Generic placeholder image

Pharmaceutical Nanotechnology

Editor-in-Chief

ISSN (Print): 2211-7385
ISSN (Online): 2211-7393

Research Article

Purification of Drug Loaded Liposomal Formulations by a Novel Stirred Cell Ultrafiltration Technique

Author(s): Prakash K. Soni and Tulsi R. Saini*

Volume 9, Issue 5, 2021

Published on: 27 December, 2021

Page: [347 - 360] Pages: 14

DOI: 10.2174/2211738509666211124145848

Price: $65

Abstract

Background: Presently reported methods for purification of liposomal formulations at laboratory scale have drawbacks of adversely affecting critical quality attributes (CQAs) of liposomes such as particle size, PDI, drug entrapment efficiency, etc., and are also not amenable for large scale processing.

Objective: The present study was aimed to explore stirred cell ultrafiltration technique as a novel liposome purification method for removal of unentrapped free drug and excess external aqueous fluid, maintaining the physical integrity of liposomes.

Methods: Purification of brimonidine loaded liposomes (model formulation) was performed by stirred cell ultrafiltration method, and its functional performance and impact on liposomal particle size, PDI, and entrapment efficiency were compared with two widely used laboratory scale methods, i.e., ultracentrifugation and centrifugal ultrafiltration.

Results: The novel stirred cell ultrafiltration method demonstrated liposomal purification within ~30 min with complete liposomal recovery showing minimal processing impact, i.e., ˂0.25 fold rise in particle size, ~0.5 fold rise in PDI, and ~4% loss in % entrapment efficiency, respectively. Whereas ultracentrifugation and centrifugal ultrafiltration methods resulted in ~4 fold and ˃2 fold rise in particle size, ˃10 fold and ˃5 fold rise in PDI, and ˃25% and ~6% loss in entrapment efficiency, respectively.

Conclusion: The unique and product-friendly operational features of stirred cell ultrafiltration method demonstrated simple, rapid, and efficient liposomal purification without affecting CQAs of liposomal vesicles. This method was also evidently found to be product-friendly, rugged, versatile, and scalable up to large production batch processing, overcoming major drawbacks of presently used methods.

Keywords: Liposome, stirred cell ultrafiltration, purification of liposomes, free drug removal, drug entrapment efficiency, Liposomes, LUV.

Graphical Abstract

[1]
Bangham AD, Standish MM, Watkins JC. Diffusion of univalent ions across the lamellae of swollen phospholipids. J Mol Biol 1965; 13(1): 238-52.
[http://dx.doi.org/10.1016/S0022-2836(65)80093-6] [PMID: 5859039]
[2]
Gregoriadis G, Florence AT. Liposomes in drug delivery. Clinical, diagnostic and ophthalmic potential. Drugs 1993; 45(1): 15-28.
[http://dx.doi.org/10.2165/00003495-199345010-00003] [PMID: 7680982]
[3]
Gregoriadis G, Perrie Y. Liposomes. Encyclopedia of Life Sciences (ELS). Hoboken, New Jersey: John Wiley & Sons, Ltd 2010.
[http://dx.doi.org/10.1002/9780470015902.a0002656.pub2]
[4]
Mozafari MR. Liposomes: an overview of manufacturing techniques. Cell Mol Biol Lett 2005; 10(4): 711-9.
[PMID: 16341279]
[5]
Mokhtar Ibrahim M, Tawfique SA, Mahdy MM. Liposomal diltiazem HCl as ocular drug delivery system for glaucoma. Drug Dev Ind Pharm 2014; 40(6): 765-73.
[http://dx.doi.org/10.3109/03639045.2013.783589] [PMID: 23570512]
[6]
Fayolle D, Fiore M, Stano P, Strazewski P. Rapid purification of giant lipid vesicles by microfiltration. PLoS One 2018; 13(2): e0192975.
[http://dx.doi.org/10.1371/journal.pone.0192975] [PMID: 29451909]
[7]
Wagner A, Vorauer-Uhl K, Katinger H. Liposomes produced in a pilot scale: production, purification and efficiency aspects. Eur J Pharm Biopharm 2002; 54(2): 213-9.
[http://dx.doi.org/10.1016/S0939-6411(02)00062-0] [PMID: 12191694]
[8]
Agarwal R, Iezhitsa I, Agarwal P, et al. Liposomes in topical ophthalmic drug delivery: an update. Drug Deliv 2016; 23(4): 1075-91.
[http://dx.doi.org/10.3109/10717544.2014.943336] [PMID: 25116511]
[9]
Souto EB, Dias-Ferreira J, López-Machado A, et al. Advanced formulation approaches for ocular drug delivery: state-of-the-art and recent patents. Pharmaceutics 2019; 11(9): E460.
[http://dx.doi.org/10.3390/pharmaceutics11090460] [PMID: 31500106]
[10]
Li M, Du C, Guo N, et al. Composition design and medical application of liposomes. Eur J Med Chem 2019; 164: 640-53.
[http://dx.doi.org/10.1016/j.ejmech.2019.01.007] [PMID: 30640028]
[11]
Abu Lila AS, Ishida T. Liposomal delivery systems: design optimization and current applications. Biol Pharm Bull 2017; 40(1): 1-10.
[http://dx.doi.org/10.1248/bpb.b16-00624] [PMID: 28049940]
[12]
Eloy JO, Claro de Souza M, Petrilli R, Barcellos JP, Lee RJ, Marchetti JM. Liposomes as carriers of hydrophilic small molecule drugs: strategies to enhance encapsulation and delivery. Colloids Surf B Biointerfaces 2014; 123: 345-63.
[http://dx.doi.org/10.1016/j.colsurfb.2014.09.029] [PMID: 25280609]
[13]
Zylberberg C, Matosevic S. Pharmaceutical liposomal drug delivery: a review of new delivery systems and a look at the regulatory landscape. Drug Deliv 2016; 23(9): 3319-29.
[http://dx.doi.org/10.1080/10717544.2016.1177136] [PMID: 27145899]
[14]
Gan L, Wang J, Jiang M, et al. Recent advances in topical ophthalmic drug delivery with lipid-based nanocarriers. Drug Discov Today 2013; 18(5-6): 290-7.
[http://dx.doi.org/10.1016/j.drudis.2012.10.005] [PMID: 23092895]
[15]
Bhattacharjee A, Das PJ, Adhikari P, et al. Novel drug delivery systems for ocular therapy: with special reference to liposomal ocular delivery. Eur J Ophthalmol 2019; 29(1): 113-26.
[http://dx.doi.org/10.1177/1120672118769776] [PMID: 29756507]
[16]
Bulbake U, Doppalapudi S, Kommineni N, Khan W. Liposomal formulations in clinical use: an updated review. Pharmaceutics 2017; 9(2): 12.
[http://dx.doi.org/10.3390/pharmaceutics9020012] [PMID: 28346375]
[17]
Allen TM, Cullis PR. Liposomal drug delivery systems: from concept to clinical applications. Adv Drug Deliv Rev 2013; 65(1): 36-48.
[http://dx.doi.org/10.1016/j.addr.2012.09.037] [PMID: 23036225]
[18]
Mishra GP, Bagui M, Tamboli V, Mitra AK. Recent applications of liposomes in ophthalmic drug delivery. J Drug Deliv 2011; 2011: 863734.
[http://dx.doi.org/10.1155/2011/863734] [PMID: 21490757]
[19]
Vemuri S, Rhodes CT. Preparation and characterization of liposomes as therapeutic delivery systems: a review. Pharm Acta Helv 1995; 70(2): 95-111.
[http://dx.doi.org/10.1016/0031-6865(95)00010-7] [PMID: 7651973]
[20]
Chatterjee S, Banerjee DK. Preparation, isolation, and characterization of liposomes containing natural and synthetic lipids. In: Basu SC, Basu M, Eds. Liposom methods and protocols. Methods in molecular biology. USA: Humana Press 2002; Vol. 199.
[http://dx.doi.org/10.1385/1-59259-175-2:03]
[21]
Patil YP, Jadhav S. Novel methods for liposome preparation. Chem Phys Lipids 2014; 177: 8-18.
[http://dx.doi.org/10.1016/j.chemphyslip.2013.10.011] [PMID: 24220497]
[22]
Güven A, Ortiz M, Constanti M, O’Sullivan CK. Rapid and efficient method for the size separation of homogeneous fluorescein-encapsulating liposomes. J Liposome Res 2009; 19(2): 148-54.
[http://dx.doi.org/10.1080/08982100802674419] [PMID: 19515001]
[23]
Samad A, Sultana Y, Aqil M. Liposomal drug delivery systems: An update review. Curr Drug Deliv 2007; 4(4): 297-305.
[http://dx.doi.org/10.2174/156720107782151269] [PMID: 17979650]
[24]
Deamer D, Bangham AD. Large volume liposomes by an ether vaporization method. Biochim Biophys Acta 1976; 443(3): 629-34.
[http://dx.doi.org/10.1016/0005-2736(76)90483-1] [PMID: 963074]
[25]
Ahmed KS, Hussein SA, Ali AH, Korma SA, Lipeng Q, Jinghua C. Liposome: composition, characterisation, preparation, and recent innovation in clinical applications. J Drug Target 2019; 27(7): 742-61.
[http://dx.doi.org/10.1080/1061186X.2018.1527337] [PMID: 30239255]
[26]
Akbarzadeh A, Rezaei-Sadabady R, Davaran S, et al. Liposome: Classification, preparation, and applications. Nanoscale Res Lett 2013; 8(1): 102.
[http://dx.doi.org/10.1186/1556-276X-8-102] [PMID: 23432972]
[27]
Lin M, Qi XR. Purification method of drug-loaded liposome. In: Lu WL, Qi XR, Eds. Liposome-Based Drug Delivery Systems. Berlin, Heidelberg: Springer 2018; pp. 1-11.
[http://dx.doi.org/10.1007/978-3-662-49231-4_24-1]
[28]
Peschka R, Purmann T, Schubert R. Cross-flow filtration-an improved detergent removal technique for the preparation of liposomes. Int J Pharm 1998; 162(1): 177-83.
[http://dx.doi.org/10.1016/S0378-5173(97)00424-9]
[29]
Hwang KJ, Chang YC. The use of cross-flow microfiltration in purification of liposomes. Sep Sci Technol 2004; 39(11): 2557-76.
[http://dx.doi.org/10.1081/SS-200026709]
[30]
Nobs L, Buchegger F, Gurny R, Allémann E. Current methods for attaching targeting ligands to liposomes and nanoparticles. J Pharm Sci 2004; 93(8): 1980-92.
[http://dx.doi.org/10.1002/jps.20098] [PMID: 15236448]
[31]
Manjappa AS, Chaudhari KR, Venkataraju MP, et al. Antibody derivatization and conjugation strategies: application in preparation of stealth immunoliposome to target chemotherapeutics to tumor. J Control Release 2011; 150(1): 2-22.
[http://dx.doi.org/10.1016/j.jconrel.2010.11.002] [PMID: 21095210]
[32]
Jaafar-Maalej C, Diab R, Andrieu V, Elaissari A, Fessi H. Ethanol injection method for hydrophilic and lipophilic drug-loaded liposome preparation. J Liposome Res 2010; 20(3): 228-43.
[http://dx.doi.org/10.3109/08982100903347923] [PMID: 19899957]
[33]
Franzè S, Selmin F, Rocco P, Colombo G, Casiraghi A, Cilurzo F. Preserving the integrity of liposomes prepared by ethanol injection upon freeze-drying: insights from combined molecular dynamics simulations and experimental data. Pharmaceutics 2020; 12(6): E530.
[http://dx.doi.org/10.3390/pharmaceutics12060530] [PMID: 32526935]
[34]
Roberts SA, Parikh N, Blower RJ, Agrawal N. SPIN: rapid synthesis, purification, and concentration of small drug-loaded liposomes. J Liposome Res 2018; 28(4): 331-40.
[http://dx.doi.org/10.1080/08982104.2017.1381115] [PMID: 28920496]
[35]
Magin RL, Chan HC. Rapid separation of liposomes using ultrafiltration. Biotechnol Tech 1987; 1(3): 185-8.
[http://dx.doi.org/10.1007/BF00227558]
[36]
Mayer LD, St-Onge G. Determination of free and liposome-associated doxorubicin and vincristine levels in plasma under equilibrium conditions employing ultrafiltration techniques. Anal Biochem 1995; 232(2): 149-57.
[http://dx.doi.org/10.1006/abio.1995.0001] [PMID: 8747469]
[37]
Tamba Y, Terashima H, Yamazaki M. A membrane filtering method for the purification of giant unilamellar vesicles. Chem Phys Lipids 2011; 164(5): 351-8.
[http://dx.doi.org/10.1016/j.chemphyslip.2011.04.003] [PMID: 21524642]
[38]
Yang T, Choi MK, Cui FD, et al. Preparation and evaluation of paclitaxel-loaded PEGylated immunoliposome. J Control Release 2007; 120(3): 169-77.
[http://dx.doi.org/10.1016/j.jconrel.2007.05.011] [PMID: 17586082]
[39]
Mihaila R, Chang S, Wei AT, et al. Lipid nanoparticle purification by spin centrifugation-dialysis (SCD): a facile and high-throughput approach for small scale preparation of siRNA-lipid complexes. Int J Pharm 2011; 420(1): 118-21.
[http://dx.doi.org/10.1016/j.ijpharm.2011.08.017] [PMID: 21893179]
[40]
Adamala K, Engelhart AE, Kamat NP, Jin L, Szostak JW. Construction of a liposome dialyzer for the preparation of high-value, small-volume liposome formulations. Nat Protoc 2015; 10(6): 927-38.
[http://dx.doi.org/10.1038/nprot.2015.054] [PMID: 26020615]
[41]
Smits EA, Smits CJ, Vromans H. The development of a method to quantify encapsulated and free prednisolone phosphate in liposomal formulations. J Pharm Biomed Anal 2013; 75: 47-54.
[http://dx.doi.org/10.1016/j.jpba.2012.11.008] [PMID: 23312384]
[42]
Lane RE, Korbie D, Anderson W, Vaidyanathan R, Trau M. Analysis of exosome purification methods using a model liposome system and tunable-resistive pulse sensing. Sci Rep 2015; 5: 7639.
[http://dx.doi.org/10.1038/srep07639] [PMID: 25559219]
[43]
Calle D, Negri V, Ballesteros P, Cerdán S. Magnetoliposomes loaded with poly-unsaturated fatty acids as novel theranostic anti-inflammatory formulations. Theranostics 2015; 5(5): 489-503.
[http://dx.doi.org/10.7150/thno.10069] [PMID: 25767616]
[44]
Dipali SR, Kulkarni SB, Betageri GV. Comparative study of separation of non-encapsulated drug from unilamellar liposomes by various methods. J Pharm Pharmacol 1996; 48(11): 1112-5.
[http://dx.doi.org/10.1111/j.2042-7158.1996.tb03904.x] [PMID: 8961156]
[45]
Jin L, Engelhart AE, Adamala KP, Szostak JW. Preparation, purification, and use of fatty acid-containing liposomes. J Vis Exp 2018; e57324(132): 57324.
[http://dx.doi.org/10.3791/57324] [PMID: 29553563]
[46]
Ruysschaert T, Marque A, Duteyrat JL, Lesieur S, Winterhalter M, Fournier D. Liposome retention in size exclusion chromatography. BMC Biotechnol 2005; 5: 11.
[http://dx.doi.org/10.1186/1472-6750-5-11] [PMID: 15885140]
[47]
Alves NJ, Cusick W, Stefanick JF, Ashley JD, Handlogten MW, Bilgicer B. Functionalized liposome purification via Liposome Extruder Purification (LEP). Analyst 2013; 138(17): 4746-51.
[http://dx.doi.org/10.1039/c3an00680h] [PMID: 23841107]
[48]
Deshpande S, Birnie A, Dekker C. On-chip density-based purification of liposomes. Biomicrofluidics 2017; 11(3): 034106.
[http://dx.doi.org/10.1063/1.4983174] [PMID: 28529672]
[49]
Dimov N, Kastner E, Hussain M, Perrie Y, Szita N. Formation and purification of tailored liposomes for drug delivery using a module-based micro continuous-flow system. Sci Rep 2017; 7(1): 12045.
[http://dx.doi.org/10.1038/s41598-017-11533-1] [PMID: 28935923]
[50]
Guichardon P, Moulin P, Tosini F, Cara L, Charbit F. Comparative study of semi-solid liposome purification by different separation methods. Separ Purif Tech 2005; 41(2): 123-31.
[http://dx.doi.org/10.1016/j.seppur.2004.01.010]
[51]
Rathod S, Deshpande SG. Design and evaluation of liposomal formulation of pilocarpine nitrate. Indian J Pharm Sci 2010; 72(2): 155-60.
[http://dx.doi.org/10.4103/0250-474X.65014]
[52]
Zhang H. Thin-Film hydration followed by extrusion method for liposome preparation. Methods Mol Biol 2017; 1522: 17-22.
[http://dx.doi.org/10.1007/978-1-4939-6591-5_2] [PMID: 27837527]
[53]
Xiang B, Cao D-Y. Preparation of drug liposomes by thin-film hydration and homogenization. Liposome-Based Drug Delivery Systems. Berlin, Heidelberg: Springer 2017; pp. 1-11.
[http://dx.doi.org/10.1007/978-3-662-49231-4_2-1]
[54]
Mozafari MR. Nanoliposomes: preparation and analysis. Methods Mol Biol 2010; 605: 29-50.
[http://dx.doi.org/10.1007/978-1-60327-360-2_2] [PMID: 20072871]
[55]
Danaei M, Dehghankhold M, Ataei S, et al. Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics 2018; 10(2): 57.
[http://dx.doi.org/10.3390/pharmaceutics10020057] [PMID: 29783687]
[56]
Shekunov BY, Chattopadhyay P, Tong HH, Chow AH. Particle size analysis in pharmaceutics: principles, methods and applications. Pharm Res 2007; 24(2): 203-27.
[http://dx.doi.org/10.1007/s11095-006-9146-7] [PMID: 17191094]
[57]
Putri DCA, Dwiastuti R, Marchaban M, Nugroho AK. Optimization of mixing temperature and sonication duration in liposome preparation. J Pharm Sci Comm 2017; 14(2): 79-85.
[http://dx.doi.org/10.24071/jpsc.142728]
[58]
Zoghi A, Khosravi-Darani K, Omri A. Process variables and design of experiments in liposome and nanoliposome research. Mini Rev Med Chem 2018; 18(4): 324-44.
[http://dx.doi.org/10.2174/1389557516666161031120752] [PMID: 27804889]
[59]
Liposome drug products: Chemistry, manufacturing, and controls; human pharmacokinetics and bioavailability; and labeling documentation-Guidance for industry. Maryland, USA: US Food and Drug Administration 2018.
[60]
Solvent resistant stirred cells for ultrafiltration and filtration applications: User guide. USA: Millipore corporation: Billerica MA 2002.
[61]
Amicon stirred cells: User guide. USA: EMD Millipore Corporation: Billerica MA 2015.
[62]
Dalwadi G, Benson HA, Chen Y. Comparison of diafiltration and tangential flow filtration for purification of nanoparticle suspensions. Pharm Res 2005; 22(12): 2152-62.
[http://dx.doi.org/10.1007/s11095-005-7781-z] [PMID: 16151669]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy