Generic placeholder image

Recent Patents on Engineering

Editor-in-Chief

ISSN (Print): 1872-2121
ISSN (Online): 2212-4047

Review Article

Review of Subdivision Schemes and their Applications

Author(s): Yan Liu, Huahao Shou* and Kangsong Ji

Volume 16, Issue 4, 2022

Published on: 18 February, 2022

Article ID: e291221199620 Pages: 13

DOI: 10.2174/1872212116666211229151825

Price: $65

Abstract

Background: Methods of subdivision surfaces modeling and related technology research have become a hot spot in the field of Computer-Aided Design (CAD) and Computer Graphics (CG). In the early stage, research on subdivision curves and surfaces mainly focused on the relationship between the points, thereby failing to satisfy the requirements of all geometric modeling. Considering many geometric constraints is necessary to construct subdivision curves and surfaces for achieving high-quality geometric modeling.

Objective: This paper aims to summarize various subdivision schemes of subdivision curves and surfaces, particularly in geometric constraints, such as points and normals. The findings help scholars to grasp the current research status of subdivision curves and surfaces better and explore their applications in geometric modeling.

Methods: This paper reviews the theory and applications of subdivision schemes from four aspects. We first discuss the background and key concept of subdivision schemes and then summarize the classification of classical subdivision schemes. Next, we review the subdivision surfaces fitting and summarize new subdivision schemes under geometric constraints. Applications of subdivision surfaces are also discussed. Finally, this paper provides a brief summary and future application prospects. Results: Many research papers and patents on subdivision schemes are classified in this review paper. Remarkable developments and improvements have been achieved in analytical computations and practical applications.

Conclusion: Our review shows that subdivision curves and surfaces are widely used in geometric modeling. However, some topics need to be further studied. New subdivision schemes need to be presented to meet the requirements of new practical applications.

Keywords: Subdivision scheme, point interpolation, normal interpolation, subdivision surface fitting, progressive interpolation, geometric constraint.

Graphical Abstract

[1]
G.M. Chaikin, "An algorithm for high-speed curve generation", Comput. Graph. Image Process., vol. 3, pp. 346-349, 1974.
[http://dx.doi.org/10.1016/0146-664X(74)90028-8]
[2]
E. Catmull, and J. Clark, "Recursively generated B-spline surfaces on arbitrary topological meshes", Comput. Aided Des., vol. 10, pp. 350-355, 1978.
[http://dx.doi.org/10.1016/0010-4485(78)90110-0]
[3]
D. Doo, and M. Sabin, "Behaviour of recursive division surfaces near extraordinary points", Comput. Aided Des., vol. 10, pp. 356-360, 1978.
[http://dx.doi.org/10.1016/0010-4485(78)90111-2]
[4]
C. Loop, Smooth subdivision surfaces based on triangles, University of Utah., Utah, ON, America, 1987.
[5]
N. Dyn, D. Levine, and J.A. Gregory, "A butterfly subdivision scheme for surface interpolation with tension control", ACM Trans. Graph., vol. 9, pp. 160-169, 1990.
[http://dx.doi.org/10.1145/78956.78958]
[6]
D. Zorin, P. Schroder, and W. Sweldens, "Interpolating subdivision for meshes with arbitrary topology", Comput. Graph. Proc., vol. 30, pp. 43-53, 1996.
[http://dx.doi.org/10.1145/237170.237254]
[7]
J. Tan, X. Zhuang, and L. Zhang, "A new four-point shape-preserving subdivision scheme", Comput. Aided Geom. Des., vol. 31, pp. 57-62, 2014.
[http://dx.doi.org/10.1016/j.cagd.2013.12.003]
[8]
W. Ma, "Subdivision surfaces for CAD-an overview", Comput. Aided Des., vol. 37, pp. 693-709, 2005.
[http://dx.doi.org/10.1016/j.cad.2004.08.008]
[9]
T.J. Cashman, "Beyond catmull-clark? a survey of advances in subdivision surface methods", Comput. Graph. Forum, vol. 31, pp. 42-61, 2012.
[http://dx.doi.org/10.1111/j.1467-8659.2011.02083.x]
[10]
L. Romani, "From approximating subdivision schemes for exponential splines to high-performance interpolating algorithms", J. Comput. Appl. Math., vol. 224, pp. 383-396, 2009.
[http://dx.doi.org/10.1016/j.cam.2008.05.013]
[11]
S. Daniel, and P. Shunmugaraj, "An interpolating 6-point C2 non-stationary subdivision scheme", J. Comput. Appl. Math., vol. 230, pp. 164-172, 2009.
[http://dx.doi.org/10.1016/j.cam.2008.11.006]
[12]
S. Amat, J. Ruiz, J.C. Trillo, and D.F. Yáñez, "Analysis of the Gibbs phenomenon in stationary subdivision schemes", Appl. Math. Lett., vol. 76, pp. 157-163, 2018.
[http://dx.doi.org/10.1016/j.aml.2017.08.014]
[13]
Y.J. Lee, and J. Yoon, "Analysis of stationary subdivision schemes for curve design based on radial basis function interpolation", Appl. Math. Comput., vol. 215, pp. 3851-3859, 2010.
[http://dx.doi.org/10.1016/j.amc.2009.11.028]
[14]
C. Beccari, G. Casciola, and L. Romani, "A non-stationary uniform tension controlled interpolating 4-point scheme reproducing conics", Comput. Aided Geom. Des., vol. 24, pp. 1-9, 2007.
[http://dx.doi.org/10.1016/j.cagd.2006.10.003]
[15]
C. Beccari, G. Casciola, and L. Romani, "An interpolating 4-point ternary non-stationary subdivision scheme with tension control", Comput. Aided Geom. Des., vol. 24, pp. 210-219, 2007.
[http://dx.doi.org/10.1016/j.cagd.2007.02.001]
[16]
C. Conti, N. Dyn, C. Manni, and M.L. Mazure, "Convergence of univariate non-stationary subdivision schemes via asymptotic similarity", Comput. Aided Geom. Des., vol. 37, pp. 1-8, 2015.
[http://dx.doi.org/10.1016/j.cagd.2015.06.004]
[17]
S.S. Siddiqi, W.U. Salam, and K. Rehan, "Construction of binary four and five point non-stationary subdivision schemes from hyperbolic B-splines", Appl. Math. Comput., vol. 280, pp. 30-38, 2016.
[http://dx.doi.org/10.1016/j.amc.2016.01.020]
[18]
A. Ghaffar, Z. Ullah, M. Bari, K.S. Nisar, and D. Beleany, "A new class of 2m-point binary non-stationary subdivision schemes", Adv. Differ. Equ., vol. 2019, pp. 1-19, 2019.
[http://dx.doi.org/10.1186/s13662-019-2264-4]
[19]
P. Ashraf, M. Sabir, A. Ghaffar, K.S. Nisar, and I. Khan, "Shape-preservation of the four-point ternary interpolating non-stationary subdivision scheme", Front. Phys., vol. 7, p. 241, 2020.
[20]
P. Ashraf, A. Ghaffar, D. Baleanu, I. Sehar, and F. Khan, "Shape-preserving properties of a relaxed four-point interpolating subdivision scheme", Mathematics, vol. 8, p. 806, 2020.
[http://dx.doi.org/10.3390/math8050806]
[21]
M. Fang, W. Ma, and G. Wang, "A generalized surface subdivision scheme of arbitrary order with a tension parameter", Comput. Aided Des., vol. 49, pp. 8-17, 2014.
[http://dx.doi.org/10.1016/j.cad.2013.12.003]
[22]
P. Novara, L. Romani, and J. Yoon, "Improving smoothness and accuracy of Modified Butterfly subdivision scheme", Appl. Math. Comput., vol. 272, pp. 64-79, 2016.
[http://dx.doi.org/10.1016/j.amc.2015.07.065]
[23]
B. Zhang, H. Zheng, W. Song, Z. Lin, and J. Zhou, "Interpolatory subdivision schemes with the optimal approximation order", Appl. Math. Comput., vol. 347, pp. 1-14, 2019.
[http://dx.doi.org/10.1016/j.amc.2018.10.078]
[24]
B. Zhang, H. Zheng, and W. Song, "A non-stationary Catmull-Clark subdivision scheme with shape control", Graph. Models, vol. 106, p. 101046, 2019.
[http://dx.doi.org/10.1016/j.gmod.2019.101046]
[25]
H. Jena, and M.K. Jena, "A hybrid non-stationary subdivision scheme based on triangulation", Int. J. Appl. Comput. Math., vol. 7, pp. 1-32, 2021.
[http://dx.doi.org/10.1007/s40819-021-01114-2]
[26]
A. Levin, "Polynomial generation and quasi-interpolation in stationary non-uniform subdivision", Comput. Aided Geom. Des., vol. 20, pp. 41-60, 2003.
[http://dx.doi.org/10.1016/S0167-8396(03)00006-2]
[27]
C. Beccari, G. Casciola, and L. Romani, "Polynomial-based non-uniform interpolatory subdivision with features control", J. Comput. Appl. Math., vol. 235, pp. 4754-4769, 2011.
[http://dx.doi.org/10.1016/j.cam.2010.09.014]
[28]
M. Fang, W. Ma, and G. Wang, "A generalized curve subdivision scheme of arbitrary order with a tension parameter", Comput. Aided Geom. Des., vol. 27, pp. 720-733, 2010.
[http://dx.doi.org/10.1016/j.cagd.2010.09.001]
[29]
M. Fang, B. Jeong, and J. Yoon, "A family of non-uniform subdivision schemes with variable parameters for curve design", Appl. Math. Comput., vol. 313, pp. 1-11, 2017.
[http://dx.doi.org/10.1016/j.amc.2017.05.063]
[30]
B. Jeong, H. Yang, and J. Yoon, "A non-uniform corner-cutting subdivision scheme with an improved accuracy", J. Comput. Appl. Math., vol. 391, p. 113446, 2021.
[http://dx.doi.org/10.1016/j.cam.2021.113446]
[31]
C.V. Beccari, G. Casciola, and L. Romani, "Non-uniform non-tensor product local interpolatory subdivision surfaces", Comput. Aided Geom. Des., vol. 30, pp. 357-373, 2013.
[http://dx.doi.org/10.1016/j.cagd.2013.02.002]
[32]
X. Li, and Y. Chang, "Non-uniform interpolatory subdivision surface", Appl. Math. Comput., vol. 324, pp. 239-253, 2018.
[http://dx.doi.org/10.1016/j.amc.2017.11.035]
[33]
C. Conti, and N. Dyn, "Convergence and smoothness of tensor-product of two non-uniform linear subdivision schemes", Comput. Aided Geom. Des., vol. 66, pp. 16-18, 2018.
[http://dx.doi.org/10.1016/j.cagd.2018.08.001]
[34]
M.N. Alam, and X. Li, "Non-uniform doo-sabin subdivision surface via eigen polygon", J. Syst. Sci. Complex., vol. 34, pp. 3-20, 2020.
[http://dx.doi.org/10.1007/s11424-020-9264-z]
[35]
Y. Tian, X. Li, and F. Chen, "Non-uniform subdivision surfaces with sharp features", Comput. Graph. Forum, vol. 39, pp. 232-242, 2020.
[http://dx.doi.org/10.1111/cgf.14014]
[36]
R. MacCracken, and K.I. Joy, "Free-form deformations with lattices of arbitrary topology", In IEEE Computer graphics and interactive techniques, vol. 9, no. 8, pp. 181-188, 1996.
[http://dx.doi.org/10.1145/237170.237247]
[37]
K.T. McDonnell, Y.S. Chang, and H. Qin, "Interpolatory, solid subdivision of unstructured hexahedral meshes", Vis. Comput., vol. 20, pp. 418-436, 2004.
[http://dx.doi.org/10.1007/s00371-004-0246-2]
[38]
K.T. Mcdonnell, N. Neophytou, K. Mueller, and H. Qin, "Subdivision volume splatting", Joint Eurographics-ieee Vgtc Symposium on Visualization, vol. 2007, pp. 139-146, 2007.
[39]
H. Lin, S. Jin, H. Liao, and Q. Jian, "Quality guaranteed all-hex mesh generation by a constrained volume iterative fitting algorithm", Comput. Aided Des., vol. 67-68, pp. 107-117, 2015.
[http://dx.doi.org/10.1016/j.cad.2015.05.004]
[40]
D. Burkhart, B. Hamann, and G. Umlauf, "Isogeometric finite element analysis based on Catmull-Clark: Subdivision solids", Comput. Graph. Forum, vol. 29, pp. 1575-1584, 2010.
[http://dx.doi.org/10.1111/j.1467-8659.2010.01766.x]
[41]
J. Zheng, and Y. Cai, "Interpolation over arbitrary topology meshes using a two-phase subdivision scheme", IEEE Trans. Vis. Comput. Graph., vol. 12, no. 3, pp. 301-310, 2006.
[http://dx.doi.org/10.1109/TVCG.2006.49] [PMID: 16640244]
[42]
X. Li, and J. Zheng, "An alternative method for constructing interpolatory subdivision from approximating subdivision", Comput. Aided Geom. Des., vol. 29, pp. 474-484, 2012.
[http://dx.doi.org/10.1016/j.cagd.2012.03.008]
[43]
Z. Luo, and W. Qi, "On interpolatory subdivision from approximating subdivision scheme", Appl. Math. Comput., vol. 220, pp. 339-349, 2013.
[http://dx.doi.org/10.1016/j.amc.2013.06.025]
[44]
C. Conti, L. Gemignani, and L. Romani, "From approximating to interpolatory non-stationary subdivision schemes with the same generation properties", Adv. Comput. Math., vol. 35, pp. 217-241, 2011.
[http://dx.doi.org/10.1007/s10444-011-9175-6]
[45]
C. Deng, "Interpolating closed triangular meshes by approximation 3 subdivision scheme", J. Comput. Aided Des. Comput. Graph., vol. 22, pp. 312-317, 2010.
[46]
R. Hameed, G. Mustafa, A. Liaqat, D. Baleanu, F. Khan, M. M. Al-Qurashi, and Y. Chu, "A new approach to increase the flexibility of curves and regular surfaces produced by 4-point ternary subdivision scheme", Mathemat. Problems Eng., vol. 2020, pp. 6096545(1)-6096545(17), 2020.
[http://dx.doi.org/10.1155/2020/6096545]
[47]
C. Deng, and X. Yang, "Interpolation over arbitrary topology meshes using Doo-Sabin surfaces", IEEE International Conference on Shape Modeling & Applications. 26-28 June 2009, Beijing, China, IEEE, pp. 52-57.
[http://dx.doi.org/10.1109/SMI.2009.5170163]
[48]
C. Deng, and X. Yang, "A simple method for interpolating meshes of arbitrary topology by Catmull-Clark surfaces", Vis. Comput., vol. 26, pp. 137-146, 2010.
[http://dx.doi.org/10.1007/s00371-009-0393-6]
[49]
L. Lu, "Weighted progressive iteration approximation and convergence analysis", Comput. Aided Geom. Des., vol. 27, pp. 129-137, 2010.
[http://dx.doi.org/10.1016/j.cagd.2009.11.001]
[50]
F.F. Cheng, F.T. Fan, S.H. Lai, C.L. Huang, J.X. Wang, and J.H. Yong, "Loop subdivision surface based progressive interpolation", J. Comput. Sci. Technol., vol. 24, pp. 39-46, 2009.
[http://dx.doi.org/10.1007/s11390-009-9199-2]
[51]
Z. Chen, X. Luo, L. Tan, B. Ye, and J. Chen, "Progressive interpolation based on Catmull-Clark subdivision surfaces", Comput. Graph. Forum, vol. 27, pp. 1823-1827, 2008.
[http://dx.doi.org/10.1111/j.1467-8659.2008.01328.x]
[52]
F.F. Cheng, F. Fan, S. Lai, C. Huang, J. Wang, and J. Yong, "Progressive interpolation using loop subdivision surfaces", In: Proceedings of the 5th Advances in Geometric Modeling and Processing, April 23-25, 2008, Berlin, Heidelberg, IEEE, pp. 526-533.
[http://dx.doi.org/10.1007/978-3-540-79246-8_43]
[53]
F. Fan, F.F. Cheng, and S. Lai, "Subdivision based interpolation with shape control", Comput. Aided Des. Appl., vol. 5, pp. 539-547, 2008.
[http://dx.doi.org/10.3722/cadaps.2008.539-547]
[54]
C. Deng, and W. Ma, "Weighted progressive interpolation of Loop subdivision surfaces", Comput. Aided Des., vol. 44, pp. 424-431, 2012.
[http://dx.doi.org/10.1016/j.cad.2011.12.001]
[55]
L. Zhang, X. She, X. Ge, and J. Tan, "Progressive interpola-tion method of Catmull-Clark subdivision surface with matrix weight", J. Comput. Aided Des. Comput. Graph., vol. 31, pp. 1312-1319, 2019.
[http://dx.doi.org/10.3724/SP.J.1089.2019.17572]
[56]
J. Xie, J. Xua, Z. Dong, G. Xu, C. Deng, B. Mourrain, and Y. J. Zhang, "Interpolatory Catmull-Clark volumetric subdivision over unstructured hexahedral meshes for modeling and simulation applications", Comput. Aided Geometric Des., vol. 80, pp. 101867(1)-101867(16), 2020.
[http://dx.doi.org/10.1016/j.cagd.2020.101867]
[57]
L. Romani, "A circle-preserving Hermite interpolatory subdivision scheme with tension control", Comput. Aided Geom. Des., vol. 27, pp. 36-47, 2010.
[http://dx.doi.org/10.1016/j.cagd.2009.08.006]
[58]
X. Yang, "Surface interpolation of meshes by geometric subdivision", Comput. Aided Des., vol. 37, pp. 497-508, 2005.
[http://dx.doi.org/10.1016/j.cad.2004.10.008]
[59]
X. Yang, "Normal based subdivision scheme for curve design", Comput. Aided Geom. Des., vol. 23, pp. 243-260, 2006.
[http://dx.doi.org/10.1016/j.cagd.2005.10.001]
[60]
H. Zhao, X. Qiu, L. Liang, C. Sun, and B. Zou, "Curvature normal vector driven interpolatory subdivision", In: International Conference on Shape Modeling and Applications, 26-28 June 2009, Beijing, China, pp. 119-125.
[61]
N. Dyn, and K. Hormann, "Geometric conditions for tangent continuity of interpolatory planar subdivision curves", Comput. Aided Geom. Des., vol. 29, pp. 332-347, 2012.
[http://dx.doi.org/10.1016/j.cagd.2012.02.004]
[62]
A. Zhang, and C. Zhang, "Tangent direction controlled subdivision scheme for curve", In: Conference on Environmental Science and Information Application Technology, 17-18 July 2010, Wuhan, China: IEEE, pp. 36-39.
[63]
L. Zhou, Y. Wei, and Y. Yao, "Optimal multi-degree reduction of Bézier curves with geometric costraintss", Comput. Aided Des., vol. 49, pp. 18-27, 2014.
[http://dx.doi.org/10.1016/j.cad.2013.12.004]
[64]
A. Mao, J. Luo, J. Chen, and G. Li, "A new fast normal-based interpolating subdivision scheme by cubic Bézier curves", Vis. Comput., vol. 32, pp. 1085-1095, 2016.
[http://dx.doi.org/10.1007/s00371-015-1175-y]
[65]
C. Deng, and G. Wang, "Incenter subdivision scheme for curve interpolation", Comput. Aided Geom. Des., vol. 27, pp. 48-59, 2010.
[http://dx.doi.org/10.1016/j.cagd.2009.08.007]
[66]
C. Deng, and W. Ma, "Matching admissible Hermite data by a biarc-based subdivision scheme", Comput. Aided Geom. Des., vol. 29, pp. 363-378, 2012.
[http://dx.doi.org/10.1016/j.cagd.2012.03.010]
[67]
V. Hernández-Mederos, J. Estrada-Sarlabous, and I. Ivrissimtzis, "Generalization of the incenter subdivision scheme", Graph. Models, vol. 75, pp. 79-89, 2013.
[http://dx.doi.org/10.1016/j.gmod.2012.12.001]
[68]
C. Deng, and W. Ma, "A biarc based subdivision scheme for space curve interpolation", Comput. Aided Geom. Des., vol. 31, pp. 656-673, 2014.
[http://dx.doi.org/10.1016/j.cagd.2014.07.003]
[69]
C. Deng, H. Meng, and H. Xu, "Interpolating given tangent vectors or curvatures by preprocessed incenter subdivision scheme", Dolomites Res. Notes Approximat., vol. 10, pp. 51-57, 2017.
[70]
M. Bellaihou, and A. Ikemakhen, "Spherical interpolatory geometric subdivision schemes", Comput. Aided Geom. Des., vol. 80, p. 101871, 2020.
[http://dx.doi.org/10.1016/j.cagd.2020.101871]
[71]
E. Lipovetsky, and N. Dyn, "A weighted binary average of point-normal pairs with application to subdivision schemes", Comput. Aided Geom. Des., vol. 48, pp. 36-48, 2016.
[http://dx.doi.org/10.1016/j.cagd.2016.07.004]
[72]
E. Lipovetsky, and N. Dyn, "C1 analysis of some 2D subdivision schemes refining point-normal pairs with the circle average", Comput. Aided Geom. Des., vol. 69, pp. 45-54, 2019.
[http://dx.doi.org/10.1016/j.cagd.2019.01.001]
[73]
E. Lipovetsky, and N. Dyn, "Extending editing capabilities of subdivision schemes by refinement of point-normal pairs", Comput. Aided Des., vol. 126, p. 102865, 2020.
[http://dx.doi.org/10.1016/j.cad.2020.102865]
[74]
Z. Zhang, H. Zheng, J. Zhou, and L. Pan, "A nonlinear generalized subdivision scheme of arbitrary degree with a tension parameter", Adv. Differ. Equ., vol. 2020, p. 655, 2020.
[http://dx.doi.org/10.1186/s13662-020-03118-6]
[75]
Li Cai, H. Zheng, and Z. Lin, "Nonlinear subdivision schemes with free parameters based on circle average", J. Comput. Aided Des. Comput. Graph., vol. 31, pp. 1330-1340, 2019.
[http://dx.doi.org/10.3724/SP.J.1089.2019.17574]
[76]
D. Schillinger, J.A. Evans, A. Reali, M.A. Scott, and T.J.R. Hughes, "Isogeometric collocation: Cost comparison with Galerkin methods and extension to adaptive hierarchical NURBS discretizations", Comput. Methods Appl. Mech. Eng., vol. 267, pp. 170-232, 2013.
[http://dx.doi.org/10.1016/j.cma.2013.07.017]
[77]
H. Speleers, C. Manni, F. Pelosi, and M.L. Sampoli, "Isogeometric analysis with Powell-Sabin splines for advection-diffusion-reaction problems", Comput. Methods Appl. Mech. Eng., vol. 221-222, pp. 132-148, 2012.
[http://dx.doi.org/10.1016/j.cma.2012.02.009]
[78]
N. Jaxon, and X. Qian, "Isogeometric analysis on triangulations", Comput. Aided Des., vol. 46, pp. 45-57, 2014.
[http://dx.doi.org/10.1016/j.cad.2013.08.017]
[79]
Y. Jia, Y. Zhang, G. Xu, X. Zhuang, and T. Rabczuk, "Reproducing kernel triangular B-spline-based FEM for solving PDEs", Comput. Methods Appl. Mech. Eng., vol. 267, pp. 342-358, 2013.
[http://dx.doi.org/10.1016/j.cma.2013.08.019]
[80]
K. Karčiauskas, T. Nguyen, and J. Peters, "Generalizing bicubic splines for modeling and IGA with irregular layout", Comput. Aided Des., vol. 70, pp. 23-35, 2016.
[http://dx.doi.org/10.1016/j.cad.2015.07.014]
[81]
D. Toshniwal, H. Speleers, and T.J.R. Hughes, "Smooth cubic spline spaces on unstructured quadrilateral meshes with particular emphasis on extraordinary points: Geometric design and isogeometric analysis considerations", Comput. Methods Appl. Mech. Eng., vol. 327, pp. 411-458, 2017.
[http://dx.doi.org/10.1016/j.cma.2017.06.008]
[82]
Q. Pan, T. Rabczuk, C. Chen, G. Xu, and K. Pan, "Isogeometric analysis of minimal surfaces on the basis of extended Catmull-Clark subdivision", Comput. Methods Appl. Mech. Eng., vol. 337, pp. 128-149, 2018.
[http://dx.doi.org/10.1016/j.cma.2018.03.040]
[83]
Q. Zhang, M. Sabin, and F. Cirak, "Subdivision surfaces with isogeometric analysis adapted refinement weights", Comput. Aided Des., vol. 102, pp. 104-114, 2018.
[http://dx.doi.org/10.1016/j.cad.2018.04.020]
[84]
Y. Ma, and W. Ma, "A subdivision scheme for unstructured quadrilateral meshes with improved convergence rate for isogeometric analysis", Graph. Models, vol. 106, p. 101043, 2019.
[http://dx.doi.org/10.1016/j.gmod.2019.101043]
[85]
Q. Pan, T. Rabczuk, G. Xu, and C. Chen, "Isogeometric analysis for surface PDEs with extended Loop subdivision", J. Comput. Phys., vol. 398, p. 108892, 2019.
[http://dx.doi.org/10.1016/j.jcp.2019.108892]
[86]
L. Chen, "Acoustic topology optimization of sound absorbing materials directly from subdivision surfaces with isogeometric boundary element methods", Comput. Methods Appl. Mech. Eng., vol. 362, p. 112806, 2020.
[http://dx.doi.org/10.1016/j.cma.2019.112806]
[87]
P.J. Barendrecht, M. Bartoň, and J. Kosinka, "Efficient quadrature rules for subdivision surfaces in isogeometric analysis", Comput. Methods Appl. Mech. Eng., vol. 340, pp. 1-23, 2018.
[http://dx.doi.org/10.1016/j.cma.2018.05.017]
[88]
Q. Pan, G. Xu, and Y. Zhang, "A unified method for hybrid subdivision surface design using geometric partial differential equations", Comput. Aided Des., vol. 46, pp. 110-119, 2014.
[http://dx.doi.org/10.1016/j.cad.2013.08.023]
[89]
Q. Li, W. Zhong, Y. Liu, and Z. Zhang, "A new locking-free hexahedral element with adaptive subdivision for explicit coining simulation", Int. J. Mech. Sci., vol. 128-129, pp. 105-115, 2017.
[http://dx.doi.org/10.1016/j.ijmecsci.2017.04.017]
[90]
A. Riffnaller-Schiefer, U.H. Augsdörfer, and D.W. Fellner, "Physics-based deformation of subdivision surfaces for shared virtual worlds", Comput. Graph., vol. 71, pp. 66-76, 2018.
[http://dx.doi.org/10.1016/j.cag.2017.12.005]
[91]
D.M. Vigneault, A. Pourmorteza, M.L. Thomas, D.A. Bluemke, and J.A. Noble, "SiSSR: Simultaneous subdivision surface registration for the quantification of cardiac function from computed tomography in canines", Med. Image Anal., vol. 46, pp. 215-228, 2018.
[http://dx.doi.org/10.1016/j.media.2018.03.009] [PMID: 29627686]
[92]
S.H. Greshake, and R. Bronsart, "Application of subdivision surfaces in ship hull form modeling", Comput. Aided Des., vol. 100, pp. 79-92, 2018.
[http://dx.doi.org/10.1016/j.cad.2018.03.004]
[93]
J. Zapletal, and J. Bouchala, "Shape optimization and subdivision surface based approach to solving 3D Bernoulli problems", Comput. Math. Appl., vol. 78, pp. 2911-2932, 2019.
[http://dx.doi.org/10.1016/j.camwa.2019.02.015]
[94]
L.L. Chen, Y. Zhang, H. Lian, E. Atroshchenko, C. Ding, and S.P.A. Bordas, "Seamless integration of computer-aided geometric modeling and acoustic simulation: Isogeometric boundary element methods based on Catmull-Clark subdivision surfaces", Adv. Eng. Softw., vol. 149, p. 102879, 2020.
[http://dx.doi.org/10.1016/j.advengsoft.2020.102879]
[95]
A. Badoual, L. Romani, and M. Unser, "Active subdivision surfaces for the semiautomatic segmentation of biomedical volumes", IEEE Trans. Image Process., vol. 30, pp. 5739-5753, 2021.
[http://dx.doi.org/10.1109/TIP.2021.3087947] [PMID: 34129498]
[96]
K. Dmitriev, and P.M. Henry, "Method for watertight evaluation of an approximate Catmull-Clark surface", U.S. Patent 20,110,085,736.
[97]
F.D.G. Fernando, "Subdivision exterior calculus for geometry processing", U.S. Patent 20,170,206,705, 2017.
[98]
M.L. Dan, "Hybrid surface modeling with subdivision surfaces and NURBS surfaces", U.S. Patent 20,200,320,228, 2020.
[99]
P. Stephan, and K.R. Matthias, "Production overall curvature continuous continuous surfaces from subdivision surfaces meshes", U.S. Patent 20,200, 320,785, 2020.
[100]
T. Peters, and X. Wu, "The distance of a subdivision surface to its control polyhedron", J. Approx. Theory, vol. 161, pp. 491-507, 2009.
[http://dx.doi.org/10.1016/j.jat.2008.10.012]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy