Generic placeholder image

Venoms and Toxins

Editor-in-Chief

ISSN (Print): 2666-1217
ISSN (Online): 2666-1225

Mini-Review Article

Toxins and Venoms from Marine Cnidarians and Gastropods: Diversity and Potential Drugs Targeting the Ion Channels

Author(s): Sofiene Tlili*, Raoua Ben Brahim, Jean-Marc Sabatier and Imed Regaya

Volume 2, Issue 1, 2022

Published on: 24 February, 2022

Article ID: e241121198289 Pages: 7

DOI: 10.2174/2666121701666211124154216

Price: $65

Abstract

A diversity of marine invertebrates, such as cnidarians are rich sources of large bio-active molecules. This chemo-diversity of bio-active compounds has a promising potential in several biotechnological and therapeutic applications. On the basis of a comparative bibliographic approach, we intend in this review to present and discuss an overview of: i) the diversity of marine invertebrates as a candidate for bio-active molecules production; ii) the diversity of bio-active compounds and venom derived from these organisms; iii) the relationship between, the diversity of these marine organisms and the structure of the toxins they secrete. In this bibliographic study, a focus is going to be made on protein neurotoxins targeting ion channels. We also discuss the potential link between the bioecological characteristics of cnidarians and the diversity of toxins.

Keywords: Cnidarians, marine gastropods, diversity, venoms, toxins, ion channels.

[1]
Malakoff D. Extinction on the High Seas. Science (80-) 1997; 277: 5325.
[http://dx.doi.org/10.1126/science.277.5325.486]
[2]
Boeuf G. Marine biodiversity characteristics. CR Biol 2011; 334(5-6): 435-40.
[http://dx.doi.org/10.1016/j.crvi.2011.02.009] [PMID: 21640952]
[3]
Khalifa SAM, Elias N, Farag M. Marine natural products: A source of novel anticancer drugs. Mar Drugs 2019; 17(9): 491.
[http://dx.doi.org/10.3390/md17090491]
[4]
Newman DJ, Cragg GM. Drugs and drug candidates from marine sources: An assessment of the current “State of Play”. Planta Med 2016; 82(9-10): 775-89.
[http://dx.doi.org/10.1055/s-0042-101353] [PMID: 26891002]
[5]
Hanson E, House MR. The origin of major invertebrate groups. Syst Zool 1981; 30: 100-4.
[http://dx.doi.org/10.2307/2992311]
[6]
Turk T, Kem WR. The phylum Cnidaria and investigations of its toxins and venoms until 1990. Toxicon 2009; 54(8): 1031-7.
[http://dx.doi.org/10.1016/j.toxicon.2009.06.031] [PMID: 19576920]
[8]
FAO. The living marine resources of the Western Central Pacific. In: Carpenter, K.E.; Niem, V.H., Eds.; Seaweeds, corals, bivalves and gastropods; Rome, 1998; pp. 1-686.
[9]
Geiger D. Marine gasteropoda. In: Sturm CF, Pearce TA, Valdes A, Eds. The mollusks: a guide to their study, collection, and preservation. American malacological society 2006; pp. 295-311.
[10]
Nybakken JW. Marine biology, an ecological approach. 5th ed. San Francisco 2001.
[12]
Liao Q, Feng Y, Yang B, Lee SMY. Cnidarian peptide neurotoxins: A new source of various ion channel modulators or blockers against central nervous systems disease. Drug Discov Today 2019; 24(1): 189-97.
[http://dx.doi.org/10.1016/j.drudis.2018.08.011] [PMID: 30165198]
[13]
Sun Z, Bao J, Zhangsun M, Dong S, Zhangsun D, Luo S. AO- conotoxin GexIVa inhibits the growth of breast cancer cells via interaction with α9 nicotine acetylcholine receptors. Mar Drugs 2020; 18(4): E195.
[http://dx.doi.org/10.3390/md18040195] [PMID: 32272701]
[14]
Schroeder CI, Lewis RJ. ω-conotoxins GVIA, MVIIA and CVID: SAR and clinical potential. Mar Drugs 2006; 4(3): 193-214.
[http://dx.doi.org/10.3390/md403193]
[15]
Jouiaei M, Casewell NR, Yanagihara AA, et al. Firing the sting: chemically induced discharge of cnidae reveals novel proteins and peptides from box jellyfish (Chironex fleckeri) venom. Toxins (Base l) 2015; 7(3): 936-50.
[http://dx.doi.org/10.3390/toxins7030936]
[16]
Vianna Braga MC, Konno K, Portaro FC, et al. Mass spectrometric and high performance liquid chromatography profiling of the venom of the Brazilian vermivorous mollusk Conus regius: feeding behavior and identification of one novel conotoxin. Toxicon 2005; 45(1): 113-22.
[http://dx.doi.org/10.1016/j.toxicon.2004.09.018] [PMID: 15581690]
[17]
Favreau P, Stöcklin R. Marine snail venoms: Use and trends in receptor and channel neuropharmacology. Curr Opin Pharmacol 2009; 9(5): 594-601.
[http://dx.doi.org/10.1016/j.coph.2009.05.006] [PMID: 19540804]
[18]
Reimers C, Lee CH, Kalbacher H, et al. Identification of a cono-RFamide from the venom of Conus textile that targets ASIC3 and enhances muscle pain. Proc Natl Acad Sci USA 2017; 114(17): E3507-15.
[http://dx.doi.org/10.1073/pnas.1616232114] [PMID: 28396446]
[19]
Jaimes-Becerra A, Gacesa R, Doonan LB, et al. “Beyond Primary Sequence”-proteomic data reveal complex toxins in cnidarian venoms. Integr Comp Biol 2019; 59(4): 777-85.
[http://dx.doi.org/10.1093/icb/icz106] [PMID: 31225595]
[20]
D’Ambra I, Lauritano C. A Review of toxins from cnidaria. Mar Drugs 2020; 18(10): E507.
[http://dx.doi.org/10.3390/md18100507] [PMID: 33036158]
[21]
Finol-Urdaneta RK, Belovanovic A, Micic-Vicovac M, Kinsella GK, McArthur JR, Al-Sabi A. Marine toxins targeting KV1 channels: Pharmacological tools and therapeutic scaffolds. Mar Drugs 2020; 18(3): E173.
[http://dx.doi.org/10.3390/md18030173] [PMID: 32245015]
[22]
Madio B, King GF, Undheim EAB. Sea anemone toxins: A structural overview. Mar Drugs 2019; 17(6): 325.
[http://dx.doi.org/10.3390/md17060325] [PMID: 31159357]
[23]
Mariottini GL, Pane L. Cytotoxic and cytolytic cnidarian venoms. A review on health implications and possible therapeutic applications. Toxins (Basel) 2013; 6(1): 108-51.
[http://dx.doi.org/10.3390/toxins6010108] [PMID: 24379089]
[24]
Monroy-Estrada HI, Chirino YI, Soria-Mercado IE, Sánchez-Rodríguez J. Toxins from the Caribbean sea anemone Bunodeopsis globulifera increase cisplatin-induced cytotoxicity of lung adenocarcinoma cells. J Venom Anim Toxins Incl Trop Dis 2013; 19(1): 12.
[http://dx.doi.org/10.1186/1678-9199-19-12] [PMID: 24499018]
[25]
Gao B, Peng C, Yang J, Yi Y, Zhang J, Shi Q. Cone snails: A big store of conotoxins for novel drug discovery. Toxins (Basel) 2017; 9(12): E397.
[http://dx.doi.org/10.3390/toxins9120397] [PMID: 29215605]
[26]
Available from: www.york.ac.uk
[27]
Robinson SD, Norton RS. Conotoxin gene superfamilies. Mar Drugs 2014; 12(12): 6058-101.
[http://dx.doi.org/10.3390/md12126058] [PMID: 25522317]
[28]
Lewis RJ. Conotoxins as selective inhibitors of neuronal ion channels, receptors and transporters. IUBMB Life 2004; 56(2): 89-93.
[http://dx.doi.org/10.1080/15216540410001668055] [PMID: 15085932]
[29]
Daly NL, Craik DJ. Structural studies of conotoxins. IUBMB Life 2009; 61(2): 144-50.
[http://dx.doi.org/10.1002/iub.158] [PMID: 19165896]
[30]
Braud S, Belin P, Dassa J, et al. BgK, a disulfide-containing sea anemone toxin blocking K+ channels, can be produced in Escherichia coli cytoplasm as a functional tagged protein. Protein Expr Purif 2004; 38(1): 69-78.
[http://dx.doi.org/10.1016/j.pep.2004.07.011] [PMID: 15477084]
[31]
Alessandri-Haber N, Paillart C, Arsac C, Gola M, Couraud F, Crest M. Specific distribution of sodium channels in axons of rat embryo spinal motoneurones. J Physiol 1999; 518(Pt 1): 203-14.
[http://dx.doi.org/10.1111/j.1469-7793.1999.0203r.x] [PMID: 10373702]
[32]
Rauer H, Pennington M, Cahalan M, Chandy KG. Structural conservation of the pores of calcium-activated and voltage-gated potassium channels determined by a sea anemone toxin. J Biol Chem 1999; 274(31): 21885-92.
[http://dx.doi.org/10.1074/jbc.274.31.21885] [PMID: 10419508]
[33]
Moreels L, Peigneur S, Galan DT, et al. APETx4, a novel sea anemone toxin and a modulator of the cancer-relevant Potassium channel Kv10.1. Mar Drugs 2017; 15(9): 287.
[http://dx.doi.org/10.3390/md15090287] [PMID: 28902151]
[34]
Orts B. D. J; Peigneur, S; Silva-Gonçalves, L.C; Arcisio-Miranda, M; J. E; Bicudo, J.E; Tytgat, J.AbeTx1 is a novel sea anemone toxin with a dual mechanism of action on shaker-type K+ channels activation. Mar Drugs 2018; 16(10): 360.
[http://dx.doi.org/10.3390/md16100360]
[35]
Salceda E, López O, Zaharenko AJ, Garateix A, Soto E. The sea anemone Bunodosoma caissarum toxin BcIII modulates the sodium current kinetics of rat dorsal root ganglia neurons and is displaced in a voltage-dependent manner. Peptides 2010; 31(3): 412-8.
[http://dx.doi.org/10.1016/j.peptides.2009.12.005] [PMID: 20015459]
[36]
Diochot S, Baron A, Rash LD, et al. A new sea anemone peptide, APETx2, inhibits ASIC3, a major acid-sensitive channel in sensory neurons. EMBO J 2004; 23(7): 1516-25.
[http://dx.doi.org/10.1038/sj.emboj.7600177] [PMID: 15044953]
[37]
Himaya SW, Jin AH, Dutertre S, et al. Comparative venomics reveals the complex prey capture strategy of the piscivorous cone snail Conus catus. J Proteome Res 2015; 14(10): 4372-781.
[http://dx.doi.org/10.1021/acs.jproteome.5b00630]
[38]
Olivera BM, Seger J, Horvath MP, Fedosov AE. Prey-capture strategies of fish-hunting cone snails: Behavior, neurobiology and evolution. Brain Behav Evol 2015; 86(1): 58-74.
[http://dx.doi.org/10.1159/000438449] [PMID: 26397110]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy