Generic placeholder image

Cardiovascular & Hematological Disorders-Drug Targets

Editor-in-Chief

ISSN (Print): 1871-529X
ISSN (Online): 2212-4063

Research Article

Biological and Clinical Implications of TNF-α Promoter and CYP1B1 Gene Variations in Coronary Artery Disease Susceptibility

Author(s): Rashid Mir*, Imadeldin Elfaki, Chandan K. Jha, Jamsheed Javid, Abdullatif T. Babakr, Shaheena Banu, Mohammad M. Mir, Dheeraj Jamwal, Naina Khullar, Khalid J Alzahrani and Sukh M.S. Chahal

Volume 21, Issue 4, 2021

Published on: 28 December, 2021

Page: [266 - 277] Pages: 12

DOI: 10.2174/1871529X22666211221151830

Price: $65

Abstract

Background: Cardiovascular diseases (CVD) are important causes of death worldwide. Atherosclerosis is a chronic inflammatory disorder. It is the major cause of CVD and is manifested by ischemic heart disease or coronary artery disease (CAD). TNF-α is a pro-inflammatory cytokine that regulates immune response and promotes the development of atherosclerosis. Cytochrome p450 1B1 (CYP1B1) is an enzyme involved in the metabolism of endogenous and exogenous substrates.

Objectives: This study aimed at examining the association of TNF-α rs1800629 G>A and CYP1B1 rs1056827 G>T gene polymorphisms with CAD susceptibility in an Indian cohort.

Methods: AS-PCR and direct DNA sequencing were used to examine the association of TNF-α rs1800629 G >A and CYP1B1 rs1056827 G>T gene polymorphism with CAD in an Indian cohort. A total of 100 clinically confirmed cases of CAD and 110 matched apparently healthy controls were genotyped.

Results: Allelic and genotypic frequencies did not deviate from Hardy-Weinberg equilibrium in the controls (p>0.05) for TNF-α G-308A and CYP1B1 rs1056827G>A. There was no significant difference between the TNF-α rs1800629 A>G genotype distribution between cases and controls (P-value >0.05). A significant difference was observed between the CYP1B1 rs1056827 G>T genotype distribution between CAD cases and controls (p<0.0003). Our result indicated that in the codominant model, the GA genotype of the CYP1B1 rs1056827 G>T was associated with CAD with OR= 2.21(1.17 to 4.15), RR=1.38(1.07 to 1.78), and p<0.013. In the dominant model, the (GA+AA) genotype was associated with CAD with OR=2.79(1.54 to 5.05) and p<0.007. The CYP1B1 rs1056827 ‘A’ allele was associated with CAD with OR = 2.30 (1.55 to 3.42) and p< 0.0001. Our results indicated that TNF-α 1800629 gene polymorphism was strongly associated with hypercholesteremia (p<0.0009), HDL (p<0.0001), TGL (p<0.039), hypertension (p<0.0001), and smoking (p<0.0001) in patients with Coronary Artery Disease. Similar correlations of CYP1B1 rs1056827 genotypes were reported with cholesterol (p<0.020), HDL (p<0.002), LDL (p<0.006), hypertension (p<0.03), and smoking (p<0.005).

Conclusion: It was reported that the GA genotype of the CYP1B1 rs1056827 G>T was strongly associated with susceptibility to Coronary Artery Disease with OR= 2.21(1.17 to 4.15)) and p<0.013, and similarly, its A allele was associated with predisposition to CAD with OR = 2.30 (1.55 to 3.42) and p< 0.0001. Our results indicated that TNF-α 1800629 gene polymorphism is not associated with predisposition to Coronary Artery Disease. Nevertheless, these results should be taken with caution and further validated with larger-scale studies before being introduced in the clinical setting.

Keywords: Coronary artery disease (CAD), TNF-α rs1800629 A>G, CYP1B1 rs1056827 G>T, allele-specific PCR, gene polymorphisms, hardy-weinberg equilibrium.

Graphical Abstract

[1]
Roth, G.A.; Johnson, C.; Abajobir, A.; Abd-Allah, F.; Abera, S.F.; Abyu, G.; Ahmed, M.; Aksut, B.; Alam, T.; Alam, K.; Alla, F.; Alvis-Guzman, N.; Amrock, S.; Ansari, H.; Ärnlöv, J.; Asayesh, H.; Atey, T.M.; Avila-Burgos, L.; Awasthi, A.; Banerjee, A.; Barac, A.; Bärnighausen, T.; Barregard, L.; Bedi, N.; Belay Ketema, E.; Bennett, D.; Berhe, G.; Bhutta, Z.; Bitew, S.; Carapetis, J.; Carrero, J.J.; Malta, D.C.; Castañeda-Orjuela, C.A.; Castillo-Rivas, J.; Catalá-López, F.; Choi, J.Y.; Christensen, H.; Cirillo, M.; Cooper, L., Jr; Criqui, M.; Cundiff, D.; Damasceno, A.; Dandona, L.; Dandona, R.; Davletov, K.; Dharmaratne, S.; Dorairaj, P.; Dubey, M.; Ehrenkranz, R.; El Sayed Zaki, M.; Faraon, E.J.A.; Esteghamati, A.; Farid, T.; Farvid, M.; Feigin, V.; Ding, E.L.; Fowkes, G.; Gebrehiwot, T.; Gillum, R.; Gold, A.; Gona, P.; Gupta, R.; Habtewold, T.D.; Hafezi-Nejad, N.; Hailu, T.; Hailu, G.B.; Hankey, G.; Hassen, H.Y.; Abate, K.H.; Havmoeller, R.; Hay, S.I.; Horino, M.; Hotez, P.J.; Jacobsen, K.; James, S.; Javanbakht, M.; Jeemon, P.; John, D.; Jonas, J.; Kalkonde, Y.; Karimkhani, C.; Kasaeian, A.; Khader, Y.; Khan, A.; Khang, Y.H.; Khera, S.; Khoja, A.T.; Khubchandani, J.; Kim, D.; Kolte, D.; Kosen, S.; Krohn, K.J.; Kumar, G.A.; Kwan, G.F.; Lal, D.K.; Larsson, A.; Linn, S.; Lopez, A.; Lotufo, P.A.; El Razek, H.M.A.; Malekzadeh, R.; Mazidi, M.; Meier, T.; Meles, K.G.; Mensah, G.; Meretoja, A.; Mezgebe, H.; Miller, T.; Mirrakhimov, E.; Mohammed, S.; Moran, A.E.; Musa, K.I.; Narula, J.; Neal, B.; Ngalesoni, F.; Nguyen, G.; Obermeyer, C.M.; Owolabi, M.; Patton, G.; Pedro, J.; Qato, D.; Qorbani, M.; Rahimi, K.; Rai, R.K.; Rawaf, S.; Ribeiro, A.; Safiri, S.; Salomon, J.A.; Santos, I.; Santric Milicevic, M.; Sartorius, B.; Schutte, A.; Sepanlou, S.; Shaikh, M.A.; Shin, M.J.; Shishehbor, M.; Shore, H.; Silva, D.A.S.; Sobngwi, E.; Stranges, S.; Swaminathan, S.; Tabarés-Seisdedos, R.; Tadele Atnafu, N.; Tesfay, F.; Thakur, J.S.; Thrift, A.; Topor-Madry, R.; Truelsen, T.; Tyrovolas, S.; Ukwaja, K.N.; Uthman, O.; Vasankari, T.; Vlassov, V.; Vollset, S.E.; Wakayo, T.; Watkins, D.; Weintraub, R.; Werdecker, A.; Westerman, R.; Wiysonge, C.S.; Wolfe, C.; Workicho, A.; Xu, G.; Yano, Y.; Yip, P.; Yonemoto, N.; Younis, M.; Yu, C.; Vos, T.; Naghavi, M.; Murray, C. Global, regional, and national burden of cardiovascular diseases for 10 causes, 1990 to 2015. J. Am. Coll. Cardiol., 2017, 70(1), 1-25.
[http://dx.doi.org/10.1016/j.jacc.2017.04.052] [PMID: 28527533]
[2]
Roth, G.A.; Johnson, C.O.; Abate, K.H.; Abd-Allah, F.; Ahmed, M.; Alam, K.; Alam, T.; Alvis-Guzman, N.; Ansari, H.; Ärnlöv, J.; Atey, T.M.; Awasthi, A.; Awoke, T.; Barac, A.; Bärnighausen, T.; Bedi, N.; Bennett, D.; Bensenor, I.; Biadgilign, S.; Castañeda-Orjuela, C.; Catalá-López, F.; Davletov, K.; Dharmaratne, S.; Ding, E.L.; Dubey, M.; Faraon, E.J.A.; Farid, T.; Farvid, M.S.; Feigin, V.; Fernandes, J.; Frostad, J.; Gebru, A.; Geleijnse, J.M.; Gona, P.N.; Griswold, M.; Hailu, G.B.; Hankey, G.J.; Hassen, H.Y.; Havmoeller, R.; Hay, S.; Heckbert, S.R.; Irvine, C.M.S.; James, S.L.; Jara, D.; Kasaeian, A.; Khan, A.R.; Khera, S.; Khoja, A.T.; Khubchandani, J.; Kim, D.; Kolte, D.; Lal, D.; Larsson, A.; Linn, S.; Lotufo, P.A.; Magdy Abd El Razek, H.; Mazidi, M.; Meier, T.; Mendoza, W.; Mensah, G.A.; Meretoja, A.; Mezgebe, H.B.; Mirrakhimov, E.; Mohammed, S.; Moran, A.E.; Nguyen, G.; Nguyen, M.; Ong, K.L.; Owolabi, M.; Pletcher, M.; Pourmalek, F.; Purcell, C.A.; Qorbani, M.; Rahman, M.; Rai, R.K.; Ram, U.; Reitsma, M.B.; Renzaho, A.M.N.; Rios-Blancas, M.J.; Safiri, S.; Salomon, J.A.; Sartorius, B.; Sepanlou, S.G.; Shaikh, M.A.; Silva, D.; Stranges, S.; Tabarés-Seisdedos, R.; Tadele Atnafu, N.; Thakur, J.S.; Topor-Madry, R.; Truelsen, T.; Tuzcu, E.M.; Tyrovolas, S.; Ukwaja, K.N.; Vasankari, T.; Vlassov, V.; Vollset, S.E.; Wakayo, T.; Weintraub, R.; Wolfe, C.; Workicho, A.; Xu, G.; Yadgir, S.; Yano, Y.; Yip, P.; Yonemoto, N.; Younis, M.; Yu, C.; Zaidi, Z.; Zaki, M.E.S.; Zipkin, B.; Afshin, A.; Gakidou, E.; Lim, S.S.; Mokdad, A.H.; Naghavi, M.; Vos, T.; Murray, C.J.L. The burden of cardiovascular diseases among US states, 1990-2016. JAMA Cardiol., 2018, 3(5), 375-389.
[http://dx.doi.org/10.1001/jamacardio.2018.0385] [PMID: 29641820]
[3]
Prabhakaran, D.; Jeemon, P.; Roy, A. Cardiovascular diseases in India: current epidemiology and future directions. Circulation, 2016, 133(16), 1605-1620.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.114.008729] [PMID: 27142605]
[4]
Frostegård, J. Immunity, atherosclerosis and cardiovascular disease. BMC Med., 2013, 11, 117.
[http://dx.doi.org/10.1186/1741-7015-11-117] [PMID: 23635324]
[5]
Oberoi, R.; Schuett, J.; Schuett, H.; Koch, A.K.; Luchtefeld, M.; Grote, K.; Schieffer, B. Targeting tumor necrosis factor-α with adalimumab: effects on endothelial activation and monocyte adhesion. PLoS One, 2016, 11(7), e0160145.
[http://dx.doi.org/10.1371/journal.pone.0160145] [PMID: 27467817]
[6]
Zhu, Y.; Xian, X.; Wang, Z.; Bi, Y.; Chen, Q.; Han, X.; Tang, D.; Chen, R. Research progress on the relationship between atherosclerosis and inflammation. Biomolecules, 2018, 8(3), E80.
[http://dx.doi.org/10.3390/biom8030080] [PMID: 30142970]
[7]
Fatkhullina, A.R.; Peshkova, I.O.; Koltsova, E.K. The role of cytokines in the development of atherosclerosis. Biochemistry (Mosc.), 2016, 81(11), 1358-1370.
[http://dx.doi.org/10.1134/S0006297916110134] [PMID: 27914461]
[8]
Tousoulis, D.; Oikonomou, E.; Economou, E.K.; Crea, F.; Kaski, J.C. Inflammatory cytokines in atherosclerosis: current therapeutic approaches. Eur. Heart J., 2016, 37(22), 1723-1732.
[http://dx.doi.org/10.1093/eurheartj/ehv759] [PMID: 26843277]
[9]
Zanger, U.M.; Schwab, M. Cytochrome P450 enzymes in drug metabolism: regulation of gene expression, enzyme activities, and impact of genetic variation. Pharmacol. Ther., 2013, 138(1), 103-141.
[http://dx.doi.org/10.1016/j.pharmthera.2012.12.007] [PMID: 23333322]
[10]
Elfaki, I.; Mir, R.; Almutairi, F.M.; Duhier, F.M.A. Cytochrome P450: polymorphisms and roles in cancer, diabetes and atherosclerosis. Asian Pac. J. Cancer Prev., 2018, 19(8), 2057-2070.
[PMID: 30139042]
[11]
Seliskar, M.; Rozman, D. Mammalian cytochromes P450-importance of tissue specificity. Biochim. Biophys. Acta, 2007, 1770(3), 458-466.
[http://dx.doi.org/10.1016/j.bbagen.2006.09.016] [PMID: 17097232]
[12]
Falero-Perez, J.; Song, Y.S.; Sorenson, C.M.; Sheibani, N. CYP1B1: A key regulator of redox homeostasis. Trends Cell Mol. Biol., 2018, 13, 27-45.
[PMID: 30894785]
[13]
Li, F.; Zhu, W.; Gonzalez, F.J. Potential role of CYP1B1 in the development and treatment of metabolic diseases. Pharmacol. Ther., 2017, 178, 18-30.
[http://dx.doi.org/10.1016/j.pharmthera.2017.03.007] [PMID: 28322972]
[14]
Elfaki, I.; Mir, R.; Abu-Duhier, F.M.; Jha, C.K.; Ahmad Al-Alawy, A.I.; Babakr, A.T.; Habib, S.A.E. Analysis of the potential association of drug-metabolizing enzymes CYP2C9*3 and CYP2C19*3 gene variations with type 2 diabetes: a case-control study. Curr. Drug Metab., 2020, 21(14), 1152-1160.
[http://dx.doi.org/10.2174/1389200221999201027200931] [PMID: 33115391]
[15]
Elfaki, I.; Mir, R.; Mir, M.M.; AbuDuhier, F.M.; Babakr, A.T.; Barnawi, J. Potential impact of microRNA gene polymorphisms in the pathogenesis of diabetes and atherosclerotic cardiovascular disease. J. Pers. Med., 2019, 9(4), E51.
[http://dx.doi.org/10.3390/jpm9040051] [PMID: 31775219]
[16]
Mir, R.; Elfaki, I.; Duhier, F.M.A.; Alotaibi, M.A.; AlAlawy, A.I.; Barnawi, J.; Babakr, A.T.; Mir, M.M.; Mirghani, H.; Hamadi, A.; Dabla, P.K. Molecular determination of mirRNA-126 rs4636297, phosphoinositide-3-kinase regulatory subunit 1-gene variability rs7713645, rs706713 (Tyr73Tyr), rs3730089 (Met326Ile) and their association with susceptibility to T2D. J. Pers. Med., 2021, 11(9), 861.
[http://dx.doi.org/10.3390/jpm11090861] [PMID: 34575638]
[17]
Kessler, T.; Schunkert, H. Coronary artery disease genetics enlightened by genome-wide association studies. JACC Basic Transl. Sci., 2021, 6(7), 610-623.
[http://dx.doi.org/10.1016/j.jacbts.2021.04.001] [PMID: 34368511]
[18]
Jha, C.K.; Mir, R.; Elfaki, I.; Javid, J.; Babakr, A.T.; Banu, S.; Chahal, S.M.S. Evaluation of the association of omentin 1 rs2274907 A>T and rs2274908 G>A gene polymorphisms with coronary artery disease in Indian population: a case control study. J. Pers. Med., 2019, 9(2), E30.
[http://dx.doi.org/10.3390/jpm9020030] [PMID: 31174318]
[19]
Elfaki, I.; Mir, R.; Abu-Duhier, F.M.; Khan, R.; Sakran, M. Phosphatidylinositol 3-kinase Glu545Lys and His1047Tyr mutations are not associated with T2D. Curr. Diabetes Rev., 2020, 16(8), 881-888.
[http://dx.doi.org/10.2174/1573399815666191015142201] [PMID: 31749428]
[20]
Jha, C.K.; Mir, R.; Elfaki, I.; Khullar, N.; Rehman, S.; Javid, J.; Banu, S.; Chahal, S.M.S. Potential impact of microRNA-423 gene variability in coronary artery disease. Endocr. Metab. Immune Disord. Drug Targets, 2019, 19(1), 67-74.
[http://dx.doi.org/10.2174/1871530318666181005095724] [PMID: 30289085]
[21]
Elfaki, I.; Mir, R.; Abu-Duhier, F.; Alotaibi, M.; Alalawy, A.; Barnawi, J.; Babakr, A.; Mir, M.; Mirghani, H. Clinical implications of MiR128, angiotensin I converting enzyme and vascular endothelial growth factor gene abnormalities and their association with T2D. Curr. Issues Mol. Biol., 2021, 43, 1859-1875.
[http://dx.doi.org/10.3390/cimb43030130]
[22]
Wei, X.M.; Chen, Y.J.; Wu, L.; Cui, L.J.; Hu, D.W.; Zeng, X.T. Tumor necrosis factor-α G-308A (rs1800629) polymorphism and aggressive periodontitis susceptibility: a meta-analysis of 16 case- control studies. Sci. Rep., 2016, 6, 19099.
[http://dx.doi.org/10.1038/srep19099] [PMID: 26750615]
[23]
Boehme, A.K.; Esenwa, C.; Elkind, M.S. Stroke risk factors, genetics, and prevention. Circ. Res., 2017, 120(3), 472-495.
[http://dx.doi.org/10.1161/CIRCRESAHA.116.308398] [PMID: 28154098]
[24]
Kumari, R.; Kumar, S.; Ahmad, M.K.; Singh, R.; Kant Kumar, S.; Pradhan, A.; Chandra, S.; Kumar, S. Promoter variants of TNF-α rs1800629 and IL-10 rs1800871 are independently associated with the susceptibility of coronary artery disease in north Indian. Cytokine, 2018, 110, 131-136.
[http://dx.doi.org/10.1016/j.cyto.2018.04.035] [PMID: 29734056]
[25]
Zhang, Y.; Cao, Y.; Xin, L.; Gao, N.; Liu, B. Association between rs1800629 polymorphism in tumor necrosis factor-α gene and dilated cardiomyopathy susceptibility: Evidence from case-control studies. Medicine (Baltimore), 2018, 97(50), e13386.
[http://dx.doi.org/10.1097/MD.0000000000013386] [PMID: 30557992]
[26]
Rodríguez-Rodríguez, L.; González-Juanatey, C.; Palomino-Morales, R.; Vázquez-Rodríguez, T.R.; Miranda-Filloy, J.A.; Fernández-Gutiérrez, B.; Llorca, J.; Martin, J.; González-Gay, M.A. TNFA -308 (rs1800629) polymorphism is associated with a higher risk of cardiovascular disease in patients with rheumatoid arthritis. Atherosclerosis, 2011, 216(1), 125-130.
[http://dx.doi.org/10.1016/j.atherosclerosis.2010.10.052] [PMID: 21420089]
[27]
Chu, H.; Yang, J.; Mi, S.; Bhuyan, S.S.; Li, J.; Zhong, L.; Liu, S.; Tao, Z.; Li, J.; Chen, H. Tumor necrosis factor-alpha G-308 A polymorphism and risk of coronary heart disease and myocardial infarction: a case-control study and meta-analysis. J. Cardiovasc. Dis. Res., 2012, 3(2), 84-90.
[http://dx.doi.org/10.4103/0975-3583.95359] [PMID: 22629023]
[28]
Koch, W.; Kastrati, A.; Böttiger, C.; Mehilli, J.; von Beckerath, N.; Schömig, A. Interleukin-10 and tumor necrosis factor gene polymorphisms and risk of coronary artery disease and myocardial infarction. Atherosclerosis, 2001, 159(1), 137-144.
[http://dx.doi.org/10.1016/S0021-9150(01)00467-1] [PMID: 11689215]
[29]
El-Tahan, R.R.; Ghoneim, A.M.; El-Mashad, N. TNF-α gene polymorphisms and expression. Springerplus, 2016, 5(1), 1508.
[http://dx.doi.org/10.1186/s40064-016-3197-y] [PMID: 27652081]
[30]
Kleinbongard, P.; Schulz, R.; Heusch, G. TNFα in myocardial ischemia/reperfusion, remodeling and heart failure. Heart Fail. Rev., 2011, 16(1), 49-69.
[http://dx.doi.org/10.1007/s10741-010-9180-8] [PMID: 20571888]
[31]
Swaroop, J.J.; Rajarajeswari, D.; Naidu, J.N. Association of TNF-α with insulin resistance in type 2 diabetes mellitus. Indian J. Med. Res., 2012, 135, 127-130.
[http://dx.doi.org/10.4103/0971-5916.93435] [PMID: 22382194]
[32]
Golshani, H.; Haghani, K.; Dousti, M.; Bakhtiyari, S. Association of TNF-α 308 G/A polymorphism with type 2 diabetes: a case-control study in the Iranian kurdish ethnic group. Osong Public Health Res. Perspect., 2015, 6(2), 94-99.
[http://dx.doi.org/10.1016/j.phrp.2015.01.003] [PMID: 25938018]
[33]
Patel, R.; Palit, S.P.; Rathwa, N.; Ramachandran, A.V.; Begum, R. Genetic variants of tumor necrosis factor-α and its levels: A correlation with dyslipidemia and type 2 diabetes susceptibility. Clin. Nutr., 2019, 38(3), 1414-1422.
[http://dx.doi.org/10.1016/j.clnu.2018.06.962] [PMID: 29980311]
[34]
Yu, P.J.; Chen, W.G.; Feng, Q.L.; Chen, W.; Jiang, M.J.; Li, Z.Q. Association between CYP1B1 gene polymorphisms and risk factors and susceptibility to laryngeal cancer. Med. Sci. Monit., 2015, 21, 239-245.
[http://dx.doi.org/10.12659/MSM.893084] [PMID: 25619313]
[35]
Rauf, B.; Irum, B.; Kabir, F.; Firasat, S.; Naeem, M.A.; Khan, S.N.; Husnain, T.; Riazuddin, S.; Akram, J.; Riazuddin, S.A. A spectrum of CYP1B1 mutations associated with primary congenital glaucoma in families of Pakistani descent. Hum. Genome Var., 2016, 3, 16021.
[http://dx.doi.org/10.1038/hgv.2016.21] [PMID: 27508083]
[36]
Chang, I.; Fukuhara, S.; Wong, D.K.; Gill, A.; Mitsui, Y.; Majid, S.; Saini, S.; Yamamura, S.; Chiyomaru, T.; Hirata, H.; Ueno, K.; Arora, S.; Shahryari, V.; Deng, G.; Tabatabai, Z.L.; Greene, K.L.; Shin, D.M.; Enokida, H.; Shiina, H.; Nonomura, N.; Dahiya, R.; Tanaka, Y. Cytochrome P450 1B1 polymorphisms and risk of renal cell carcinoma in men. Tumour Biol., 2014, 35(10), 10223-10230.
[http://dx.doi.org/10.1007/s13277-014-2292-3] [PMID: 25027399]
[37]
Elfaki, I.; Almutairi, F.; Mir, R.; Khan, R.; Abu-Duhier, F. Cytochrome P450 CYP1B1*2 gene and its association with T2D in Tabuk population, Northwestern region of Saudi Arabia. Asian J. Pharm. Clin. Res., 2018, 11, 55.
[http://dx.doi.org/10.22159/ajpcr.2018.v11i1.21657]
[38]
Wang, S.Y.; Xing, P.F.; Zhang, C.Y.; Deng, B.Q. Association of CYP2J2 gene polymorphisms with ischemic stroke and stroke subtypes in Chinese population. Medicine (Baltimore), 2017, 96(10), e6266.
[http://dx.doi.org/10.1097/MD.0000000000006266] [PMID: 28272236]
[39]
Larsen, M.C.; Bushkofsky, J.R.; Gorman, T.; Adhami, V.; Mukhtar, H.; Wang, S.; Reeder, S.B.; Sheibani, N.; Jefcoate, C.R. Cytochrome P450 1B1: An unexpected modulator of liver fatty acid homeostasis. Arch. Biochem. Biophys., 2015, 571, 21-39.
[http://dx.doi.org/10.1016/j.abb.2015.02.010] [PMID: 25703193]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy