Generic placeholder image

Current Bioactive Compounds

Editor-in-Chief

ISSN (Print): 1573-4072
ISSN (Online): 1875-6646

Review Article

Iridoids Analysis by Different Analytical Techniques and its Role as Pharmacologic Agents: A Review

Author(s): Rishabh Verma, M. Faiz Arshad, Parul Grover, Jasmeet Kaur, Neha Gandhi, Vishnu Das and Mohamad Taleuzzaman*

Volume 18, Issue 5, 2022

Published on: 16 February, 2022

Article ID: e311221199739 Pages: 12

DOI: 10.2174/1573407218666211231122928

Price: $65

Abstract

Iridoids are monoterpenoids classed with a cyclopentanopyran framework and detected in various plants and certain special animals. In plants, it exists as glycosides, generally bound to glucose. Around six hundred iridoid glycosides are available in fifty-seven families of plants. Iridoids are abundant in dicotyledonous plants belonging to the Diervillaceae, Loganiaceae, Apocynaceae, Scrophulariaceae, Lamiaceae, and Rubiaceae families. Analytical techniques like chromatography, NMR, UPLC, etc., are used for the identification, separation, and estimation of either herbal extracts or formulations of iridoids. Advanced analytical techniques are useful for precise and accurate quantification of active ingredients responsible for therapeutic effects. They can be achieved by a developed and validated robust analytical method. Iridoids have shown diverse pharmacological properties. Some of the important activities are immunomodulatory, neuroprotective, anti-inflammatory, hepatoprotective, and cardio-protective effects. The other important activities are antimicrobial, antioxidant, hypoglycemic, hypolipidemic, anticancer, choleretic, antispasmodic, and purgative activities attributed to iridoids. There were not many efforts made in the past to gather and review the literature on various aspects of iridoids. This review article has collected a myriad of literature on old and advanced analytical techniques, including method development and validation of methods for quantitative and qualitative analysis of iridoids. The review also emphasizes the role of iridoids in the prevention of various ailments.

Keywords: Iridoids glucoside, chromatography, NMR, UPLC, cyclopentanopyran, hepatoprotective.

Graphical Abstract

[1]
Schmid, H.; Bickel, H.; Meijer, T.M. To the knowledge of the plumierids. 1st notice. Helv. Chim. Acta, 1952, 35, 415-427.
[http://dx.doi.org/10.1002/hlca.19520350154]
[2]
Grignon-Dubois, M.; Rezzonico, B.; Usubillaga, A.; Vojas, L.B. Isolation of plumieride from Plumeriainodora. Chem. Nat. Compd., 2005, 41, 730-731.
[http://dx.doi.org/10.1007/s10600-006-0024-7]
[3]
Pandeti, S.; Sharma, K.; Bathula, S.R.; Tadigoppula, N. Synthesis of novel anticancer iridoid derivatives and their cell cycle arrest and caspase dependent apoptosis. Phytomedicine, 2014, 21(3), 333-339.
[http://dx.doi.org/10.1016/j.phymed.2013.08.023] [PMID: 24075214]
[4]
Franzyk, H. Synthetic aspects of iridoid chemistry. Fortschritte der Chemie organischer Naturstoffe/Progress in the Chemistry of Organic Natural Products, 2000, 1-114.
[http://dx.doi.org/10.1007/978-3-7091-6341-2_1]
[5]
Jensen, S.R. Systematic implications of the distribution of iridoids and other chemical compounds in the Loganiaceae and other families of the Asteridae. Ann. Mo. Bot. Gard., 1992, 284-302.
[http://dx.doi.org/10.2307/2399770]
[6]
Habtemariam, S. Iridoids and other monoterpenes in the Alzheimer’s brain: Recent development and future prospects. Molecules, 2018, 23(1), 117.
[http://dx.doi.org/10.3390/molecules23010117] [PMID: 29316661]
[7]
Xu, Y.; Li, Y.; Maffucci, K.G.; Huang, L.; Zeng, R. Analytical methods of phytochemicals from the genus Gentiana. Molecules, 2017, 22(12), 2080.
[http://dx.doi.org/10.3390/molecules22122080] [PMID: 29182593]
[8]
Ghisalberti, E.L. Biological and pharmacological activity of naturally occurring iridoids and secoiridoids. Phytomedicine, 1998, 5(2), 147-163.
[http://dx.doi.org/10.1016/S0944-7113(98)80012-3] [PMID: 23195768]
[9]
Tundis, R.; Loizzo, M.R.; Menichini, F.; Statti, G.A.; Menichini, F. Biological and pharmacological activities of iridoids: Recent developments. Mini Rev. Med. Chem., 2008, 8(4), 399-420.
[http://dx.doi.org/10.2174/138955708783955926] [PMID: 18473930]
[10]
Hussain, H.; Green, I.R.; Saleem, M.; Raza, M.L.; Nazir, M. Therapeutic potential of iridoid derivatives: Patent review. Inventions (Basel), 2019, 4, 29.
[http://dx.doi.org/10.3390/inventions4020029]
[11]
Kumar, M.; Rawat, P.; Dixit, P.; Mishra, D.; Gautam, A.K.; Pandey, R.; Singh, D.; Chattopadhyay, N.; Maurya, R. Anti-osteoporotic constituents from Indian medicinal plants. Phytomedicine, 2010, 17(13), 993-999.
[http://dx.doi.org/10.1016/j.phymed.2010.03.014] [PMID: 20554183]
[12]
Dutta, P.K.; Chowdhury, U.S.; Chakravarty, A.K.; Achari, B.; Pakrashi, S.C. Studies on Indian medicinal plants-part LXXV: Nishindaside, a novel iridoid glycoside from Vitex negundo. Tetrahedron, 1983, 39, 3067-3072.
[http://dx.doi.org/10.1016/S0040-4020(01)91547-9]
[13]
Dhanani, T.; Shah, S.; Kumar, S. A validated high performance liquid chromatography method for determination of three bioactive compounds p-hydroxy benzoic acid, negundoside and agnuside in Vitex species. Maced. J. Chem. Chem. Eng., 2015, 34, 321-331.
[http://dx.doi.org/10.20450/mjcce.2015.500]
[14]
Vishwanathan, A.; Basavaraju, R.A. Review on Vitex negundo L.: A medicinally important plant. Eur. J. Biol. Sci, 2010, 3, 30-42.
[15]
Lokhande, P.; Verma, J. Quantification of negundoside in Vitex negundo Linn. leaf by high-performance thin-layer chromatography. JPC-J. Planar Chromat.-. Modern TLC., 2009, 22, 225-228.
[http://dx.doi.org/10.1556/JPC.22.2009.3.12]
[16]
Roy, S.K.; Bairwa, K.; Grover, J.; Srivastava, A.; Jachak, S.M. Analysis of flavonoids and iridoids in Vitex negundo by HPLC-PDA and method validation. Nat. Prod. Commun., 2013, 8(9), 1241-1244.
[http://dx.doi.org/10.1177/1934578X1300800914] [PMID: 24273856]
[17]
Chaudhuri, R.K.; Sticher, O. New iridoid glucosides and a lignan diglucoside from globularia AlypumL. Helv. Chim. Acta, 1981, 64, 3-15.
[http://dx.doi.org/10.1002/hlca.19810640103]
[18]
ICH Q2 (R1) ICH validation of analytical procedures: Text and methodology International Conference on Harmonization (ICH). Geneva, Switzerland 2005.
[19]
Sertić, M. Analysis of aucubin and catalpol content in different plant parts of four Globularia species. J. Appl. Bot. Food Qual., 2015, 88.
[http://dx.doi.org/10.5073/JABFQ.2015.088.030]
[20]
Kumar, V.; Mehrotra, N.; Lal, J.; Gupta, R.C. Pattern profiling of the herbal preparation picroliv using liquid chromatography-tandem mass spectrometry. J. Chromatogr. A, 2004, 1045(1-2), 145-152.
[http://dx.doi.org/10.1016/j.chroma.2004.06.021] [PMID: 15378889]
[21]
Singh, N.; Gupta, A.P.; Singh, B.; Kaul, V. Quantification of Picroside-I and Picroside-II in Picrorhiza kurroa by HPTLC. J. Liq. Chromatogr. Relat. Technol., 2005, 28, 1679-1691.
[http://dx.doi.org/10.1081/JLC-200060439]
[22]
Sultan, P.; Jan, A.; Pervaiz, Q. Phytochemical studies for quantitative estimation of iridoid glycosides in Picrorhiza kurroa Royle. Bot. Stud. (Taipei, Taiwan), 2016, 57(1), 7.
[http://dx.doi.org/10.1186/s40529-016-0121-2] [PMID: 28597416]
[23]
Dinda, B.; Debnath, S.; Harigaya, Y. Naturally occurring secoiridoids and bioactivity of naturally occurring iridoids and secoiridoids. A review, part 2. Chem. Pharm. Bull. (Tokyo), 2007, 55(5), 689-728.
[http://dx.doi.org/10.1248/cpb.55.689] [PMID: 17473457]
[24]
Rana, A.; Pratap Singh, H.; Dhyani, D. Comparative estimation of major iridoid glucosides from different parts of Incarvillea emodi. Int. Sch. Res. Notices, 2012, 2012, 183752.
[http://dx.doi.org/10.5402/2012/783752]
[25]
Mehta, L.; Naved, T.; Grover, P.; Bhardwaj, M.; Mukherjee, D. LC and LC-MS/MS studies for identification and characterization of new degradation products of ibrutinib and elucidation of their degradation pathway. J. Pharm. Biomed. Anal., 2021, 194, 113768.
[http://dx.doi.org/10.1016/j.jpba.2020.113768] [PMID: 33279300]
[26]
Liang, X.M.; Jin, Y.; Wang, Y.P.; Jin, G.W.; Fu, Q.; Xiao, Y.S. Qualitative and quantitative analysis in quality control of traditional Chinese medicines. J. Chromatogr. A, 2009, 1216(11), 2033-2044.
[http://dx.doi.org/10.1016/j.chroma.2008.07.026] [PMID: 18656880]
[27]
Li, M. Development of a validated HPLC-PAD-APCI/MS method for the identification and determination of iridoid glycosides in Lamiophlomis rotata. Anal. Methods, 2010, 2, 714-721.
[http://dx.doi.org/10.1039/c0ay00034e]
[28]
He, Y-M.; Zhu, S.; Ge, Y.W.; Kazuma, K.; Zou, K.; Cai, S.Q.; Komatsu, K. The anti-inflammatory secoiridoid glycosides from gentianae scabrae radix: The root and rhizome of Gentiana scabra. J. Nat. Med., 2015, 69(3), 303-312.
[http://dx.doi.org/10.1007/s11418-015-0894-8] [PMID: 25750086]
[29]
Nguyen, H.T.; Lee, D.K.; Lee, W.J.; Lee, G.; Yoon, S.J.; Shin, B.K.; Nguyen, M.D.; Park, J.H.; Lee, J.; Kwon, S.W. UPLC-QTOFMS based metabolomics followed by stepwise partial least square-discriminant analysis (PLS-DA) explore the possible relation between the variations in secondary metabolites and the phylogenetic divergences of the genus Panax. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2016, 1012-1013, 61-68.
[http://dx.doi.org/10.1016/j.jchromb.2016.01.002] [PMID: 26807706]
[30]
Li, J.; Zhang, J.; Zhao, Y-L.; Huang, H-Y.; Wang, Y-Z. Comprehensive quality assessment based specific chemical profiles for geographic and tissue variation in Gentiana rigescens using HPLC and FTIR method combined with principal component analysis. Front Chem., 2017, 5, 125.
[http://dx.doi.org/10.3389/fchem.2017.00125] [PMID: 29312929]
[31]
Hennebelle, T.; Sahpaz, S.; Joseph, H.; Bailleul, F. Ethnopharmacology of Lippia alba. J. Ethnopharmacol., 2008, 116(2), 211-222.
[http://dx.doi.org/10.1016/j.jep.2007.11.044] [PMID: 18207682]
[32]
Witkowski, B. Identification of orcein and selected natural dyes in 14th and 15th century liturgical paraments with high-performance liquid chromatography coupled to the electrospray ionization tandem mass spectrometry (HPLC-ESI/MS/MS). Microchem. J., 2017, 133, 370-379.
[http://dx.doi.org/10.1016/j.microc.2017.03.049]
[33]
Gomes, A.F. Simultaneous determination of iridoids, phenylpropanoids and flavonoids in Lippia alba extracts by micellar electrokinetic capillary chromatography. Microchem. J., 2018, 138, 494-500.
[http://dx.doi.org/10.1016/j.microc.2018.02.003]
[34]
Kim, H.K.; Choi, Y.H.; Verpoorte, R. NMR-based metabolomic analysis of plants. Nat. Protoc., 2010, 5(3), 536-549.
[http://dx.doi.org/10.1038/nprot.2009.237] [PMID: 20203669]
[35]
Klimek, B.; Olszewska, M.A.; Tokar, M. Simultaneous determination of flavonoids and phenylethanoids in the flowers of Verbascum densiflorum and V. phlomoides by high-performance liquid chromatography. Phytochem. Anal., 2010, 21(2), 150-156.
[http://dx.doi.org/10.1002/pca.1171] [PMID: 19813264]
[36]
Georgiev, M.I.; Ali, K.; Alipieva, K.; Verpoorte, R.; Choi, Y.H. Metabolic differentiations and classification of Verbascum species by NMR-based metabolomics. Phytochemistry, 2011, 72(16), 2045-2051.
[http://dx.doi.org/10.1016/j.phytochem.2011.07.005] [PMID: 21807390]
[37]
Zhang, F.; Wu, Z.J.; Sun, L.N.; Wang, J.; Tao, X.; Chen, W.S. Iridoid glucosides and a C13-norisoprenoid from Lamiophlomis rotata and their effects on NF-κB activation. Bioorg. Med. Chem. Lett., 2012, 22(13), 4447-4452.
[http://dx.doi.org/10.1016/j.bmcl.2012.04.087] [PMID: 22664131]
[38]
Wang, S.; Di, D.; Liu, X.; Jiang, S. Determination of luteolin and quercetin in the capsule of Lamiophlomis rotata (Benth.) Kudo by HPLC coupled with weighted least squares linear regression. J. Liq. Chromatogr. Relat. Technol., 2007, 30, 1991-1999.
[http://dx.doi.org/10.1080/10826070701386637]
[39]
Pan, Z.; Fan, G.; Yang, R.P.; Luo, W.Z.; Zhou, X.D.; Zhang, Y. Discriminating lamiophlomis rotata according to geographical origin by (1)H-NMR spectroscopy and multivariate analysis. Phytochem. Anal., 2015, 26(4), 247-252.
[http://dx.doi.org/10.1002/pca.2557] [PMID: 25693849]
[40]
Zhou, X. Study of separation and identification of the active ingredients in gardenia jasminoides ellis based on a two-dimensional liquid chromatography by coupling reversed phase liquid chromatography and hydrophilic interaction liquid chromatography. J. Chromatogr. Sci., 2016, 1-7.
[http://dx.doi.org/10.1093/chromsci/bmw154] [PMID: 27737927]
[41]
Park, E.H.; Joo, M.H.; Kim, S.H.; Lim, C.J. Antiangiogenic activity of Gardenia jasminoides fruit. Phytother. Res., 2003, 17(8), 961-962.
[http://dx.doi.org/10.1002/ptr.1259] [PMID: 13680835]
[42]
Zhou, T.; Liu, H.; Wen, J.; Fan, G.; Chai, Y.; Wu, Y. Fragmentation study of iridoid glycosides including epimers by liquid chromatography-diode array detection/electrospray ionization mass spectrometry and its application in metabolic fingerprint analysis of Gardenia jasminoides Ellis. Rapid Commun. Mass Spectrom., 2010, 24(17), 2520-2528.
[http://dx.doi.org/10.1002/rcm.4643] [PMID: 20740525]
[43]
Li, M.; Zhang, C.; Wei, L.; Fan, P.; Zhang, Q.; Jia, Z. Determination of five iridoid glycosides in Phlomis younghusbandii by HPLC. Zhongguo Zhongyao Zazhi, 2011, 36(5), 594-597.
[PMID: 21657079]
[44]
Shuya, C.; Shengda, Q.; Xingguo, C.; Zhide, H. Identification and determination of effective components in Euphrasia regelii by capillary zone electrophoresis. Biomed. Chromatogr., 2004, 18(10), 857-861.
[http://dx.doi.org/10.1002/bmc.401] [PMID: 15386569]
[45]
Yakin, F.N.; Kaya, D.; Calis, İ.; Ersoz, T.; Palaska, E. Determination of iridoid glycosides from four Turkish Lamium species by HPLC-ESI/MS. Turk. J. Chem., 2008, 32, 457-467.
[46]
Wang, Q.; Bao, Y.; Hao, J.; Han, J. HPLC analysis of six iridoid glycosides from Cymbaria dahurica L. and their structural elucidation. J. Food Biochem., 2018, 42
[http://dx.doi.org/10.1111/jfbc.12470]
[47]
Brownstein, K. in XXIX international horticultural congress on horticulture: Sustaining lives, livelihoods and landscapes (IHC2014). V. World, 2014, 1125, pp. 83-90.
[http://dx.doi.org/10.17660/ActaHortic.2016.1125.10]
[48]
Hua, J.; Qi, J.; Yu, B-Y. Iridoid and phenylpropanoid glycosides from Scrophularia ningpoensis Hemsl. and their α-glucosidase inhibitory activities. Fitoterapia, 2014, 93, 67-73.
[http://dx.doi.org/10.1016/j.fitote.2013.11.011] [PMID: 24321577]
[49]
Tian, J.; Ye, X.; Shang, Y.; Deng, Y.; He, K.; Li, X. Preparative isolation and purification of harpagoside and angroside C from the root of Scrophularia ningpoensis Hemsley by high-speed counter-current chromatography. J. Sep. Sci., 2012, 35(19), 2659-2664.
[http://dx.doi.org/10.1002/jssc.201200337] [PMID: 23001886]
[50]
Yang, S.; Li, J.; Zhao, Y.; Chen, B.; Fu, C. Harpagoside variation is positively correlated with temperature in Scrophularia ningpoensis Hemsl. J. Agric. Food Chem., 2011, 59(5), 1612-1621.
[http://dx.doi.org/10.1021/jf104702u] [PMID: 21322564]
[51]
Dinda, B. Pharmacology and applications of naturally occurring iridoids; Springer, 2019.
[http://dx.doi.org/10.1007/978-3-030-05575-2]
[52]
Sherwood, L. Human physiology: From cells to systems. Cengage learning, 2015.
[53]
Turner, M.D.; Nedjai, B.; Hurst, T.; Pennington, D.J. Cytokines and chemokines: At the crossroads of cell signalling and inflammatory disease. Biochim. Biophys. Acta, 2014, 1843(11), 2563-2582.
[http://dx.doi.org/10.1016/j.bbamcr.2014.05.014] [PMID: 24892271]
[54]
Vodovotz, Y.; Constantine, G.; Rubin, J.; Csete, M.; Voit, E.O.; An, G. Mechanistic simulations of inflammation: Current state and future prospects. Math. Biosci., 2009, 217(1), 1-10.
[http://dx.doi.org/10.1016/j.mbs.2008.07.013] [PMID: 18835282]
[55]
Yang, Y.; Gu, Y.; Zhao, H.; Zhang, S. Loganin attenuates osteoarthritis in rats by inhibiting IL-1β-induced catabolism and apoptosis in chondrocytes via regulation of phosphatidylinositol 3-kinases (PI3K)/Akt. Med. Sci. Monit., 2019, 25, 4159-4168.
[http://dx.doi.org/10.12659/MSM.915064] [PMID: 31162482]
[56]
Wang, F.; Jia, Q.W.; Yuan, Z.H.; Lv, L.Y.; Li, M.; Jiang, Z.B.; Liang, D.L.; Zhang, D.Z. An anti-inflammatory C-stiryl iridoid from Camptosorus sibiricus Rupr. Fitoterapia, 2019, 134, 378-381.
[http://dx.doi.org/10.1016/j.fitote.2019.03.009] [PMID: 30880242]
[57]
Wang, C.; Gong, X.; Bo, A.; Zhang, L.; Zhang, M.; Zang, E.; Zhang, C.; Li, M. Iridoids: Research advances in their phytochemistry, biological activities, and pharmacokinetics. Molecules, 2020, 25(2), 287.
[http://dx.doi.org/10.3390/molecules25020287] [PMID: 31936853]
[58]
Tseng, Y.T.; Lin, W.J.; Chang, W.H.; Lo, Y.C. The novel protective effects of loganin against 1-methyl-4-phenylpyridinium-induced neurotoxicity: Enhancement of neurotrophic signaling, activation of IGF-1R/GLP-1R, and inhibition of RhoA/ROCK pathway. Phytother. Res., 2019, 33(3), 690-701.
[http://dx.doi.org/10.1002/ptr.6259] [PMID: 30556245]
[59]
Chester, K.; Paliwal, S.; Khan, W.; Ahmad, S. UPLC-ESI-MS/MS and HPTLC method for quantitative estimation of cytotoxic glycosides and aglycone in bioactivity guided fractions of Solanum nigrum L. Front. Pharmacol., 2017, 8, 434.
[http://dx.doi.org/10.3389/fphar.2017.00434] [PMID: 28729835]
[60]
Tian, C.; Zhang, T.; Wang, L.; Shan, Q.; Jiang, L. The hepatoprotective effect and chemical constituents of total iridoids and xanthones extracted from Swertia mussotii Franch. J. Ethnopharmacol., 2014, 154(1), 259-266.
[http://dx.doi.org/10.1016/j.jep.2014.04.018] [PMID: 24746481]
[61]
Fan, L.; Ren, J. Traditional uses, chemical constituents and pharmacological effects of Boschniakia rossica: A systematic review. Trop. J. Pharm. Res., 2019, 18.
[http://dx.doi.org/10.4314/tjpr.v18i12.25]
[62]
Yan, X. Protective effect of cornel iridoid glycoside on hepatocytes injured by D-galactosamine/tumor necrosis factor-α. Chin. Pharmacol. Bull, 2018, 34, 118-122.
[63]
Wu, H.; Liu, J.; Lou, Q.; Liu, J.; Shen, L.; Zhang, M.; Lv, X.; Gu, M.; Guo, X. Comparative assessment of the efficacy and safety of acarbose and metformin combined with premixed insulin in patients with type 2 diabetes mellitus. Medicine (Baltimore), 2017, 96(35), e7533.
[http://dx.doi.org/10.1097/MD.0000000000007533] [PMID: 28858080]
[64]
Kang, J. Hypoglycemic, hypolipidemic and antioxidant effects of iridoid glycosides extracted from Corni fructus: Possible involvement of the PI3K–Akt/PKB signaling pathway. RSC Advances, 2018, 8, 30539-30549.
[http://dx.doi.org/10.1039/C8RA06045B]
[65]
Al-Azzawie, H.F.; Alhamdani, M-S.S. Hypoglycemic and antioxidant effect of oleuropein in alloxan-diabetic rabbits. Life Sci., 2006, 78(12), 1371-1377.
[http://dx.doi.org/10.1016/j.lfs.2005.07.029] [PMID: 16236331]
[66]
Kooti, W.; Servatyari, K.; Behzadifar, M.; Asadi-Samani, M.; Sadeghi, F.; Nouri, B.; Zare Marzouni, H. Effective medicinal plant in cancer treatment, part 2: Review study. J. Evid. Based Complementary Altern. Med., 2017, 22(4), 982-995.
[http://dx.doi.org/10.1177/2156587217696927] [PMID: 28359161]
[67]
Li, X.; Yang, C.; Shen, H. Gentiopicroside exerts convincing antitumor effects in human ovarian carcinoma cells (SKOV3) by inducing cell cycle arrest, mitochondrial mediated apoptosis and inhibition of cell migration. J. BUON, 2019, 24(1), 280-284.
[PMID: 30941981]
[68]
Sun, Y.; Lan, M.; Chen, X.; Dai, Y.; Zhao, X.; Wang, L.; Zhao, T.; Li, Y.; Zhu, J.; Zhang, X.; Jiang, H.; Wu, X.; Chen, C.; Zhang, T.; Yan, Z. Anti-invasion and anti-metastasis effects of Valjatrate E via reduction of matrix metalloproteinases expression and suppression of MAPK/ERK signaling pathway. Biomed. Pharmacother., 2018, 104, 817-824.
[http://dx.doi.org/10.1016/j.biopha.2018.04.136] [PMID: 29703569]
[69]
Wang, H.; Huang, H.; Lv, J.; Jiang, N.; Li, Y.; Liu, X.; Zhao, H. Iridoid compounds from the aerial parts of Swertia mussotii Franch. with cytotoxic activity. Nat. Prod. Res., 2021, 35(9), 1544-1549.
[http://dx.doi.org/10.1080/14786419.2019.1660332] [PMID: 33938336]
[70]
Gao, B.B.; She, G.M.; She, D.M. Chemical constituents and biological activities of plants from the genus Ligustrum. Chem. Biodivers., 2013, 10(1), 96-128.
[http://dx.doi.org/10.1002/cbdv.201100269] [PMID: 23341211]
[71]
Akihisa, T.; Matsumoto, K.; Tokuda, H.; Yasukawa, K.; Seino, K.; Nakamoto, K.; Kuninaga, H.; Suzuki, T.; Kimura, Y. Anti-inflammatory and potential cancer chemopreventive constituents of the fruits of Morinda citrifolia (Noni). J. Nat. Prod., 2007, 70(5), 754-757.
[http://dx.doi.org/10.1021/np068065o] [PMID: 17480098]
[72]
Li, F.; Li, W.; Li, X.; Li, F.; Zhang, L.; Wang, B.; Huang, G.; Guo, X.; Wan, L.; Liu, Y.; Zhang, S.; Kang, S.; Ma, J. Geniposide attenuates inflammatory response by suppressing P2Y14 receptor and downstream ERK1/2 signaling pathway in oxygen and glucose deprivation-induced brain microvascular endothelial cells. J. Ethnopharmacol., 2016, 185, 77-86.
[http://dx.doi.org/10.1016/j.jep.2016.03.025] [PMID: 26976766]
[73]
Ding, S.; Liu, H.; Wenmin, L.; Xiuying, L.; Chao, Y. Protective effects of geniposide on human umbilical vein endothelial cell injury induced by H2O2in vitro. Chin. Pharmacol. Bull, 1986.
[74]
Tian, J-S.; Shi, B.Y.; Xiang, H.; Gao, S.; Qin, X.M.; Du, G.H. 1H-NMR-based metabonomic studies on the anti-depressant effect of genipin in the chronic unpredictable mild stress rat model. PLoS One, 2013, 8(9), e75721.
[http://dx.doi.org/10.1371/journal.pone.0075721] [PMID: 24058700]
[75]
Oh, S-R.; Lee, M.Y.; Ahn, K.; Park, B.Y.; Kwon, O.K.; Joung, H.; Lee, J.; Kim, D.Y.; Lee, S.; Kim, J.H.; Lee, H.K. Suppressive effect of verproside isolated from Pseudolysimachion longifolium on airway inflammation in a mouse model of allergic asthma. Int. Immunopharmacol., 2006, 6(6), 978-986.
[http://dx.doi.org/10.1016/j.intimp.2006.01.010] [PMID: 16644484]
[76]
Chen, Y.; Yu, H.; Guo, F.; Wu, Y.; Li, Y. Antinociceptive and anti-inflammatory activities of a standardizedextract of bis-iridoids from Pterocephalus hookeri. J. Ethnopharmacol., 2018, 216, 233-238.
[http://dx.doi.org/10.1016/j.jep.2018.01.035] [PMID: 29410154]
[77]
Zhong, H.; Chen, K.; Feng, M.; Shao, W.; Wu, J.; Chen, K.; Liang, T.; Liu, C. Genipin alleviates high-fat diet-induced hyperlipidemia and hepatic lipid accumulation in mice via miR-142a-5p/SREBP-1c axis. FEBS J., 2018, 285(3), 501-517.
[http://dx.doi.org/10.1111/febs.14349] [PMID: 29197188]
[78]
Tan, S.; Lu, Q.; Shu, Y.; Sun, Y.; Chen, F.; Tang, L. Iridoid glycosides fraction isolated from Veronica ciliata Fisch. protects against acetaminophen-induced liver injury in mice. Evid. Based Complement. Alternat. Med., 2017, 2017, 6106572.
[http://dx.doi.org/10.1155/2017/6106572] [PMID: 28293265]
[79]
Suzuki, Y.; Kondo, K.; Ikeda, Y.; Umemura, K. Antithrombotic effect of geniposide and genipin in the mouse thrombosis model. Planta Med., 2001, 67(9), 807-810.
[http://dx.doi.org/10.1055/s-2001-18842] [PMID: 11745015]
[80]
Gutierrez, R.M.P.; Solis, R.V.; Baez, E.G.; Martinez, F.M. Effect on capillary permeability in rabbits of iridoids from Buddleia scordioides. Phytother. Res., 2006, 20(7), 542-545.
[http://dx.doi.org/10.1002/ptr.1893] [PMID: 16619344]
[81]
Yu, D.; Zhang, Y.; Guo, L.; Zhang, Q.; Zhu, H. Study on the absorption mechanism of geniposide in the Chinese formula Huang-Lian-Jie-Du-Tang in rats. AAPS PharmSciTech, 2017, 18(4), 1382-1392.
[http://dx.doi.org/10.1208/s12249-016-0610-3] [PMID: 27531366]
[82]
Qu, K.; Zhao, L.; Luo, X.; Zhang, C.; Hou, P.; Bi, K.; Chen, X. An LC-MS method for simultaneous determination of five iridoids from Zhi-zi-chi Decoction in rat brain microdialysates and tissue homogenates: Towards an in depth study for its antidepressive activity. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2014, 965, 206-215.
[http://dx.doi.org/10.1016/j.jchromb.2014.03.032] [PMID: 25049209]
[83]
Xu, G.L.; Li, H.L.; He, J.C.; Feng, E.F.; Shi, P.P.; Liu, Y.Q.; Liu, C.X. Comparative pharmacokinetics of swertiamarin in rats after oral administration of swertiamarin alone, Qing Ye Dan tablets and co-administration of swertiamarin and oleanolic acid. J. Ethnopharmacol., 2013, 149(1), 49-54.
[http://dx.doi.org/10.1016/j.jep.2013.05.016] [PMID: 23791808]
[84]
Wang, Z-G.; Wang, X-J.; Sun, H.; Chen, L.; Ma, C-M. Determination of novel nitrogen-containing metabolite after oral administration of swertiamarin to rats. J. Asian Nat. Prod. Res., 2012, 14(2), 176-181.
[http://dx.doi.org/10.1080/10286020.2011.631132] [PMID: 22296159]
[85]
Wang, Z.; Wang, S.; Sun, Y.; Wang, H.; Chen, G.; Wang, X.; Hattori, M.; Zhang, H. New analytical method for the study of the metabolism of gentiopicroside in rats after oral administration by LC-TOF-MS following picolinoyl derivatization. J. Sep. Sci., 2014, 37(3), 237-243.
[http://dx.doi.org/10.1002/jssc.201300898] [PMID: 24376019]
[86]
Park, E.J.; Lee, H.S.; Oh, S-R.; Lee, H-K.; Lee, H.S. Pharmacokinetics of verproside after intravenous and oral administration in rats. Arch. Pharm. Res., 2009, 32(4), 559-564.
[http://dx.doi.org/10.1007/s12272-009-1412-x] [PMID: 19407974]
[87]
Kim, M.G.; Hwang, D.K.; Jeong, H.U.; Ji, H.Y.; Oh, S.R.; Lee, Y.; Yoo, J.S.; Shin, D.H.; Lee, H.S. in vitro and in vivo metabolism of verproside in rats. Molecules, 2012, 17(10), 11990-12002.
[http://dx.doi.org/10.3390/molecules171011990] [PMID: 23085650]
[88]
Wang, Q.; Xing, M.; Chen, W.; Zhang, J.; Qi, H.; Xu, X. HPLC-APCI-MS/MS method for the determination of catalpol in rat plasma and cerebrospinal fluid: Application to an in vivo pharmacokinetic study. J. Pharm. Biomed. Anal., 2012, 70, 337-343.
[http://dx.doi.org/10.1016/j.jpba.2012.05.016] [PMID: 22677654]
[89]
Li, X.; Wang, Q.; Zhang, L.; Xu, L.; Yin, W. HPLC study of tissue distribution of loganin in rats. Biomed. Chromatogr., 2006, 20(10), 1087-1092.
[http://dx.doi.org/10.1002/bmc.646] [PMID: 16583453]
[90]
Li, X.; Huo, C.; Wang, Q.; Zhang, X.; Sheng, X.; Zhang, L. Microbial metabolism of loganin by intestinal bacteria and identification of new metabolites in rat. Biomed. Chromatogr., 2008, 22(4), 367-373.
[http://dx.doi.org/10.1002/bmc.941] [PMID: 18059048]
[91]
Berdis, A.J. Inhibiting DNA polymerases as a therapeutic intervention against cancer. Front. Mol. Biosci., 2017, 4, 78.
[http://dx.doi.org/10.3389/fmolb.2017.00078] [PMID: 29201867]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy