Generic placeholder image

Current Medical Imaging

Editor-in-Chief

ISSN (Print): 1573-4056
ISSN (Online): 1875-6603

Research Article

Severity Evaluation of Regional Cerebrovascular Reactivity in Acute Stroke Patients Using SPECT

Author(s): Chang-Ki Kang, Min-Gyu Song, Jiwon Yang, Haejun Lee and Yeong-Bae Lee*

Volume 18, Issue 8, 2022

Published on: 25 March, 2022

Article ID: e030122199800 Pages: 8

DOI: 10.2174/1573405618666220103104726

Price: $65

Abstract

Background: Cerebrovascular Reactivity (CVR), as measured using perfusion Single Photon Emission Computed Tomography (SPECT), is an important indicator for the treatment and prognosis of cerebrovascular disease, but there are a few studies on acute stroke or small vascular disease using SPECT.

Objective: This study evaluated the regional severity with quantitatively determined CVR in patients with acute stroke.

Methods: Fifty-eight patients who took brain SPECT images were selected to localize quantitative CVR values. The severity of the disease (Grade 1 to 4) was determined through image-based clinical assessment in the absence and presence of a CVR map, and their results were compared.

Results: In 1st diagnosis without the map, the mean CVR values of Grades 2 and 3 were -6.07 % and -9.12 %, respectively (P=0.034), while they were -4.78 % and -12.34 % in 2nd diagnosis with the map, respectively (P<0.001), suggesting that the CVR difference with the map was much more pronounced than without the map. Furthermore, in the ROC analysis, the diagnostic sensitivity between Grades 2 and 3 in the 2nd diagnosis (AUC=0.899, P<0.001) was substantially greater than the 1st diagnosis (AUC=0.646, P=0.048).

Conclusion: This study demonstrated that the quantitative CVR maps could reinforce the clinical evaluation of cerebral severity by showing that they can provide statistically significant results between severity and CVR. Furthermore, this study was the first to evaluate the effectiveness of quantitative CVR by examining the difference in the presence or absence of CVR in patients with acute stroke.

Keywords: SPECT, acetazolamide, cerebrovascular reactivity, PET, acute stroke, cerebral severity.

Graphical Abstract

[1]
Wintermark M, Sesay M, Barbier E, et al. Comparative overview of brain perfusion imaging techniques. Stroke 2005; 36(9): e83-99.
[http://dx.doi.org/10.1161/01.STR.0000177839.03321.25] [PMID: 16100027]
[2]
Mountz JM, Liu H-G, Deutsch G. Neuroimaging in cerebrovascular disorders: Measurement of cerebral physiology after stroke and assessment of stroke recovery. Semin Nucl Med 2003; 33(1): 56-76.
[http://dx.doi.org/10.1053/snuc.2003.127293] [PMID: 12605357]
[3]
Derdeyn CP, Videen TO, Yundt KD, et al. Variability of cerebral blood volume and oxygen extraction: Stages of cerebral haemodynamic impairment revisited. Brain 2002; 125(Pt 3): 595-607.
[http://dx.doi.org/10.1093/brain/awf047] [PMID: 11872616]
[4]
Vagal AS, Leach JL, Fernandez-Ulloa M, Zuccarello M. The acetazolamide challenge: Techniques and applications in the evaluation of chronic cerebral ischemia. AJNR Am J Neuroradiol 2009; 30(5): 876-84.
[http://dx.doi.org/10.3174/ajnr.A1538] [PMID: 19246526]
[5]
Warwick JM. Imaging of brain function using SPECT. Metab Brain Dis 2004; 19(1-2): 113-23.
[http://dx.doi.org/10.1023/B:MEBR.0000027422.48744.a3] [PMID: 15214511]
[6]
Kuroda S, Kamiyama H, Abe H, Houkin K, Isobe M, Mitsumori K. Acetazolamide test in detecting reduced cerebral perfusion reserve and predicting long-term prognosis in patients with internal carotid artery occlusion. Neurosurgery 1993; 32(6): 912-8.
[http://dx.doi.org/10.1227/00006123-199306000-00005] [PMID: 8327091]
[7]
Baron J-C. Perfusion thresholds in human cerebral ischemia: Historical perspective and therapeutic implications. Cerebrovasc Dis 2001; 11(1)(Suppl. 1): 2-8.
[http://dx.doi.org/10.1159/000049119] [PMID: 11244194]
[8]
Choi H, Yoo MY, Cheon GJ, Kang KW, Chung J-K, Lee DS. Parametric cerebrovascular reserve images using acetazolamide (99m)Tc-HMPAO SPECT: A feasibility study of quantitative assessment. Nucl Med Mol Imaging 2013; 47(3): 188-95.
[http://dx.doi.org/10.1007/s13139-013-0214-8] [PMID: 24900106]
[9]
Knop J, Thie A, Fuchs C, Siepmann G, Zeumer H. 99mTc-HMPAO-SPECT with acetazolamide challenge to detect hemodynamic compromise in occlusive cerebrovascular disease. Stroke 1992; 23(12): 1733-42.
[http://dx.doi.org/10.1161/01.STR.23.12.1733] [PMID: 1448823]
[10]
Kunieda T, Miyake K, Sakamoto H, et al. Leptomeningeal collaterals strongly correlate with reduced cerebrovascular reactivity measured by acetazolamide-challenged single-photon emission computed tomography using a stereotactic extraction estimation analysis in patients with unilateral internal carotid artery stenosis. Intern Med 2017; 56(21): 2857-63.
[http://dx.doi.org/10.2169/internalmedicine.8397-16] [PMID: 28943539]
[11]
Touho H, Karasawa J, Ohnishi H. Preoperative and postoperative evaluation of cerebral perfusion and vasodilatory capacity with 99mTc-HMPAO SPECT and acetazolamide in childhood Moyamoya disease. Stroke 1996; 27(2): 282-9.
[http://dx.doi.org/10.1161/01.STR.27.2.282] [PMID: 8571424]
[12]
Golestani AM, Wei LL, Chen JJ. Quantitative mapping of cerebrovascular reactivity using resting-state BOLD fMRI: Validation in healthy adults. Neuroimage 2016; 138: 147-63.
[http://dx.doi.org/10.1016/j.neuroimage.2016.05.025] [PMID: 27177763]
[13]
Ito H, Kanno I, Ibaraki M, Hatazawa J, Miura S. Changes in human cerebral blood flow and cerebral blood volume during hypercapnia and hypocapnia measured by positron emission tomography. J Cereb Blood Flow Metab 2003; 23(6): 665-70.
[http://dx.doi.org/10.1097/01.WCB.0000067721.64998.F5] [PMID: 12796714]
[14]
Liu Y-J, Huang T-Y, Lee Y-H, Juan C-J. The cerebral vasomotor response in varying CO(2) concentrations, as evaluated using cine phase contrast MRI: Flow, volume, and cerebrovascular resistance indices. Med Phys 2012; 39(11): 6534-41.
[http://dx.doi.org/10.1118/1.4754806] [PMID: 23127048]
[15]
Nur E, Kim Y-S, Truijen J, et al. Cerebrovascular reserve capacity is impaired in patients with sickle cell disease. Blood 2009; 114(16): 3473-8.
[http://dx.doi.org/10.1182/blood-2009-05-223859] [PMID: 19700663]
[16]
Zirak P, Delgado-Mederos R, Dinia L, Martí-Fàbregas J, Durduran T. Microvascular versus macrovascular cerebral vasomotor reactivity in patients with severe internal carotid artery stenosis or occlusion. Acad Radiol 2014; 21(2): 168-74.
[http://dx.doi.org/10.1016/j.acra.2013.10.010] [PMID: 24439330]
[17]
Hegeduš I, Milić J, Ćosić A, Buljan K, Drenjančević I. Cerebrovascular reactivity in acute hyperoxia in patients with acute ischaemic stroke. Brain Inj 2017; 31(4): 560-6.
[http://dx.doi.org/10.1080/02699052.2017.1280853] [PMID: 28287282]
[18]
Kuroda S, Houkin K, Kamiyama H, Mitsumori K, Iwasaki Y, Abe H. Long-term prognosis of medically treated patients with internal carotid or middle cerebral artery occlusion: Can acetazolamide test predict it? Stroke 2001; 32(9): 2110-6.
[http://dx.doi.org/10.1161/hs0901.095692] [PMID: 11546904]
[19]
Kleiser B, Widder B. Course of carotid artery occlusions with impaired cerebrovascular reactivity. Stroke 1992; 23(2): 171-4.
[http://dx.doi.org/10.1161/01.STR.23.2.171] [PMID: 1561643]
[20]
Vernieri F, Pasqualetti P, Passarelli F, Rossini PM, Silvestrini M. Outcome of carotid artery occlusion is predicted by cerebrovascular reactivity. Stroke 1999; 30(3): 593-8.
[http://dx.doi.org/10.1161/01.STR.30.3.593] [PMID: 10066857]
[21]
Ogasawara K, Ogawa A, Terasaki K, Shimizu H, Tominaga T, Yoshimoto T. Use of cerebrovascular reactivity in patients with symptomatic major cerebral artery occlusion to predict 5-year outcome: Comparison of xenon-133 and iodine-123-IMP single-photon emission computed tomography. J Cereb Blood Flow Metab 2002; 22(9): 1142-8.
[http://dx.doi.org/10.1097/00004647-200209000-00012] [PMID: 12218420]
[22]
Shi Y, Thrippleton MJ, Makin SD, et al. Cerebral blood flow in small vessel disease: A systematic review and meta-analysis. J Cereb Blood Flow Metab 2016; 36(10): 1653-67.
[http://dx.doi.org/10.1177/0271678X16662891] [PMID: 27496552]
[23]
Baker JG, Williams AJ, Ionita CC, Lee-Kwen P, Ching M, Miletich RS. Cerebral small vessel disease: Cognition, mood, daily functioning, and imaging findings from a small pilot sample. Dement Geriatr Cogn Disord Extra 2012; 2(1): 169-79.
[http://dx.doi.org/10.1159/000333482] [PMID: 22590477]
[24]
Baker JG, Williams AJ, Wack DS, Miletich RS. Correlation of cognition and SPECT perfusion: Easy Z score and SPM analysis of a pilot sample with cerebral small vessel disease. Dement Geriatr Cogn Disord 2013; 36(5-6): 290-9.
[http://dx.doi.org/10.1159/000339587] [PMID: 23969991]
[25]
Chang L-T. A method for attenuation correction in radionuclide computed tomography. IEEE Trans Nucl Sci 1978; 25(1): 638-43.
[http://dx.doi.org/10.1109/TNS.1978.4329385]
[26]
Tzourio-Mazoyer N, Landeau B, Papathanassiou D, et al. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 2002; 15(1): 273-89.
[http://dx.doi.org/10.1006/nimg.2001.0978] [PMID: 11771995]
[27]
Schmahmann JD, Doyon J, McDonald D, et al. Three-dimensional MRI atlas of the human cerebellum in proportional stereotaxic space. Neuroimage 1999; 10(3 Pt 1): 233-60.
[http://dx.doi.org/10.1006/nimg.1999.0459] [PMID: 10458940]
[28]
Takeuchi R, Yonekura Y, Matsuda H, Konishi J. Usefulness of a three-dimensional stereotaxic ROI template on anatomically standardised 99mTc-ECD SPET. Eur J Nucl Med Mol Imaging 2002; 29(3): 331-41.
[http://dx.doi.org/10.1007/s00259-001-0715-z] [PMID: 12002707]
[29]
Imabayashi E, Soma T, Sone D, et al. Validation of the cingulate island sign with optimized ratios for discriminating dementia with Lewy bodies from Alzheimer’s disease using brain perfusion SPECT. Ann Nucl Med 2017; 31(7): 536-43.
[http://dx.doi.org/10.1007/s12149-017-1181-4] [PMID: 28547521]
[30]
Hu H-H, Kuo TB-J, Wong W-J, et al. Transfer function analysis of cerebral hemodynamics in patients with carotid stenosis. J Cereb Blood Flow Metab 1999; 19(4): 460-5.
[http://dx.doi.org/10.1097/00004647-199904000-00012] [PMID: 10197516]
[31]
Liu X. Classification accuracy and cut point selection. Stat Med 2012; 31(23): 2676-86.
[http://dx.doi.org/10.1002/sim.4509] [PMID: 22307964]
[32]
Unal I. Defining an optimal cut-point value in ROC analysis: An alternative approach. Comput Math Methods Med 2017; 2017: 3762651.
[http://dx.doi.org/10.1155/2017/3762651] [PMID: 28642804]
[33]
Kim JS, Moon DH, Kim GE, et al. Acetazolamide stress brain-perfusion SPECT predicts the need for carotid shunting during carotid endarterectomy. J Nucl Med 2000; 41(11): 1836-41.
[PMID: 11079491]
[34]
Heiss W-D. Radionuclide imaging in ischemic stroke. J Nucl Med 2014; 55(11): 1831-41.
[http://dx.doi.org/10.2967/jnumed.114.145003] [PMID: 25300599]
[35]
Lewis DH, Toney LK, Baron J-C. Nuclear medicine in cerebrovascular disease. Semin Nucl Med 2012; 42(6): 387-405.
[http://dx.doi.org/10.1053/j.semnuclmed.2012.06.002] [PMID: 23026361]
[36]
Mahagne M-H, Darcourt J, Migneco O, et al. Early (99m)Tc-ethylcysteinate dimer brain SPECT patterns in the acute phase of stroke as predictors of neurological recovery. Cerebrovasc Dis 2000; 10(5): 364-73.
[http://dx.doi.org/10.1159/000016092] [PMID: 10971022]
[37]
Umemura A, Suzuka T, Yamada K. Quantitative measurement of cerebral blood flow by (99m)Tc-HMPAO SPECT in acute ischaemic stroke: Usefulness in determining therapeutic options. J Neurol Neurosurg Psychiatry 2000; 69(4): 472-8.
[http://dx.doi.org/10.1136/jnnp.69.4.472] [PMID: 10990507]
[38]
Driessen RS, Raijmakers PG, Danad I, et al. Automated SPECT analysis compared with expert visual scoring for the detection of FFR-defined coronary artery disease. Eur J Nucl Med Mol Imaging 2018; 45(7): 1091-100.
[http://dx.doi.org/10.1007/s00259-018-3951-1] [PMID: 29470616]
[39]
Catchlove SJ, Parrish TB, Chen Y, Macpherson H, Hughes ME, Pipingas A. Regional Cerebrovascular Reactivity and Cognitive Performance in Healthy Aging. J Exp Neurosci 2018; 12: 1179069518785151.
[http://dx.doi.org/10.1177/1179069518785151] [PMID: 30013388]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy