Generic placeholder image

Current Cosmetic Science

Editor-in-Chief

ISSN (Print): 2666-7797
ISSN (Online): 2666-7800

Letter Article

Isopropyl Ricinoleate, A Potential Alternative to Isopropyl Myristate: Experimental and Computational Evaluation

Author(s): Amit Pratap*, Nishat Khan, P. Meena, Rashmikant Mohile and Suraj N. Mali*

Volume 1, Issue 1, 2022

Published on: 01 December, 2021

Article ID: e021121197568 Pages: 8

DOI: 10.2174/2666779701666211102110454

Abstract

Background: Due to growing environmental concerns, eco-friendly and sustainable materials have become one of the key interests of cosmetics research. Isopropyl myristate is being used as a major cosmetic ingredient, like in many other cosmetic items, as an emollient for a long time.

Methods: An emollient ester, isopropyl ricinoleate, is derived from non-edible oil, castor oil. The synthesized isopropyl ricinoleate using greener enzyme catalysed methodology was further tested for sensory evaluation and transepidermal water loss (TEWL) studies.

Results: An ester, isopropyl ricinoleate, imparted better gloss and shine to the skin as compared to isopropyl myristate due to its higher refractive index. Both esters, isopropyl ricinoleate and isopropyl myristate, showed minimum tackiness and residue after spreading. Moreover, insilico toxicity analysis of ester, isopropyl ricinoleate, supported previously reported in-vitro toxicity data.

Conclusion: Thus, the current study provides better insights on the replacement of emollient ester isopropyl myristate by isopropyl ricinoleate.

Keywords: Emollient ester, isopropyl ricinoleate, enzyme targets, sensory evaluation, transepidermal water loss (TEWL), green synthesis.

Graphical Abstract

[1]
de Oliveira, A.C.; Morocho-Jácome, A.L.; de Castro Lima, C.R.; Marques, G.A.; de Oliveira Bispo, M.; de Barros, A.B.; Baby, A.R. Cosmetics applications. In: Microalgae; Academic Press, 2021; pp. 313-338.
[http://dx.doi.org/10.1016/B978-0-12-821218-9.00010-4]
[2]
Garcia, R.D.A.; O’Lenick, A.; Leite-Silva, V.R. Thickening agents. In: Cosmetic Formulation: Principles and Practice; CRC Press: Florida, 2019.
[3]
Rawlings, A.V.; Canestrari, D.A.; Dobkowski, B. Moisturizer technology versus clinical performance. Dermatol. Ther., 2004, 17(Suppl. 1), 49-56.
[http://dx.doi.org/10.1111/j.1396-0296.2004.04S1006.x] [PMID: 14728699]
[4]
Gorcea, M.; Laura, D. Evaluating the physiochemical proper-ties of emollient esters for cosmetic use. Cosmetics Toiletries, 2010, 125, 12.
[5]
Zidan, A.S.; Kamal, N.; Alayoubi, A.; Seggel, M.; Ibrahim, S.; Rahman, Z.; Cruz, C.N.; Ashraf, M. Effect of isopropyl myristate on transdermal permeation of testosterone from carbopol gel. J. Pharm. Sci., 2017, 106(7), 1805-1813.
[http://dx.doi.org/10.1016/j.xphs.2017.03.016] [PMID: 28341597]
[6]
Kaur, R.; Bhaskar, T. Potential of castor plant (Ricinus com-munis) for production of biofuels, chemicals, and value-added products. In: Waste biorefinery; Elsevier, 2020; pp. 269-310.
[http://dx.doi.org/10.1016/B978-0-12-818228-4.00011-3]
[7]
Chakrabarty, S.; Islam, A.K.M.A.; Yaakob, Z.; Islam, A.K.M.M. Castor (Ricinus communis): An underutilized oil crop in the South East Asia. In: Agroecosystems–Very Complex Environmental Systems; IntechOpen , 2021.
[8]
Johnson, W. Final report on the safety assessment of ricinus communis (castor) seed oil, hydrogenated castor oil, glyceryl ricinoleate, glyceryl ricinoleate se, ricinoleic acid, potassium ricinoleate, sodium ricinoleate, zinc ricinoleate, cetyl ricinole-ate, ethyl ricinoleate, glycol ricinoleate, isopropyl ricinoleate, methyl ricinoleate, and octyldodecyl ricinoleate. Int. J. Toxicol., 2007, 26(Suppl. 3), 31-77.
[http://dx.doi.org/10.1080/10915810701663150] [PMID: 18080873]
[9]
Khan, N.R.; Pratap, A.P. Green synthesis of isopropyl ricino-leate. J. Oleo Sci., 2013, 62(3), 153-158.
[http://dx.doi.org/10.5650/jos.62.153] [PMID: 23470442]
[10]
Khan, N.R.; Rathod, V.K. Enzyme catalyzed synthesis of cosmetic esters and its intensification: A review. Process Biochem., 2015, 50(11), 1793-1806. Available from: https://patents.google.com/patent/EP0383405A1/en
[http://dx.doi.org/10.1016/j.procbio.2015.07.014]
[11]
Vadgama, R.N.; Odaneth, A.A.; Lali, A.M. Green synthesis of isopropyl myristate in novel single phase medium Part I: Batch optimization studies. Biotechnol. Rep. (Amst.), 2015, 8, 133-137.
[http://dx.doi.org/10.1016/j.btre.2015.10.006] [PMID: 28352582]
[12]
Mohiuddin, A.K. Skin care creams: formulation and use. Dermatol Clin Res, 2019, 5(1), 238-271.
[13]
A, Mali S. N.; Pandey, A. Molecular modeling studies on 2, 4- disubstituted imidazopyridines as anti-malarials: Atom-based 3DQSAR, molecular docking, virtual screening, in silico ADMET and theoretical analysis J. Comput. Biophys. Chem, 2021.
[14]
Kshatriya, R.; Kambale, D.; Mali, S.; Jejurkar, V.P.; Lo-khande, P.; Chaudhari, H.K.; Saha, S. Brønsted acid catalyzed domino synthesis of functionalized 4H‐chromens and their ADMET, molecular docking and antibacterial studies. ChemistrySelect, 2019, 4(27), 7943-7948.
[http://dx.doi.org/10.1002/slct.201901775]
[15]
Noureddini, H.; Teoh, B.C.; Davis Clements, L. Viscosities of vegetable oils and fatty acids. J. Am. Oil Chem. Soc., 1992, 69(12), 1189-1191.
[http://dx.doi.org/10.1007/BF02637678]
[16]
Chumpitaz, L.D.; Coutinho, L.F.; Meirelles, A.J. Surface ten-sion of fatty acids and triglycerides. J. Am. Oil Chem. Soc., 1999, 76(3), 379-382.
[http://dx.doi.org/10.1007/s11746-999-0245-6]
[17]
Moldovan, M.; Ciortea, L. Efficacy evaluation of different cream formulations on healthy skin properties. Farmacia, 2010, 58(6), 787-794.
[18]
Akhtar, N.; Khan, B.A.; Khan, M.S.; Mahmood, T.; Khan, H.M.S.; Iqbal, M.; Bashir, S. Formulation development and moiturising effects of a topical cream of aloe vera extract. World Acad. Sci. Eng. Technol., 2011, 51, 172-179.
[19]
Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medici-nal chemistry friendliness of small molecules. Sci. Rep., 2017, 7(1), 42717.
[http://dx.doi.org/10.1038/srep42717] [PMID: 28256516]
[20]
Gfeller, D.; Grosdidier, A.; Wirth, M.; Daina, A.; Michielin, O.; Zoete, V. SwissTargetPrediction: A web server for target prediction of bioactive small molecules. Nucleic Acids Res, 2014, 42((Web Server issue)), W32-8.
[http://dx.doi.org/10.1093/nar/gku293] [PMID: 24792161]
[21]
Thorat, B.R.; Rani, D.; Yamgar, R.S.; Mali, S.N. Synthesis, spectroscopic, in vitro and computational analysis of hydra-zones as potential antituberculosis agents: (Part-I). Comb. Chem. High Throughput Screen., 2020, 23(5), 392-401.
[http://dx.doi.org/10.2174/1386207323999200325125858] [PMID: 32209038]
[22]
Thorat, B.R.; Mali, S.; Rani, D.; Yamgar, R. Synthesis, in silico and in vitro analysis of hydrazones as potential an-tituberculosis agents. Curr. Computeraided Drug Des., 2020.
[http://dx.doi.org/10.2174/1573409916666200302120942]
[23]
Gollavilli, H.; Hegde, A.R.; Managuli, R.S.; Bhaskar, K.V.; Dengale, S.J.; Reddy, M.S.; Kalthur, G.; Mutalik, S. Naringin nano-ethosomal novel sunscreen creams: Development and performance evaluation. Colloids Surf. B Biointerfaces, 2020, 193, 111122.
[http://dx.doi.org/10.1016/j.colsurfb.2020.111122] [PMID: 32498002]
[24]
Chao, C.; Génot, C.; Rodriguez, C.; Magniez, H.; Lacourt, S.; Fievez, A. Emollients for cosmetic formulations: Towards re-lationships between physico-chemical properties and sensory perceptions. Colloids Surf. A Physicochem. Eng. Asp., 2018, 536, 156-164.
[http://dx.doi.org/10.1016/j.colsurfa.2017.07.025]
[25]
Wang, L.; Hai, Y.; Huang, N.; Gao, X.; Liu, W.; He, X. Human cytochrome P450 enzyme inhibition profile of three flavo-noids isolated from Psoralea corylifolia: In silico predictions and experimental validation. New J. Chem., 2018, 42(13), 10922-10934.
[http://dx.doi.org/10.1039/C7NJ00884H]
[26]
ŞahinSDegeNA newly synthesized small molecule: The evaluation against Alzheimer’s Disease by in silico drug design and computational structure analysis methods J. Mol. Struct, 2021, 1236-130337.
[http://dx.doi.org/10.1016/j.molstruc.2021.130337]
[27]
Daina, A.; Zoete, V. A boiled‐egg to predict gastrointestinal absorption and brain penetration of small molecules. ChemMedChem, 2016, 11(11), 1117-1121.
[http://dx.doi.org/10.1002/cmdc.201600182] [PMID: 27218427]
[28]
McQueen, C. Comprehensive toxicology; Elsevier, 2017.
[29]
Walum, E. Acute oral toxicity. Environ. Health Perspect., 1998, 106(Suppl. 2), 497-503.
[PMID: 9599698]
[30]
Walker, J.D.; Gerner, I.; Hulzebos, E.; Schlegel, K. The skin irritation corrosion rules estimation tool (SICRET). QSAR Comb. Sci., 2005, 24(3), 378-384.
[http://dx.doi.org/10.1002/qsar.200430906]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy