Generic placeholder image

Current Medical Imaging

Editor-in-Chief

ISSN (Print): 1573-4056
ISSN (Online): 1875-6603

Review Article

Application Progress of Gd-EOB-DTPA-Enhanced MRI T1 Mapping in Hepatic Diffuse Diseases

Author(s): Xing Wen, Xu Feng, Yao Kang and Long Xu*

Volume 18, Issue 12, 2022

Published on: 20 January, 2022

Article ID: e301121198437 Pages: 6

DOI: 10.2174/1573405617666211130153450

Price: $65

Abstract

Background: In recent years, T1 mapping imaging based on Gd-EOB-DTPA-enhanced magnetic resonance imaging (MRI) has resulted in new research and clinical applications in hepatic diseases.

Objective: The objective of the study is to analyze, prospect, and summarize the Gd-EOB-DTPA- enhanced MRI T1 mapping technology in hepatic diseases in recent years.

Main Findings: Gd-EOB-DTPA-enhanced T1 mapping has been used more frequently in liver diseases regardless of 1.5T or 3.0T MRI equipment. Volume interpolated body examination (VIBE) mapping sequence seems to be the recommended MRI scan sequence. In the evaluation of T1 value on liver function, the hepatobiliary phase 10 minutes after enhancement is the recommended time point. The fat fraction and hepatic steatosis grade based on MRI-derived biomarkers are easier to implement and popularize than a liver biopsy. Gd-EOB-DTPA-enhanced MRI T1 mapping can not only be used to evaluate the degree of liver injury, the stage of liver fibrosis, and the liver reserve function of patients with liver cirrhosis but also to distinguish focal liver lesions and predict the differentiation degree of hepatocellular carcinoma. At the same time, it has some value in predicting tumor immunohistochemical indexes, such as Ki67, CD34.

Conclusion: Gd-EOB-DTPA-enhanced MRI T1 mapping has great potential in the application of diffuse and focal liver lesions. It is a quantitative study, trying to select homogeneous research objects and try to use the same standards in scanning sequence and scanning time, especially for the study of liver function, which is a focus of future research. The research on the relationship between T1 value and tumor immunohistochemical indexes is worth consideration.

Keywords: Gd-EOB-DTPA, T1 mapping, magnetic resonance imaging, liver fibrosis, liver function, liver cirrhosis.

[1]
Tajima H, Ohta T, Miyashita T, et al. Oxaliplatin-based chemotherapy induces extravasated platelet aggregation in the liver. Mol Clin Oncol 2015; 3(3): 555-8.
[http://dx.doi.org/10.3892/mco.2015.512] [PMID: 26137266]
[2]
Verloh N, Haimerl M, Zeman F, et al. Assessing liver function by liver enhancement during the hepatobiliary phase with Gd-EOB-DTPA-enhanced MRI at 3 Tesla. Eur Radiol 2014; 24(5): 1013-9.
[http://dx.doi.org/10.1007/s00330-014-3108-y] [PMID: 24531844]
[3]
Kim S, Shin J. Radiomics on Gadoxetic acid-enhanced magnetic resonance imaging for prediction of postoperative early and late recurrence of single hepatocellular carcinoma. Clin Cancer Res 2019; 25(13): 3847-55.
[http://dx.doi.org/10.1158/1078-0432.CCR-18-2861]
[4]
Getzin T, Gueler F, Hartleben B, et al. Gd-EOB-DTPA-enhanced MRI for quantitative assessment of liver organ damage after partial hepatic ischaemia reperfusion injury: Correlation with histology and serum biomarkers of liver cell injury. Eur Radiol 2018; 28(10): 4455-64.
[http://dx.doi.org/10.1007/s00330-018-5380-8] [PMID: 29713782]
[5]
Kim AY, Sinn DH, Jeong WK, et al. Hepatobiliary MRI as novel selection criteria in liver transplantation for hepatocellular carcinoma. J Hepatol 2018; 68(6): 1144-52.
[http://dx.doi.org/10.1016/j.jhep.2018.01.024] [PMID: 29410377]
[6]
Zhu WS, Shi SY, Yang ZH, Song C, Shen J. Radiomics model based on preoperative gadoxetic acid-enhanced MRI for predicting liver failure. World J Gastroenterol 2020; 26(11): 1208-20.
[http://dx.doi.org/10.3748/wjg.v26.i11.1208] [PMID: 32231424]
[7]
Kim JE, Kim HO. T1 mapping for liver function evaluation in gadoxetic acid-enhanced MR imaging: comparison of look-locker inversion recovery and B(1) inhomogeneity-corrected variable flip angle method. Eur Radiol 2019; 29(7): 3584-94.
[8]
Luetkens JA, Klein S, Träber F, et al. Quantification of liver fibrosis at T1 and T2 Mapping with extracellular volume fraction MRI: Preclinical results. Radiology 2018; 288(3): 748-54.
[http://dx.doi.org/10.1148/radiol.2018180051] [PMID: 29944086]
[9]
Yoshimura N, Saito K, Saguchi T, et al. Distinguishing hepatic hemangiomas from metastatic tumors using T1 mapping on gadoxetic-acid-enhanced MRI. Magn Reson Imaging 2013; 31(1): 23-7.
[http://dx.doi.org/10.1016/j.mri.2012.06.026] [PMID: 22884242]
[10]
Zhou ZP, Long LL, Qiu WJ, et al. Evaluating segmental liver function using T1 mapping on Gd-EOB-DTPA-enhanced MRI with a 3.0 Tesla. BMC Med Imaging 2017; 17(1): 20.
[http://dx.doi.org/10.1186/s12880-017-0192-x] [PMID: 28249571]
[11]
Haimerl M, Utpatel K, Verloh N, et al. Gd-EOB-DTPA-enhanced MR relaxometry for the detection and staging of liver fibrosis. Sci Rep 2017; 7: 41429.
[http://dx.doi.org/10.1038/srep41429] [PMID: 28128291]
[12]
Haimerl M, Verloh N, Zeman F, et al. Gd-EOB-DTPA-enhanced MRI for evaluation of liver function: Comparison between signal-intensity-based indices and T1 relaxometry. Sci Rep 2017; 7: 43347.
[http://dx.doi.org/10.1038/srep43347] [PMID: 28266528]
[13]
Dong Z, Feng YQ, Wang M, et al. Quantitative Gd-EOB-DTPA concentration using T1 mapping and to explore the best scanning sequence. J Sun Yat sen Univ 2020; 41(06): 867-74.
[14]
Younossi ZM, Koenig AB, Abdelatif D, Fazel Y, Henry L, Wymer M. Global epidemiology of nonalcoholic fatty liver disease-meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology 2016; 64(1): 73-84.
[http://dx.doi.org/10.1002/hep.28431] [PMID: 26707365]
[15]
Fan JG, Kim SU, Wong VW. New trends on obesity and NAFLD in Asia. J Hepatol 2017; 67(4): 862-73.
[http://dx.doi.org/10.1016/j.jhep.2017.06.003] [PMID: 28642059]
[16]
Ahn JH, Yu JS, Park KS, et al. Effect of hepatic steatosis on native T1 mapping of 3T magnetic resonance imaging in the assessment of T1 values for patients with non-alcoholic fatty liver disease. Magn Reson Imaging 2021; 80: 1-8.
[http://dx.doi.org/10.1016/j.mri.2021.03.015] [PMID: 33798658]
[17]
Kim JW, Lee YS. Multiparametric MR index for the diagnosis of non-alcoholic steatohepatitis in patients with non-alcoholic fatty liver disease. Sci Rep 2020; 10(1): 2671.
[http://dx.doi.org/10.1038/s41598-020-59601-3]
[18]
Dennis A, Kelly MD, Fernandes C, et al. Correlations between MRI biomarkers PDFF and cT1 with histopathological features of non-alcoholic steatohepatitis. Front Endocrinol 2020; 11: 575843.
[19]
Ding Y, Rao SX, Chen C, Li R, Zeng MS. Potential of Gd-EOB-DTPA-enhanced MR imaging for evaluation of bile duct ligation-induced liver injury in rabbits. Hepatol Int 2015; 9(2): 303-9.
[http://dx.doi.org/10.1007/s12072-014-9595-8] [PMID: 25788184]
[20]
Hinrichs H, Hinrichs JB, Gutberlet M, et al. Functional gadoxetate disodium-enhanced MRI in patients with Primary Sclerosing Cholangitis (PSC). Eur Radiol 2016; 26(4): 1116-24.
[http://dx.doi.org/10.1007/s00330-015-3913-y] [PMID: 26205638]
[21]
Woolbright BL, Jaeschke H. Novel insight into mechanisms of cholestatic liver injury. World J Gastroenterol 2012; 18(36): 4985-93.
[http://dx.doi.org/10.3748/wjg.v18.i36.4985] [PMID: 23049206]
[22]
Tacke F, Trautwein C. Mechanisms of liver fibrosis resolution. J Hepatol 2015; 63(4): 1038-9.
[http://dx.doi.org/10.1016/j.jhep.2015.03.039] [PMID: 26232376]
[23]
Seki E, Brenner DA. Recent advancement of molecular mechanisms of liver fibrosis. J Hepatobiliary Pancreat Sci 2015; 22(7): 512-8.
[http://dx.doi.org/10.1002/jhbp.245] [PMID: 25869468]
[24]
Lu Y, Wang Q, Zhang T, et al. Staging liver fibrosis: Comparison of native T1 Mapping, T2 Mapping, and T1ρ: an experimental study in rats with bile duct ligation and carbon tetrachloride at 11.7 T MRI. J Magn Reson Imaging 2021.
[http://dx.doi.org/10.1002/jmri.27822]
[25]
Breit HC, Block KT, Winkel DJ, et al. Evaluation of liver fibrosis and cirrhosis on the basis of quantitative T1 mapping: Are acute inflammation, age and liver volume confounding factors? Eur J Radiol 2021; 141: 109789.
[http://dx.doi.org/10.1016/j.ejrad.2021.109789] [PMID: 34051684]
[26]
Ding Y, Rao S, Yang L, Chen C, Zeng M. Comparison of the effect of region-of-interest methods using gadoxetic acid-enhanced MR imaging with diffusion-weighted imaging on staging hepatic fibrosis. Radiol Med (Torino) 2016; 121(11): 821-7.
[http://dx.doi.org/10.1007/s11547-016-0669-7] [PMID: 27449761]
[27]
Yang L, Ding Y, Rao S, et al. Staging liver fibrosis in chronic hepatitis B with T(1) relaxation time index on gadoxetic acid-enhanced MRI: Comparison with aspartate aminotransferase-to- platelet ratio index and FIB-4. J Magn Reson Imaging 2017; 45(4): 1186-94.
[http://dx.doi.org/10.1002/jmri.25440] [PMID: 27563840]
[28]
Li J, Cao B, Bi X, et al. Evaluation of liver function in patients with chronic hepatitis B using Gd-EOB-DTPA-enhanced T1 mapping at different acquisition time points: A feasibility study. Radiol Med (Torino) 2021; 126(9): 1149-58.
[http://dx.doi.org/10.1007/s11547-021-01382-4] [PMID: 34105102]
[29]
Zhou ZP, Long LL, Qiu WJ, et al. Comparison of 10- and 20-min hepatobiliary phase images on Gd-EOB-DTPA-enhanced MRI T1 mapping for liver function assessment in clinic. Abdom Radiol (NY) 2017; 42(9): 2272-8.
[http://dx.doi.org/10.1007/s00261-017-1143-2] [PMID: 28396918]
[30]
Pan S, Wang XQ, Guo QY. Quantitative assessment of hepatic fibrosis in chronic hepatitis B and C: T1 mapping on Gd-EOB-DTPA-enhanced liver magnetic resonance imaging. World J Gastroenterol 2018; 24(18): 2024-35.
[http://dx.doi.org/10.3748/wjg.v24.i18.2024] [PMID: 29760545]
[31]
D’Errico A, Grigioni WF, Fiorentino M, Baccarini P, Grazi GL, Mancini AM. Overexpression of p53 protein and Ki67 proliferative index in hepatocellular carcinoma: An immunohistochemical study on 109 Italian patients. Pathol Int 1994; 44(9): 682-7.
[http://dx.doi.org/10.1111/j.1440-1827.1994.tb02947.x] [PMID: 7804430]
[32]
Chen Y, Qin X, Long L, et al. Diagnostic value of Gd-EOB-DTPA-enhanced MRI for the expression of Ki67 and microvascular density in hepatocellular carcinoma. J Magn Reson Imaging 2020; 51(6): 1755-63.
[http://dx.doi.org/10.1002/jmri.26974] [PMID: 31675163]
[33]
Mio M, Fujiwara Y, Tani K, Toyofuku T, Maeda T, Inoue T. Quantitative evaluation of focal liver lesions with T1 mapping using a phase-sensitive inversion recovery sequence on gadoxetic acid-enhanced MRI. Eur J Radiol Open 2020; 8: 100312.
[http://dx.doi.org/10.1016/j.ejro.2020.100312] [PMID: 33392362]
[34]
Peng Z, Li C, Chan T, et al. Quantitative evaluation of Gd-EOB-DTPA uptake in focal liver lesions by using T1 mapping: Differences between hepatocellular carcinoma, hepatic focal nodular hyperplasia and cavernous hemangioma. Oncotarget 2017; 8(39): 65435-44.
[http://dx.doi.org/10.18632/oncotarget.18918] [PMID: 29029443]
[35]
Peng Z, Jiang M, Cai H, et al. Gd-EOB-DTPA-enhanced magnetic resonance imaging combined with T1 mapping predicts the degree of differentiation in hepatocellular carcinoma. BMC Cancer 2016; 16: 625.
[http://dx.doi.org/10.1186/s12885-016-2607-4] [PMID: 27520833]
[36]
Chen CY, Chen J, Xia CC, Huang ZX, Song B. T1 mapping combined with Gd-EOB-DTPA-enhanced magnetic resonance imaging in predicting the pathologic grading of hepatocellular carcinoma. J Biol Regul Homeost Agents 2017; 31(4): 1029-36.
[PMID: 29254310]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy