Generic placeholder image

Current Bioactive Compounds

Editor-in-Chief

ISSN (Print): 1573-4072
ISSN (Online): 1875-6646

Review Article

Chemopreventive Role of Phytoconstituents in Breast Cancer: An Integration Therapy

Author(s): Priya Bhatt, Mehul Patel*, Aashka Thakkar, Umang Shah, Ashish Patel, Nilay Solanki, Swayamprakash Patel and Sandip Patel

Volume 18, Issue 6, 2022

Published on: 02 March, 2022

Article ID: e301221199682 Pages: 17

DOI: 10.2174/1573407218666211230141836

Price: $65

Abstract

As we enter into the era of modern medicine, breast cancer remains a significant public health concern that has a noteworthy global impact in developed and developing countries. The modern era has seen an increase in the knowledge of the molecular mechanisms underlying cancer progression, leading to many anticancer drugs. The practice of curing certain diseases with the help of plant-derived compounds was one of the traditional methods. Phytochemicals and derivatives present in plants have shown a promising effect for improving efficiency in the treatment of cancer patients and reducing adverse reactions such as integration therapy with chemotherapeutic agents. The primary objective of this review is to compile ongoing research, preclinical studies, and clinical trials of some of the important phytochemicals. In recent years, increasing evidence from preclinical and clinical studies suggests that phytochemicals can favorably modulate several signaling pathways involved in cancer development and progression. Furthermore, phytoconstituents or plant- derived compounds show synergistic action against breast cancer when integrated with chemotherapy. Thus, the therapeutic potential of naturally occurring phytochemicals is of great interest as a part of integration therapy in cancer care. This review focuses on phytochemicals from quinones, terpenoids, alkaloids, polyphenols, steroidal lactones, and glycosides classes that help treat breast cancer. In addition, the phytochemicals act by various pharmacological mechanisms like carcinogen inactivation, inhibiting proliferation, cell cycle arrest, and apoptosis. Collectively, detailed information about specific classes of phytoconstituents along with their mechanism of action is mentioned in this review.

Keywords: Breast cancer, phytoconstituents, therapeutic integration, multitherapy, clinical studies, phytochemicals.

Graphical Abstract

[1]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[2]
McGuire, S. World Cancer Report 2014. Geneva, Switzerland: World Health Organization, International Agency for Research on Cancer, WHO Press, 2015. Adv. Nutr., 2016, 7(2), 418-419.
[http://dx.doi.org/10.3945/an.116.012211] [PMID: 26980827]
[3]
He, S-M.; Yang, A-K.; Li, X-T.; Du, Y-M.; Zhou, S-F. Effects of herbal products on the metabolism and transport of anticancer agents. Expert Opin. Drug Metab. Toxicol., 2010, 6(10), 1195-1213.
[http://dx.doi.org/10.1517/17425255.2010.510132] [PMID: 20701553]
[4]
Dimmito, M.P.; Stefanucci, A.; Della Valle, A.; Scioli, G.; Cichelli, A.; Mollica, A. An overview on plants cannabinoids endorsed with cardiovascular effects. Biomed. Pharmacother., 2021, 142, 111963.
[http://dx.doi.org/10.1016/j.biopha.2021.111963] [PMID: 34332376]
[5]
Block, K.I.; Gyllenhaal, C.; Lowe, L.; Amedei, A.; Amin, A.R.M.R.; Amin, A.; Aquilano, K.; Arbiser, J.; Arreola, A.; Arzumanyan, A. Designing a Broad-Spectrum Integrative Approach for Cancer Prevention and Treatment. Semin. Cancer Biol., 2015, 35(Suppl), S276-S304.
[http://dx.doi.org/10.1016/j.semcancer.2015.09.007]
[6]
Ghorbani-Abdi-Saedabad, A.; Hanafi-Bojd, M.Y.; Parsamanesh, N.; Tayarani-Najaran, Z.; Mollaei, H.; Hoshyar, R. Anticancer and apoptotic activities of parthenolide in combination with epirubicin in mda-mb-468 breast cancer cells. Mol. Biol. Rep., 2020, 47(8), 5807-5815.
[http://dx.doi.org/10.1007/s11033-020-05649-3] [PMID: 32686017]
[7]
Dhupal, M.; Chowdhury, D. Phytochemical-based nanomedicine for advanced cancer theranostics: Perspectives on clinical trials to clinical use. Int. J. Nanomedicine, 2020, 15, 9125-9157.
[http://dx.doi.org/10.2147/IJN.S259628] [PMID: 33244231]
[8]
Lumachi, F.; Brunello, A.; Maruzzo, M.; Basso, U.; Basso, S.M. Treatment of estrogen receptor-positive breast cancer. Curr. Med. Chem., 2013, 20(5), 596-604.
[http://dx.doi.org/10.2174/092986713804999303] [PMID: 23278394]
[9]
Shah, U.; Patel, S.; Upadhayay, M.P Molecular Docking and In Silico ADMET Study Reveals Flavonoids as a Potential Inhibitor of Aromatase. Lett. Drug Des. Discov., 2017, 14(11), 1267-1276.
[10]
Garcia-Oliveira, P.; Otero, P.; Pereira, A.G.; Chamorro, F.; Carpena, M.; Echave, J.; Fraga-Corral, M.; Simal-Gandara, J.; Prieto, M.A. Status and challenges of plant-anticancer compounds in cancer treatment. Pharmaceuticals (Basel), 2021, 14(2), 1-28.
[http://dx.doi.org/10.3390/ph14020157] [PMID: 33673021]
[11]
Mollica, A.; Scioli, G.; Della Valle, A.; Cichelli, A.; Novellino, E.; Bauer, M.; Kamysz, W.; Llorent-Martínez, E.J.; Fernández-de Córdova, M.L.; Castillo-López, R.; Ak, G.; Zengin, G.; Pieretti, S.; Stefanucci, A. Phenolic analysis and in vitro biological activity of red wine, pomace and grape seeds oil derived from vitis vinifera l. cv. montepulciano d’abruzzo. Antioxidants, 2021, 10(11), 1704.
[http://dx.doi.org/10.3390/antiox10111704] [PMID: 34829574]
[12]
Huang, P-H.; Huang, C-Y.; Chen, M-C.; Lee, Y-T.; Yue, C-H.; Wang, H-Y.; Lin, H. Emodin and aloe-emodin suppress breast cancer cell proliferation through er α inhibition. Evid. Based Complement. Alternat. Med., 2013, 2013, 376123.
[http://dx.doi.org/10.1155/2013/376123] [PMID: 23864887]
[13]
Lee, M-S.; Yuet-Wa, J.C.; Kong, S-K.; Yu, B.; Eng-Choon, V.O.; Nai-Ching, H.W.; Chung-Wai, T.M.; Fung, K-P. Effects of polyphyllin D, a steroidal saponin in Paris polyphylla, in growth inhibition of human breast cancer cells and in xenograft. Cancer Biol. Ther., 2005, 4(11), 1248-1254.
[http://dx.doi.org/10.4161/cbt.4.11.2136] [PMID: 16258257]
[14]
Bradford, P.G.; Awad, A.B. Phytosterols as anticancer compounds. Mol. Nutr. Food Res., 2007, 51(2), 161-170.
[http://dx.doi.org/10.1002/mnfr.200600164] [PMID: 17266177]
[15]
Ghauri, M.A.; Su, Q.; Ullah, A.; Wang, J.; Sarwar, A.; Wu, Q.; Zhang, D.; Zhang, Y. Sanguinarine impedes metastasis and causes inversion of epithelial to mesenchymal transition in breast cancer. Phytomedicine, 2021, 84, 153500.
[http://dx.doi.org/10.1016/j.phymed.2021.153500] [PMID: 33626427]
[16]
Pan, X.; Han, H.; Wang, L.; Yang, L.; Li, R.; Li, Z.; Liu, J.; Zhao, Q.; Qian, M.; Liu, M.; Du, B. Nitidine chloride inhibits breast cancer cells migration and invasion by suppressing c-Src/FAK associated signaling pathway. Cancer Lett., 2011, 313(2), 181-191.
[http://dx.doi.org/10.1016/j.canlet.2011.09.001] [PMID: 21959111]
[17]
Huang, Q.; Lu, G.; Shen, H-M.; Chung, M.C.M.; Ong, C.N. Anti- cancer properties of anthraquinones from rhubarb. Med. Res. Rev., 2007, 27(5), 609-630.
[http://dx.doi.org/10.1002/med.20094] [PMID: 17022020]
[18]
Pecere, T.; Gazzola, M. V.; Mucignat, C.; Parolin, C.; Vecchia, F.D.; Cavaggioni, A.; Basso, G.; Diaspro, A.; Salvato, B.; Carli, M. Aloe-emodin is a new type of anticancer agent with selective activity against neuroectodermal tumors. Cancer Res, 2000, 60(11), 2800-2804.
[19]
Dong, X.; Zeng, Y.; Liu, Y.; You, L.; Yin, X.; Fu, J.; Ni, J. Aloe-emodin: A review of its pharmacology, toxicity, and pharmacokinetics. Phytother. Res., 2020, 34(2), 270-281.
[http://dx.doi.org/10.1002/ptr.6532] [PMID: 31680350]
[20]
Abdellatef, A.A.; Fathy, M.; Mohammed, A.E.I.; Bakr, M.S.A.; Ahmed, A.H.; Abbass, H.S.; El-Desoky, A.H.; Morita, H.; Nikaido, T.; Hayakawa, Y. Inhibition of cell-intrinsic NF-κB activity and metastatic abilities of breast cancer by aloe-emodin and emodic-acid isolated from Asphodelus microcarpus. J. Nat. Med., 2021, 75(4), 840-853.
[http://dx.doi.org/10.1007/s11418-021-01526-w] [PMID: 33988779]
[21]
Dombernowsky, P.; Gehl, J.; Boesgaard, M.; Jensen, T.P.; Jensen, B.V. Paclitaxel and doxorubicin, a highly active combination in the treatment of metastatic breast cancer. Semin. Oncol., 1996, 23(1)(Suppl. 1), 13-18.
[PMID: 8629030]
[22]
Baselga, J.; Norton, L.; Albanell, J.; Kim, Y.M.; Mendelsohn, J. Recombinant humanized anti-HER2 antibody (Herceptin) enhances the antitumor activity of paclitaxel and doxorubicin against HER2/neu overexpressing human breast cancer xenografts. Cancer Res., 1998, 58(13), 2825-2831.
[PMID: 9661897]
[23]
Benz, C.C.; Scott, G.K.; Sarup, J.C.; Johnson, R.M.; Tripathy, D.; Coronado, E.; Shepard, H.M.; Osborne, C.K. Estrogen-dependent, tamoxifen-resistant tumorigenic growth of MCF-7 cells transfected with HER2/neu. Breast Cancer Res. Treat., 1992, 24(2), 85-95.
[http://dx.doi.org/10.1007/BF01961241] [PMID: 8095168]
[24]
Sparano, J.A. Taxanes for breast cancer: an evidence-based review of randomized phase II and phase III trials. Clin. Breast Cancer, 2000, 1(1), 32-40.
[http://dx.doi.org/10.3816/CBC.2000.n.002] [PMID: 11899388]
[25]
Zhao, Q.; Zhang, X.; Cai, H.; Zhang, P.; Kong, D.; Ge, X.; Du, M.; Liang, R.; Dong, W. Anticancer effects of plant derived Anacardic acid on human breast cancer MDA-MB-231 cells. Am. J. Transl. Res., 2018, 10(8), 2424-2434.
[PMID: 30210681]
[26]
Schultz, D.J.; Krishna, A.; Vittitow, S.L.; Alizadeh-Rad, N.; Muluhngwi, P.; Rouchka, E.C.; Klinge, C.M. Transcriptomic response of breast cancer cells to anacardic acid. Sci. Rep., 2018, 8(1), 8063.
[http://dx.doi.org/10.1038/s41598-018-26429-x] [PMID: 29795261]
[27]
Gluz, O.; Liedtke, C.; Gottschalk, N.; Pusztai, L.; Nitz, U.; Harbeck, N. Triple-negative breast cancer-current status and future directions. Ann. Oncol., 2009, 20(12), 1913-1927.
[http://dx.doi.org/10.1093/annonc/mdp492] [PMID: 19901010]
[28]
Galot-Linaldi, J.; Hern, K.M.; Estrada-Muñiz, E.; Vega, L. Anacardic acids from amphipterygium adstringens confer cytoprotection againts 5-fluorouracil and carboplatin induced blood cell toxicity while increasing antitumoral activity and survival in an animal model of breast cancer. Molecules., 2021, 26(11), 3241.
[29]
Stan, S.D.; Hahm, E-R.; Warin, R.; Singh, S.V.; Withaferin, A. Withaferin A causes FOXO3a- and Bim-dependent apoptosis and inhibits growth of human breast cancer cells in vivo. Cancer Res., 2008, 68(18), 7661-7669.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-1510] [PMID: 18794155]
[30]
Lee, J.; Hahm, E-R.; Marcus, A.I.; Singh, S.V.; Withaferin, A. Withaferin A inhibits experimental epithelial-mesenchymal transition in MCF-10A cells and suppresses vimentin protein level in vivo in breast tumors. Mol. Carcinog., 2015, 54(6), 417-429.
[http://dx.doi.org/10.1002/mc.22110] [PMID: 24293234]
[31]
Hahm, E-R.; Moura, M.B.; Kelley, E.E.; Van Houten, B.; Shiva, S.; Singh, S.V. Withaferin A-induced apoptosis in human breast cancer cells is mediated by reactive oxygen species. PLoS One, 2011, 6(8), e23354.
[http://dx.doi.org/10.1371/journal.pone.0023354] [PMID: 21853114]
[32]
Lee, J.; Hahm, E-R.; Singh, S.V.; Withaferin, A. Withaferin A inhibits activation of signal transducer and activator of transcription 3 in human breast cancer cells. Carcinogenesis, 2010, 31(11), 1991-1998.
[http://dx.doi.org/10.1093/carcin/bgq175] [PMID: 20724373]
[33]
Mallipeddi, H.; Thyagarajan, A.; Sahu, R.P. Implications of Withaferin-A for triple-negative breast cancer chemoprevention. Biomed. Pharmacother., 2021, 134, 111124.
[http://dx.doi.org/10.1016/j.biopha.2020.111124] [PMID: 33434782]
[34]
Nagabhushan, M.; Bhide, S.V. Curcumin as an inhibitor of cancer. J. Am. Coll. Nutr., 1992, 11(2), 192-198.
[http://dx.doi.org/10.1080/07315724.1992.12098244] [PMID: 1578097]
[35]
Davoodvandi, A.; Farshadi, M.; Zare, N.; Akhlagh, S.A.; Alipour Nosrani, E.; Mahjoubin-Tehran, M.; Kangari, P.; Sharafi, S.M.; Khan, H.; Aschner, M.; Baniebrahimi, G.; Mirzaei, H. Antimetastatic effects of curcumin in oral and gastrointestinal cancers. Front. Pharmacol., 2021, 12, 668567.
[http://dx.doi.org/10.3389/fphar.2021.668567] [PMID: 34456716]
[36]
Quispe-Soto, E.T.; Calaf, G.M. Effect of curcumin and paclitaxel on breast carcinogenesis. Int. J. Oncol., 2016, 49(6), 2569-2577.
[http://dx.doi.org/10.3892/ijo.2016.3741] [PMID: 27779649]
[37]
Dutt, R.; Garg, V.; Khatri, N.; Madan, A.K. Phytochemicals in anticancer drug development. Anticancer Agents Med. Chem., 2019, 19(2), 172-183.
[http://dx.doi.org/10.2174/1871520618666181106115802] [PMID: 30398123]
[38]
Chang, L-C.; Hsieh, M-T.; Yang, J-S.; Lu, C-C.; Tsai, F-J.; Tsao, J-W.; Chiu, Y-J.; Kuo, S-C.; Lee, K-H. Effect of bis(hydroxymethyl) alkanoate curcuminoid derivative MTH-3 on cell cycle arrest, apoptotic and autophagic pathway in triple-negative breast adenocarcinoma MDA-MB-231 cells: An in vitro study. Int. J. Oncol., 2018, 52(1), 67-76.
[PMID: 29138806]
[39]
Nirgude, S.; Mahadeva, R.; Koroth, J.; Kumar, S.; Kumar, K.S.S.; Gopalakrishnan, V.; S Karki, S.S.; Choudhary, B. ST09, A Novel curcumin derivative, blocks cell migration by inhibiting matrix metalloproteases in breast cancer cells and inhibits tumor progression in eac mouse tumor models. Molecules, 2020, 25(19), 4499.
[http://dx.doi.org/10.3390/molecules25194499] [PMID: 33008036]
[40]
Hu, S.; Xu, Y.; Meng, L.; Huang, L.; Sun, H. Curcumin inhibits proliferation and promotes apoptosis of breast cancer cells. Exp. Ther. Med., 2018, 16(2), 1266-1272.
[http://dx.doi.org/10.3892/etm.2018.6345] [PMID: 30116377]
[41]
Cai, J.; Sun, H.; Zheng, B.; Xie, M.; Xu, C.; Zhang, G.; Huang, X.; Zhuang, J. Curcumin attenuates lncRNA H19-induced epithelial-mesenchymal transition intamoxifen-resistant breast cancer cells. Mol. Med. Rep., 2021, 23(1), 13.
[PMID: 33179087]
[42]
Yasmin, S.; Nehvi, F. A. Phenological growth stages of saffron ( Crocus Sativus L .) under temperate conditions of Jammu & Kashmir-India. 2018, 7(04), 3797-3814.
[43]
Chryssanthi, D.G.; Lamari, F.N.; Iatrou, G.; Pylara, A.; Karamanos, N.K.; Cordopatis, P. Inhibition of breast cancer cell proliferation by style constituents of different crocus species. Anticancer Res, 2007, 27(1 A), 357-362.
[44]
Mousavi Baharara, J.; Asadi-Samani, M. Anti-angiogenesis effect of Crocus sativus L. extract on matrix metalloproteinase gene activities in human breast carcinoma cells. J. Herb. Med. Pharmacol., 2014, 3(2), 101-105.
[45]
Khorasanchi, Z.; Shafiee, M.; Kermanshahi, F.; Khazaei, M.; Ryzhikov, M.; Parizadeh, M.R.; Kermanshahi, B.; Ferns, G.A.; Avan, A.; Hassanian, S.M. Crocus sativus a natural food coloring and flavoring has potent anti-tumor properties. Phytomedicine, 2018, 43, 21-27.
[http://dx.doi.org/10.1016/j.phymed.2018.03.041] [PMID: 29747750]
[46]
Li, Y.; Bhuiyan, M.; Alhasan, S.; Senderowicz, A.M.; Sarkar, F.H. Induction of apoptosis and inhibition of c-erbB-2 in breast cancer cells by flavopiridol. Clin. Cancer Res., 2000, 6(1), 223-229.
[PMID: 10656453]
[47]
La Rocca, G.; Pucci-Minafra, I.; Marrazzo, A.; Taormina, P.; Minafra, S. Zymographic detection and clinical correlations of MMP-2 and MMP-9 in breast cancer sera. Br. J. Cancer, 2004, 90(7), 1414-1421.
[http://dx.doi.org/10.1038/sj.bjc.6601725] [PMID: 15054465]
[48]
Hicks, M.; Hu, Q.; Macrae, E.; DeWille, J. JUNB promotes the survival of Flavopiridol treated human breast cancer cells. Biochem. Biophys. Res. Commun., 2014, 450(1), 19-24.
[http://dx.doi.org/10.1016/j.bbrc.2014.05.057] [PMID: 24858691]
[49]
Zhang, H-P.; Li, G-Q.; Zhang, Y.; Guo, W-Z.; Zhang, J-K.; Li, J.; Lv, J-F.; Zhang, S-J. Upregulation of Mcl-1 inhibits JQ1-triggered anticancer activity in hepatocellular carcinoma cells. Biochem. Biophys. Res. Commun., 2018, 495(4), 2456-2461.
[http://dx.doi.org/10.1016/j.bbrc.2017.12.153] [PMID: 29287727]
[50]
Xu, Y.; Her, C. Inhibition of topoisomerase (DNA) I (TOP1): DNA damage repair and anticancer therapy. Biomolecules, 2015, 5(3), 1652-1670.
[http://dx.doi.org/10.3390/biom5031652] [PMID: 26287259]
[51]
Shamanna, R.A.; Lu, H.; Croteau, D.L.; Arora, A.; Agarwal, D.; Ball, G.; Aleskandarany, M.A.; Ellis, I.O.; Pommier, Y.; Madhusudan, S.; Bohr, V.A. Camptothecin targets WRN protein: Mechanism and relevance in clinical breast cancer. Oncotarget, 2016, 7(12), 13269-13284.
[http://dx.doi.org/10.18632/oncotarget.7906] [PMID: 26959889]
[52]
Reinicke, K.E.; Kuffel, M.J.; Goetz, M.P.; Ames, M.M. Synergistic interactions between aminoflavone, paclitaxel and camptothecin in human breast cancer cells. Cancer Chemother. Pharmacol., 2010, 66(3), 575-583.
[http://dx.doi.org/10.1007/s00280-009-1198-z] [PMID: 20012292]
[53]
Tesauro, C.; Simonsen, A.K.; Andersen, M.B.; Petersen, K.W.; Kristoffersen, E.L.; Algreen, L.; Hansen, N.Y.; Andersen, A.B.; Jakobsen, A.K.; Stougaard, M.; Gromov, P.; Knudsen, B.R.; Gromova, I. Topoisomerase I activity and sensitivity to camptothecin in breast cancer-derived cells: a comparative study. BMC Cancer, 2019, 19(1), 1158.
[http://dx.doi.org/10.1186/s12885-019-6371-0] [PMID: 31783818]
[54]
Mollica, A.; Stefanucci, A.; Feliciani, F.; Cacciatore, I.; Cornacchia, C.; Pinnen, F. Delivery methods of camptothecin and its hydrosoluble analogue irinotecan for treatment of colorectal cancer. Curr. Drug Deliv., 2012, 9(2), 122-131.
[http://dx.doi.org/10.2174/156720112800234558] [PMID: 22283650]
[55]
Akinboye, E.S.; Brennen, W.N.; Rosen, D.M.; Bakare, O.; Denmeade, S.R. Iterative design of emetine-based prodrug targeting fibroblast activation protein (FAP) and dipeptidyl peptidase IV DPPIV using a tandem enzymatic activation strategy. Prostate, 2016, 76(8), 703-714.
[http://dx.doi.org/10.1002/pros.23162] [PMID: 26835873]
[56]
Uzor, P.F. Recent developments on potential new applications of emetine as anti-cancer agent. EXCLI J., 2016, 15, 323-328.
[PMID: 27366142]
[57]
Sun, Q.; Fu, Q.; Li, S.; Li, J.; Liu, S.; Wang, Z.; Su, Z.; Song, J.; Lu, D. Emetine exhibits anticancer activity in breast cancer cells as an antagonist of Wnt/β-catenin signaling. Oncol. Rep., 2019, 42(5), 1735-1744.
[http://dx.doi.org/10.3892/or.2019.7290] [PMID: 31436297]
[58]
Plati, J.; Bucur, O.; Khosravi-Far, R. Apoptotic cell signaling in cancer progression and therapy. Integr. Biol., 2011, 3(4), 279-296.
[http://dx.doi.org/10.1039/c0ib00144a] [PMID: 21340093]
[59]
Li, P.; Nijhawan, D.; Budihardjo, I.; Srinivasula, S.M.; Ahmad, M.; Alnemri, E.S.; Wang, X. Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell, 1997, 91(4), 479-489.
[http://dx.doi.org/10.1016/S0092-8674(00)80434-1] [PMID: 9390557]
[60]
Kulkarni, Y.M.; Yakisich, J.S.; Azad, N.; Venkatadri, R.; Kaushik, V.; O’Doherty, G.; Iyer, A.K.V. Anti-tumorigenic effects of a novel digitoxin derivative on both estrogen receptor-positive and triple-negative breast cancer cells. Tumour Biol., 2017, 39(6), 1010428317705331.
[http://dx.doi.org/10.1177/1010428317705331] [PMID: 28618929]
[61]
Einbond, L.S.; Wu, H.A.; Sandu, C.; Ford, M.; Mighty, J.; Antonetti, V.; Redenti, S.; Ma, H. Digitoxin enhances the growth inhibitory effects of thapsigargin and simvastatin on ER negative human breast cancer cells. Fitoterapia, 2016, 109, 146-154.
[http://dx.doi.org/10.1016/j.fitote.2015.12.005] [PMID: 26691294]
[62]
Karthikeyan, K.; Gunasekaran, P.; Ramamurthy, N.; Govindasamy, S. Anticancer Activity of Ocimum Sanctum. Pharmaceut Biol., 1999, 37(4), 285-290.
[63]
Nangia-Makker, P.; Tait, L.; Shekhar, M.P.V.; Palomino, E.; Hogan, V.; Piechocki, M.P.; Funasaka, T.; Raz, A. Inhibition of breast tumor growth and angiogenesis by a medicinal herb: Ocimum gratissimum. Int. J. Cancer, 2007, 121(4), 884-894.
[http://dx.doi.org/10.1002/ijc.22733] [PMID: 17437270]
[64]
Harmand, P-O.; Duval, R.; Delage, C.; Simon, A. Ursolic acid induces apoptosis through mitochondrial intrinsic pathway and caspase-3 activation in M4Beu melanoma cells. Int. J. Cancer, 2005, 114(1), 1-11.
[http://dx.doi.org/10.1002/ijc.20588] [PMID: 15523687]
[65]
Kelm, M.A.; Nair, M.G.; Strasburg, G.M.; DeWitt, D.L. Antioxidant and cyclooxygenase inhibitory phenolic compounds from Ocimum sanctum Linn. Phytomedicine, 2000, 7(1), 7-13.
[http://dx.doi.org/10.1016/S0944-7113(00)80015-X] [PMID: 10782484]
[66]
Mandal, S.; Gamit, N.; Varier, L.; Dharmarajan, A.; Warrier, S. Inhibition of breast cancer stem-like cells by a triterpenoid, ursolic acid, via activation of Wnt antagonist, sFRP4 and suppression of miRNA-499a-5p. Life Sci., 2021, 265, 118854.
[http://dx.doi.org/10.1016/j.lfs.2020.118854] [PMID: 33278391]
[67]
Gu, L.; Zhang, H.; Liu, T.; Zhou, S.; Du, Y.; Xiong, J.; Yi, S.; Qu, C-K.; Fu, H.; Zhou, M. Discovery of dual inhibitors of MDM2 and XIAP for cancer treatment. Cancer Cell, 2016, 30(4), 623-636.
[http://dx.doi.org/10.1016/j.ccell.2016.08.015] [PMID: 27666947]
[68]
Zhou, S.; Gu, L.; He, J.; Zhang, H.; Zhou, M. MDM2 regulates vascular endothelial growth factor mRNA stabilization in hypoxia. Mol. Cell. Biol., 2011, 31(24), 4928-4937.
[http://dx.doi.org/10.1128/MCB.06085-11] [PMID: 21986500]
[69]
Xiong, J.; Li, J.; Yang, Q.; Wang, J.; Su, T.; Zhou, S. Gossypol has anti-cancer effects by dual-targeting MDM2 and VEGF in human breast cancer. Breast Cancer Res., 2017, 19(1), 27.
[http://dx.doi.org/10.1186/s13058-017-0818-5] [PMID: 28274247]
[70]
Kitada, S.; Leone, M.; Sareth, S.; Zhai, D.; Reed, J.C.; Pellecchia, M. Discovery, characterization, and structure-activity relationships studies of proapoptotic polyphenols targeting B-cell lymphocyte/leukemia-2 proteins. J. Med. Chem., 2003, 46(20), 4259-4264.
[http://dx.doi.org/10.1021/jm030190z] [PMID: 13678404]
[71]
Barzegar, E.; Fouladdel, S.; Movahhed, T.K.; Atashpour, S.; Ghahremani, M.H.; Ostad, S.N.; Azizi, E. Effects of berberine on proliferation, cell cycle distribution and apoptosis of human breast cancer T47D and MCF7 cell lines. Iran. J. Basic Med. Sci., 2015, 18(4), 334-342.
[PMID: 26019795]
[72]
Serasanambati, M.; Chilakapati, S.R.; Manikonda, P.K.; Kanala, J.R. Anticancer activity of methanolic extract of berberis aristata in MCF-7 human breast cancer cell lines. Int. J. Life Sci. Biotech. pharma Res., 2015, 4(1), 31-35.
[73]
Kim, S.; Han, J.; Lee, S.K.; Choi, M-Y.; Kim, J.; Lee, J.; Jung, S.P.; Kim, J.S.; Kim, J-H.; Choe, J-H.; Lee, J.E.; Nam, S.J. Berberine suppresses the TPA-induced MMP-1 and MMP-9 expressions through the inhibition of PKC-α in breast cancer cells. J. Surg. Res., 2012, 176(1), e21-e29.
[http://dx.doi.org/10.1016/j.jss.2011.11.1041] [PMID: 22381172]
[74]
Kuo, H-P.; Chuang, T-C.; Tsai, S-C.; Tseng, H-H.; Hsu, S-C.; Chen, Y-C.; Kuo, C-L.; Kuo, Y-H.; Liu, J-Y.; Kao, M-C. Berberine, an isoquinoline alkaloid, inhibits the metastatic potential of breast cancer cells via Akt pathway modulation. J. Agric. Food Chem., 2012, 60(38), 9649-9658.
[http://dx.doi.org/10.1021/jf302832n] [PMID: 22950834]
[75]
Qian, K.; Tang, C-Y.; Chen, L-Y.; Zheng, S.; Zhao, Y.; Ma, L-S.; Xu, L.; Fan, L-H.; Yu, J-D.; Tan, H-S.; Sun, Y.L.; Shen, L.L.; Lu, Y.; Liu, Q.; Liu, Y.; Xiong, Y. Berberine reverses breast cancer multidrug resistance based on fluorescence pharmacokinetics in vitro and in vivo. ACS Omega, 2021, 6(16), 10645-10654.
[http://dx.doi.org/10.1021/acsomega.0c06288] [PMID: 34056218]
[76]
Lee, H.S.; Seo, E.Y.; Kang, N.E.; Kim, W.K. [6]-Gingerol inhibits metastasis of MDA-MB-231 human breast cancer cells. J. Nutr. Biochem., 2008, 19(5), 313-319.
[http://dx.doi.org/10.1016/j.jnutbio.2007.05.008] [PMID: 17683926]
[77]
Fuzer, A.M.; Lee, S-Y.; Mott, J.D.; Cominetti, M.R. [10]-Gingerol reverts malignant phenotype of breast cancer cells in 3D Culture. J. Cell. Biochem., 2017, 118(9), 2693-2699.
[http://dx.doi.org/10.1002/jcb.25906] [PMID: 28112417]
[78]
Sp, N.; Kang, D.Y.; Lee, J.M.; Bae, S.W.; Jang, K.J. Potential antitumor effects of 6-Gingerol in p53-dependent mitochondrial apoptosis and inhibition of tumor sphere formation in breast cancer cells. Int. J. Mol. Sci., 2021, 22(9), 4660.
[http://dx.doi.org/10.3390/ijms22094660] [PMID: 33925065]
[79]
Awad, A.B.; Roy, R.; Fink, C.S. β-sitosterol, a plant sterol, induces apoptosis and activates key caspases in MDA-MB-231 human breast cancer cells. Oncol. Rep., 2003, 10(2), 497-500.
[http://dx.doi.org/10.3892/or.10.2.497] [PMID: 12579296]
[80]
Vundru, S.S.; Kale, R.K.; Singh, R.P. β-Sitosterol induces G1 arrest and causes depolarization of mitochondrial membrane potential in breast carcinoma MDA-MB-231 cells. BMC Complement. Altern. Med., 2013, 13(1), 280.
[http://dx.doi.org/10.1186/1472-6882-13-280] [PMID: 24160369]
[81]
Awad, A.B.; Chinnam, M.; Fink, C.S.; Bradford, P.G. beta-Sitosterol activates Fas signaling in human breast cancer cells. Phytomedicine, 2007, 14(11), 747-754.
[http://dx.doi.org/10.1016/j.phymed.2007.01.003] [PMID: 17350814]
[82]
Shahali, A.; Ghanadian, M.; Jafari, S.M.; Aghaei, M. Mitochondrial and caspase pathways are involved in the induction of apoptosis by nardosinen in MCF-7 breast cancer cell line. Res. Pharm. Sci., 2018, 13(1), 12-21.
[http://dx.doi.org/10.4103/1735-5362.220963] [PMID: 29387107]
[83]
Fallahian, F.; Aghaei, M.; Abdolmohammadi, M.H.; Hamzeloo- Moghadam, M. Molecular mechanism of apoptosis induction by Gaillardin, a sesquiterpene lactone, in breast cancer cell lines : Gaillardin-induced apoptosis in breast cancer cell lines. Cell Biol. Toxicol., 2015, 31(6), 295-305.
[http://dx.doi.org/10.1007/s10565-016-9312-6] [PMID: 26843455]
[84]
Hamzeloo-Moghadam, M.; Khalaj, A.; Malekmohammadi, M. Cytotoxic activity and apoptosis induction of hypericum scabrum L. Iran. Red Crescent Med. J., 2015, 17(10), e19453-e19453.
[http://dx.doi.org/10.5812/ircmj.19453] [PMID: 26568855]
[85]
Hussain, S. Catechins- a natural blessing in breast cancer treatment. Am. J. Biomed. Sci. Res., 2019, 6, 378-380.
[http://dx.doi.org/10.34297/AJBSR.2019.06.001066]
[86]
Min, N.Y.; Kim, J-H.; Choi, J-H.; Liang, W.; Ko, Y.J.; Rhee, S.; Bang, H.; Ham, S.W.; Park, A.J.; Lee, K.H. Selective death of cancer cells by preferential induction of reactive oxygen species in response to (-)-epigallocatechin-3-gallate. Biochem. Biophys. Res. Commun., 2012, 421(1), 91-97.
[http://dx.doi.org/10.1016/j.bbrc.2012.03.120] [PMID: 22487794]
[87]
Beltz, L.A.; Bayer, D.K.; Moss, A.L.; Simet, I.M. Mechanisms of cancer prevention by green and black tea polyphenols. Anticancer Agents Med. Chem., 2006, 6(5), 389-406.
[http://dx.doi.org/10.2174/187152006778226468] [PMID: 17017850]
[88]
Katsoulieris, E.N.; Canas-Rodriguez, A. Catechin complexed with lysine has potent antitumor activities in human breast cancer xenograft model. bioRxiv, 2021.
[http://dx.doi.org/10.1101/2021.02.01.429090]
[89]
Einbond, L.S.; Wu, H.A.; Kashiwazaki, R.; He, K.; Roller, M.; Su, T.; Wang, X.; Goldsberry, S. Carnosic acid inhibits the growth of ER-negative human breast cancer cells and synergizes with curcumin. Fitoterapia, 2012, 83(7), 1160-1168.
[http://dx.doi.org/10.1016/j.fitote.2012.07.006] [PMID: 22828666]
[90]
Visanji, J.M.; Thompson, D.G.; Padfield, P.J. Induction of G2/M phase cell cycle arrest by carnosol and carnosic acid is associated with alteration of cyclin A and cyclin B1 levels. Cancer Lett., 2006, 237(1), 130-136.
[http://dx.doi.org/10.1016/j.canlet.2005.05.045] [PMID: 16019137]
[91]
Zheng, Y.; Sowers, J.Y.; Houston, K.D. IGFBP-1 expression promotes tamoxifen resistance in breast cancer cells via erk pathway activation. Front. Endocrinol. (Lausanne), 2020, 11, 233.
[http://dx.doi.org/10.3389/fendo.2020.00233] [PMID: 32435229]
[92]
Han, N.N.; Zhou, Q.; Huang, Q.; Liu, K.J. Carnosic acid cooperates with tamoxifen to induce apoptosis associated with Caspase-3 activation in breast cancer cells in vitro and in vivo. Biomed. Pharmacother., 2017, 89, 827-837.
[http://dx.doi.org/10.1016/j.biopha.2017.01.084] [PMID: 28282784]
[93]
Phromnoi, K.; Yodkeeree, S.; Anuchapreeda, S.; Limtrakul, P. Inhibition of MMP-3 activity and invasion of the MDA-MB-231 human invasive breast carcinoma cell line by bioflavonoids. Acta Pharmacol. Sin., 2009, 30(8), 1169-1176.
[http://dx.doi.org/10.1038/aps.2009.107] [PMID: 19617894]
[94]
Kim, S-H.; Hwang, K-A.; Choi, K-C. Treatment with kaempferol suppresses breast cancer cell growth caused by estrogen and triclosan in cellular and xenograft breast cancer models. J. Nutr. Biochem., 2016, 28, 70-82.
[http://dx.doi.org/10.1016/j.jnutbio.2015.09.027] [PMID: 26878784]
[95]
Choi, E.J.; Ahn, W.S. Kaempferol induced the apoptosis via cell cycle arrest in human breast cancer MDA-MB-453 cells. Nutr. Res. Pract., 2008, 2(4), 322-325.
[http://dx.doi.org/10.4162/nrp.2008.2.4.322] [PMID: 20016737]
[96]
Aghazadeh, T.; Bakhtiari, N.; Rad, I.A.; Ramezani, F. Formulation of kaempferol in nanostructured lipid carriers (nlcs): a delivery platform to sensitization of Mda-Mb468 breast cancer cells to paclitaxel. Biointerface Res. Appl. Chem., 2021, 11(6), 14601-14591.
[97]
Sun, M.; Zhang, N.; Wang, X.; Cai, C.; Cun, J.; Li, Y.; Lv, S.; Yang, Q. Nitidine chloride induces apoptosis, cell cycle arrest, and synergistic cytotoxicity with doxorubicin in breast cancer cells. Tumour Biol., 2014, 35(10), 10201-10212.
[http://dx.doi.org/10.1007/s13277-014-2327-9] [PMID: 25027404]
[98]
Sources of the content in the table is well cited in the caption of the table. U.S. National Library of Medicine Available from: https://clinicaltrials.gov/ct2/home (Accessed Jun 17, 2021).
[99]
Desai, A.G.; Qazi, G.N.; Ganju, R.K.; El-Tamer, M.; Singh, J.; Saxena, A.K.; Bedi, Y.S.; Taneja, S.C.; Bhat, H.K. Medicinal plants and cancer chemoprevention. Curr. Drug Metab., 2008, 9(7), 581-591.
[http://dx.doi.org/10.2174/138920008785821657] [PMID: 18781909]
[100]
Muszynska, B.; Kala, K.; Sulkowska-Ziaja, K. Edible mushrooms and their in vitro culture as a source of anticancer compounds. In: Bio technology and production of Anti-cancer compounds, Malik S. Eds Springer: Berlin, 2017, pp. 23-251.
[http://dx.doi.org/10.1007/978-3-319-53880-8_10]
[101]
Greenwell, M.; Rahman, P.K.S.M. Medicinal Plants: Their Use in Anticancer Treatment. Int. J. Pharm. Sci. Res., 2015, 6(10), 4103-4112.
[PMID: 26594645]
[102]
FDA Food and Drug Administration Approved Drug Products-Orange Book;, 2017.
[103]
Sinan, K.I.; Etienne, O.K.; Stefanucci, A.; Mollica, A.; Mahomoodally, M.F.; Jugreet, S.; Rocchetti, G.; Lucini, L.; Aktumsek, A.; Montesano, D. Chemodiversity and biological activity of essential oils from three species from the euphorbia genus. Flavour Fragrance J., 2021, 36(1), 148-158.
[http://dx.doi.org/10.1002/ffj.3624]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy