Cavassini, M.; Thorball, C.; Fellay, J.; Beerenwinkel, N.; Ciuffi, A.; Telenti, A. Dynamics of HIV latency and reactivation in a primary CD4+ T cell model. PLoS Pathog., 2014, 10(5), e1004156.
[http://dx.doi.org/10.1371/journal.ppat.1004156] [PMID: 24875931]
[56]
Elliott, J.H.; McMahon, J.H.; Chang, C.C.; Lee, S.A.; Hartogensis, W.; Bumpus, N.; Savic, R.; Roney, J.; Hoh, R.; Solomon, A.; Piatak, M.; Gorelick, R.J.; Lifson, J.; Bacchetti, P.; Deeks, S.G.; Lewin, S.R. Short-term administration of disulfiram for reversal of latent HIV infec-tion: a phase 2 dose-escalation study. Lancet HIV, 2015, 2(12), e520-e529.
[http://dx.doi.org/10.1016/S2352-3018(15)00226-X ] [PMID: 26614966]
[57]
Lin, M.H.; Moses, D.C.; Hsieh, C.H.; Cheng, S.C.; Chen, Y.H.; Sun, C.Y.; Chou, C.Y. Disulfiram can inhibit MERS and SARS coronavirus papain-like proteases via different modes. Antiviral Res., 2018, 150, 155-163.
[http://dx.doi.org/10.1016/j.antiviral.2017.12.015] [PMID: 29289665]
[58]
Jin, Z.; Du, X.; Xu, Y.; Deng, Y.; Liu, M.; Zhao, Y.; Zhang, B.; Li, X.; Zhang, L.; Peng, C.; Duan, Y.; Yu, J.; Wang, L.; Yang, K.; Liu, F.; Jiang, R.; Yang, X.; You, T.; Liu, X.; Yang, X.; Bai, F.; Liu, H.; Liu, X.; Guddat, L.W.; Xu, W.; Xiao, G.; Qin, C.; Shi, Z.; Jiang, H.; Rao, Z.; Yang, H. Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors. Nature, 2020, 582(7811), 289-293.
[http://dx.doi.org/10.1038/s41586-020-2223-y] [PMID: 32272481]
[59]
Chen, T.; Fei, C.Y.; Chen, Y.P.; Sargsyan, K.; Chang, C.P.; Yuan, H.S.; Lim, C. Synergistic inhibition of sars-cov-2 replication using disulfi-ram/ebselen and remdesivir. ACS Pharmacol. Transl. Sci., 2021, 4(2), 898-907.
[http://dx.doi.org/10.1021/acsptsci.1c00022] [PMID: 33855277]
[60]
U.S. National Institutes of Health ClinicalTrials. NCT04485130, Available from: https://clinicaltrials.gov/ct2/show/NCT04485130
[61]
U.S. National Institutes of Health ClinicalTrials. NCT04594343, Available from: https://clinicaltrials.gov/ct2/show/NCT04594343
[62]
Fillmore, N.; Bell, S.; Shen, C.; Nguyen, V.; La, J.; Dubreuil, M.; Strymish, J.; Brophy, M.; Mehta, G.; Wu, H.; Lieberman, J.; Do, N.; Sander, C. Disulfiram use is associated with lower risk of COVID-19: A retrospective cohort study. PLoS One, 2021, 16(10), e0259061.
[http://dx.doi.org/10.1371/journal.pone.0259061] [PMID: 34710137]
[63]
Gardner, T.B.; Hill, D.R. Treatment of giardiasis. Clin. Microbiol. Rev., 2001, 14(1), 114-128.
[http://dx.doi.org/10.1128/CMR.14.1.114-128.2001 ] [PMID: 11148005]
[64]
Nash, T.; Rice, W.G. Efficacies of zinc-finger-active drugs against Giardia lamblia. Antimicrob. Agents Chemother., 1998, 42(6), 1488-1492.
[http://dx.doi.org/10.1128/AAC.42.6.1488] [PMID: 9624499]
[65]
Galkin, A.; Kulakova, L.; Lim, K.; Chen, C.Z.; Zheng, W.; Turko, I.V.; Herzberg, O. Structural basis for inactivation of Giardia lamblia carbamate kinase by disulfiram. J. Biol. Chem., 2014, 289(15), 10502-10509.
[http://dx.doi.org/10.1074/jbc.M114.553123] [PMID: 24558036]
[66]
Castillo-Villanueva, A.; Rufino-González, Y.; Méndez, S.T.; Torres-Arroyo, A.; Ponce-Macotela, M.; Martínez-Gordillo, M.N.; Reyes-Vivas, H.; Oria-Hernández, J. Disulfiram as a novel inactivator of Giardia lamblia triosephosphate isomerase with antigiardial potential. Int. J. Parasitol. Drugs Drug Resist., 2017, 7(3), 425-432.
[http://dx.doi.org/10.1016/j.ijpddr.2017.11.003] [PMID: 29197728]
[67]
Sarwono, A.E.Y.; Mitsuhashi, S.; Kabir, M.H.B.; Shigetomi, K.; Okada, T.; Ohsaka, F.; Otsuguro, S.; Maenaka, K.; Igarashi, M.; Kato, K.; Ubukata, M. Repurposing existing drugs: identification of irreversible IMPDH inhibitors by high-throughput screening. J. Enzyme Inhib. Med. Chem., 2019, 34(1), 171-178.
[http://dx.doi.org/10.1080/14756366.2018.1540474 ] [PMID: 30451014]
[68]
Bouma, M.J.; Snowdon, D.; Fairlamb, A.H.; Ackers, J.P. Activity of disulfiram (bis(diethylthiocarbamoyl)disulphide) and ditiocarb (di-ethyldithiocarbamate) against metronidazole-sensitive and -resistant Trichomonas vaginalis and Tritrichomonas foetus. J. Antimicrob. Chemother., 1998, 42(6), 817-820.
[http://dx.doi.org/10.1093/jac/42.6.817] [PMID: 10052908]
[69]
Goodhew, E.B.; Secor, W.E. Drug library screening against metronidazole-sensitive and metronidazole-resistant Trichomonas vaginalis isolates. Sex. Transm. Infect., 2013, 89(6), 479-484.
[http://dx.doi.org/10.1136/sextrans-2013-051032] [PMID: 23794105]
[70]
Scheibel, L.W.; Adler, A.; Trager, W. Tetraethylthiuram disulfide (Antabuse) inhibits the human malaria parasite Plasmodium falciparum. Proc. Natl. Acad. Sci. USA, 1979, 76(10), 5303-5307.
[http://dx.doi.org/10.1073/pnas.76.10.5303] [PMID: 388434]
[71]
Deharo, E.; Barkan, D.; Krugliak, M.; Golenser, J.; Ginsburg, H. Potentiation of the antimalarial action of chloroquine in rodent malaria by drugs known to reduce cellular glutathione levels. Biochem. Pharmacol., 2003, 66(5), 809-817.
[http://dx.doi.org/10.1016/S0006-2952(03)00396-4 ] [PMID: 12948862]
[72]
Croft, S.L.; Sundar, S.; Fairlamb, A.H. Drug resistance in leishmaniasis. Clin. Microbiol. Rev., 2006, 19(1), 111-126.
[http://dx.doi.org/10.1128/CMR.19.1.111-126.2006 ] [PMID: 16418526]
[73]
Sharlow, E.R.; Close, D.; Shun, T.; Leimgruber, S.; Reed, R.; Mustata, G.; Wipf, P.; Johnson, J.; O’Neil, M.; Grögl, M.; Magill, A.J.; Lazo, J.S. Identification of potent chemotypes targeting Leishmania major using a high-throughput, low-stringency, computationally enhanced, small molecule screen. PLoS Negl. Trop. Dis., 2009, 3(11), e540.
[http://dx.doi.org/10.1371/journal.pntd.0000540] [PMID: 19888337]
[74]
Peniche, A.G.; Osorio, Y.; Renslo, A.R.; Frantz, D.E.; Melby, P.C.; Travi, B.L. Development of an ex vivo lymph node explant model for identification of novel molecules active against Leishmania major. Antimicrob. Agents Chemother., 2014, 58(1), 78-87.
[http://dx.doi.org/10.1128/AAC.00887-13] [PMID: 24126577]
[75]
Peniche, A.G.; Renslo, A.R.; Melby, P.C.; Travi, B.L. Antileishmanial activity of disulfiram and thiuram disulfide analogs in an ex vivo model system is selectively enhanced by the addition of divalent metal ions. Antimicrob. Agents Chemother., 2015, 59(10), 6463-6470.
[http://dx.doi.org/10.1128/AAC.05131-14] [PMID: 26239994]
[76]
Rodrigues, R.R.; Lane, J.E.; Carter, C.E.; Bogitsh, B.J.; Singh, P.K.; Zimmerman, L.J.; Molenda, J.J.; Jones, M.M. Chelating agent inhibi-tion of Trypanosoma cruzi epimastigotes in vitro. J. Inorg. Biochem., 1995, 60(4), 277-288.
[http://dx.doi.org/10.1016/0162-0134(95)00027-5] [PMID: 8530923]
[77]
Lane, J.E.; Ribeiro-Rodrigues, R.; Suarez, C.C.; Bogitsh, B.J.; Jones, M.M.; Singh, P.K.; Carter, C.E. In vitro trypanocidal activity of tet-raethylthiuram disulfide and sodium diethylamine-N-carbodithioate on Trypanosoma cruzi. Am. J. Trop. Med. Hyg., 1996, 55(3), 263-266.
[http://dx.doi.org/10.4269/ajtmh.1996.55.263] [PMID: 8842112]
[78]
Hald, J.; Jacobsen, E. The sensitizing effect of tetraethylthiuramdisulphide (Antabuse) to ethylalcohol. Act Pharmacol., 1948, 4, 285-296.
[http://dx.doi.org/10.1111/j.1600-0773.1948.tb03350.x]
[79]
Seed, J.L.; Pratt, M.C.; Bennett, J.L. The effects of chronic disulfiram treatment on mice infected with Schistosoma mansoni. Am. J. Trop. Med. Hyg., 1979, 28(3), 508-514.
[http://dx.doi.org/10.4269/ajtmh.1979.28.508] [PMID: 572149]
[80]
Hill, D.E.; Fetterer, R.H. The effect of disulfiram on egg shell formation in adult Trichuris muris. J. Parasitol., 1997, 83(5), 938-942.
[http://dx.doi.org/10.2307/3284293] [PMID: 9379303]
[81]
Aglietti, R.A.; Dueber, E.C. Recent insights into the molecular mechanisms underlying pyroptosis and gasdermin family functions. Trends Immunol., 2017, 38(4), 261-271.
[http://dx.doi.org/10.1016/j.it.2017.01.003] [PMID: 28196749]
[82]
Pandeya, A.; Li, L.; Li, Z.; Wei, Y.; Gasdermin, D.; Gasdermin, D. GSDMD) as a new target for the treatment of infection. MedChemComm, 2019, 10(5), 660-667.
[http://dx.doi.org/10.1039/C9MD00059C] [PMID: 31191857]
[83]
Hu, J.J.; Liu, X.; Xia, S.; Zhang, Z.; Zhang, Y.; Zhao, J.; Ruan, J.; Luo, X.; Lou, X.; Bai, Y.; Wang, J.; Hollingsworth, L.R.; Magupalli, V.G.; Zhao, L.; Luo, H.R.; Kim, J.; Lieberman, J.; Wu, H. FDA-approved disulfiram inhibits pyroptosis by blocking gasdermin D pore formation. Nat. Immunol., 2020, 21(7), 736-745.
[http://dx.doi.org/10.1038/s41590-020-0669-6] [PMID: 32367036]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy