Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Recent Advances in Gelatin-Based Nanomedicine for Targeted Delivery of Anti-Cancer Drugs

Author(s): Faisal Raza, Liu Siyu, Hajra Zafar, Zul Kamal, Bo Zheng, Jing Su* and Mingfeng Qiu*

Volume 28, Issue 5, 2022

Published on: 30 November, 2021

Page: [380 - 394] Pages: 15

DOI: 10.2174/1381612827666211102100118

Price: $65

Abstract

Nanoparticles based on natural polymers are utilized for the development of a wide range of drug delivery systems (DDS) in the current era. Gelatin-based nanoparticles, for example, are a remarkable cancer therapy with high efficacy and specificity. This paper reviews the recent advancements in gelatin-based nanomedicine for use in cancer therapeutics. Due to the characteristics features of gelatin, such as biocompatibility, biodegradability, stability, and good surface properties, these nanoparticles provide high therapeutic potency in cancer nanomedicine. The surface of gelatin can be modified in a number of ways using various ligands to explore the platform for the development of a more novel DDS. Various methods are available for the preparation of gelatin nanomedicine discussed in this review. In addition, various cross-linkers to stabilized nanocarriers and stimuli base gelatin nanoparticles are reviewed. Furthermore, recent advances and research in gelatin-based nanomedicine are discussed. Also, some drawbacks and challenges are evaluated. In general, this paper paves the pathway to identify the details about the gelatin-based DDS for cancer therapy.

Keywords: Gelatin, nanomedicine, targeted drug delivery, cancer, tumor microenvironment, stimuli-responsive, nanoparticles.

[1]
Siegel RL, Fedewa SA, Miller KD, et al. Cancer statistics for hispanics/latinos, 2015. CA Cancer J Clin 2015; 65(6): 457-80.
[http://dx.doi.org/10.3322/caac.21314] [PMID: 26375877]
[2]
Gianfaldoni S, Gianfaldoni R, Wollina U, Lotti J, Tchernev G, Lotti T. An overview on radiotherapy: from its history to its current applications in dermatology. Open Access Maced J Med Sci 2017; 5(4): 521-5.
[http://dx.doi.org/10.3889/oamjms.2017.122] [PMID: 28785349]
[3]
Sullivan R, Alatise OI, Anderson BO, et al. Global cancer surgery: delivering safe, affordable, and timely cancer surgery. Lancet Oncol 2015; 16(11): 1193-224.
[http://dx.doi.org/10.1016/S1470-2045(15)00223-5] [PMID: 26427363]
[4]
Christofi T, Baritaki S, Falzone L, Libra M, Zaravinos A. Current perspectives in cancer immunotherapy. Cancers (Basel) 2019; 11(10): 1472.
[http://dx.doi.org/10.3390/cancers11101472] [PMID: 31575023]
[5]
Baudino TA. A Baudino T. Targeted cancer therapy: the next generation of cancer treatment. Curr Drug Discov Technol 2015; 12(1): 3-20.
[http://dx.doi.org/10.2174/1570163812666150602144310] [PMID: 26033233]
[6]
Nurgali K, Jagoe RT, Abalo R. Adverse effects of cancer chemotherapy: Anything new to improve tolerance and reduce sequelae? Front Pharmacol 2018; 9: 245.
[http://dx.doi.org/10.3389/fphar.2018.00245] [PMID: 29623040]
[7]
Khan MW, Zhao P, Khan A, et al. Synergism of cisplatin-oleanolic acid co-loaded calcium carbonate nanoparticles on hepatocellular carcinoma cells for enhanced apoptosis and reduced hepatotoxicity. Int J Nanomedicine 2019; 14: 3753-71.
[http://dx.doi.org/10.2147/IJN.S196651] [PMID: 31239661]
[8]
Amerigos Daddy J C K, Chen M, Raza F, Xiao Y, Su Z, Ping Q. Co-encapsulation of mitoxantrone and β-elemene in solid lipid nanoparticles to overcome multidrug resistance in leukemia. Pharmaceutics 2020; 12(2): 191.
[http://dx.doi.org/10.3390/pharmaceutics12020191] [PMID: 32102214]
[9]
Asifullah K, Zhou Z, He W, et al. CXCR4-receptor-targeted liposomes for the treatment of peritoneal fibrosis. Mol Pharm 2019; 16(6): 2728-41.
[http://dx.doi.org/10.1021/acs.molpharmaceut.9b00266] [PMID: 31070930]
[10]
Zafar H, Kiani MH, Raza F, Rauf A, Chaudhery I, Ahmad NM, et al. Design of enzyme decorated mucopermeating nanocarriers for eradication of H. pylori infection. J Nanopart Res 2020; 22(1): 1-21.
[http://dx.doi.org/10.1007/s11051-019-4719-7]
[11]
Hossen S, Hossain MK, Basher MK, Mia MNH, Rahman MT, Uddin MJ. Smart nanocarrier-based drug delivery systems for cancer therapy and toxicity studies: A review. J Adv Res 2018; 15: 1-18.
[http://dx.doi.org/10.1016/j.jare.2018.06.005] [PMID: 30581608]
[12]
Ulbrich K, Holá K, Šubr V, Bakandritsos A, Tuček J, Zbořil R. Targeted drug delivery with polymers and magnetic nanoparticles: covalent and noncovalent approaches, release control, and clinical studies. Chem Rev 2016; 116(9): 5338-431.
[http://dx.doi.org/10.1021/acs.chemrev.5b00589] [PMID: 27109701]
[13]
Raza F, Zafar H, You X, Khan A, Wu J, Ge L. Cancer nanomedicine: focus on recent developments and self-assembled peptide nanocarriers. J Mater Chem B Mater Biol Med 2019; 7(48): 7639-55.
[http://dx.doi.org/10.1039/C9TB01842E] [PMID: 31746934]
[14]
Dragan ES, Dinu MV. Polysaccharides constructed hydrogels as vehicles for proteins and peptides. A review. Carbohydr Polym 2019; 225: 115210.
[http://dx.doi.org/10.1016/j.carbpol.2019.115210] [PMID: 31521316]
[15]
Sha X-M, Zhang L-J, Tu Z-C, Zhang L-Z, Hu Z-Z, Li Z, et al. The identification of three mammalian gelatins by liquid chromatography-high resolution mass spectrometry. Lebensm Wiss Technol 2018; 89: 74-86.
[http://dx.doi.org/10.1016/j.lwt.2017.10.001]
[16]
Zhang T, Xu J, Zhang Y, Wang X, Lorenzo JM, Zhong J. Gelatins as emulsifiers for oil-in-water emulsions: Extraction, chemical composition, molecular structure, and molecular modification. Trends Food Sci Technol 2020; 106: 113-31.
[http://dx.doi.org/10.1016/j.tifs.2020.10.005]
[17]
Zhang T, Sun R, Ding M, et al. Effect of extraction methods on the structural characteristics, functional properties, and emulsion stabilization ability of Tilapia skin gelatins. Food Chem 2020; 328: 127114.
[http://dx.doi.org/10.1016/j.foodchem.2020.127114] [PMID: 32473491]
[18]
Mariod AA. Sorghum Bug (Agonoscelis pubescens) as a Source of Edible Oil, Protein, and Gelatin. In: Adam Mariod A, Ed. African Edible Insects As Alternative Source of Food, Oil, Protein and Bioactive Components. Cham: Springer International Publishing 2020; pp. 149-58.
[http://dx.doi.org/10.1007/978-3-030-32952-5_10]
[19]
Zhang T, Ding M, Zhang H, Tao N, Wang X, Zhong J. Fish oil-loaded emulsions stabilized by synergetic or competitive adsorption of gelatin and surfactants on oil/water interfaces. Food Chem 2020; 308: 125597.
[http://dx.doi.org/10.1016/j.foodchem.2019.125597] [PMID: 31648095]
[20]
Zhang T, Sun R, Ding M, Li L, Tao N, Wang X, et al. Commercial cold-water fish skin gelatin and bovine bone gelatin: Structural, functional, and emulsion stability differences. Lebensm Wiss Technol 2020; 125: 109207.
[http://dx.doi.org/10.1016/j.lwt.2020.109207]
[21]
Dille MJ, Hattrem MN, Draget KI. Soft, chewable gelatin-based pharmaceutical oral formulations: a technical approach. Pharm Dev Technol 2018; 23(5): 504-11.
[http://dx.doi.org/10.1080/10837450.2017.1332642] [PMID: 28532266]
[22]
Echave MC, Saenz del Burgo L, Pedraz JL, Orive G. Gelatin as Biomaterial for Tissue Engineering. Curr Pharm Des 2017; 23(24): 3567-84.
[http://dx.doi.org/10.2174/0929867324666170511123101] [PMID: 28494717]
[23]
Madkhali O, Mekhail G, Wettig SD. Modified gelatin nanoparticles for gene delivery. Int J Pharm 2019; 554: 224-34.
[http://dx.doi.org/10.1016/j.ijpharm.2018.11.001] [PMID: 30408531]
[24]
Elzoghby AO. Gelatin-based nanoparticles as drug and gene delivery systems: reviewing three decades of research. J Control Release 2013; 172(3): 1075-91.
[http://dx.doi.org/10.1016/j.jconrel.2013.09.019] [PMID: 24096021]
[25]
Weiss A-V, Fischer T, Iturri J, Benitez R, Toca-Herrera JL, Schneider M. Mechanical properties of gelatin nanoparticles in dependency of crosslinking time and storage. Colloids Surf B Biointerfaces 2019; 175: 713-20.
[http://dx.doi.org/10.1016/j.colsurfb.2018.12.005] [PMID: 30612047]
[26]
Hoang Thi TT, Pilkington EH, Nguyen DH, Lee JS, Park KD, Truong NP. The importance of poly(ethylene glycol) alternatives for overcoming PEG immunogenicity in drug delivery and bioconjugation. Polymers (Basel) 2020; 12(2): 298.
[http://dx.doi.org/10.3390/polym12020298] [PMID: 32024289]
[27]
Hussain A, Hasan A, Babadaei MMN, Bloukh SH, Edis Z, Rasti B, et al. Application of gelatin nanoconjugates as potential internal stimuli-responsive platforms for cancer drug delivery. J Mol Liq 2020; 318: 114053.
[http://dx.doi.org/10.1016/j.molliq.2020.114053]
[28]
An F-F, Zhang X-H. Strategies for preparing albumin-based nanoparticles for multifunctional bioimaging and drug delivery. Theranostics 2017; 7(15): 3667-89.
[http://dx.doi.org/10.7150/thno.19365] [PMID: 29109768]
[29]
Spicer CD, Jumeaux C, Gupta B, Stevens MM. Peptide and protein nanoparticle conjugates: versatile platforms for biomedical applications. Chem Soc Rev 2018; 47(10): 3574-620.
[http://dx.doi.org/10.1039/C7CS00877E] [PMID: 29479622]
[30]
Ren D. Protein nanoparticle as a versatile drug delivery system in nanotechnology. J Nanomed Res 2016; 4(1): 00077.
[http://dx.doi.org/10.15406/jnmr.2016.04.00077]
[31]
Ossama M, Hathout RM, Attia DA, Mortada ND. Enhanced allicin cytotoxicity on HEPG-2 cells using glycyrrhetinic acid surface-decorated gelatin nanoparticles. ACS Omega 2019; 4(6): 11293-300.
[http://dx.doi.org/10.1021/acsomega.9b01580] [PMID: 31460232]
[32]
Ding M, Zhang T, Zhang H, Tao N, Wang X, Zhong J. Effect of preparation factors and storage temperature on fish oil-loaded crosslinked gelatin nanoparticle pickering emulsions in liquid forms. Food Hydrocoll 2019; 95: 326-35.
[http://dx.doi.org/10.1016/j.foodhyd.2019.04.052]
[33]
Ding M, Zhang T, Zhang H, Tao N, Wang X, Zhong J. Gelatin molecular structures affect behaviors of fish oil-loaded traditional and Pickering emulsions. Food Chem 2020; 309: 125642.
[http://dx.doi.org/10.1016/j.foodchem.2019.125642] [PMID: 31685367]
[34]
Akhter K, Zhu J, Zhang J. Nanoencapsulation of protein drug for controlled release. J Physic Chem Biophysic 2012.
[35]
Carvalho JA, Abreu AS, Ferreira VTP, et al. Preparation of gelatin nanoparticles by two step desolvation method for application in photodynamic therapy. J Biomater Sci Polym Ed 2018; 29(11): 1287-301.
[http://dx.doi.org/10.1080/09205063.2018.1456027] [PMID: 29561222]
[36]
Ofokansi K, Winter G, Fricker G, Coester C. Matrix-loaded biodegradable gelatin nanoparticles as new approach to improve drug loading and delivery. Eur J Pharm Biopharm 2010; 76(1): 1-9.
[http://dx.doi.org/10.1016/j.ejpb.2010.04.008] [PMID: 20420904]
[37]
Quintanar-Guerrero D, Allémann E, Fessi H, Doelker E. Preparation techniques and mechanisms of formation of biodegradable nanoparticles from preformed polymers. Drug Dev Ind Pharm 1998; 24(12): 1113-28.
[http://dx.doi.org/10.3109/03639049809108571] [PMID: 9876569]
[38]
Lee EJ, Khan SA, Park JK, Lim K-H. Studies on the characteristics of drug-loaded gelatin nanoparticles prepared by nanoprecipitation. Bioprocess Biosyst Eng 2012; 35(1-2): 297-307.
[http://dx.doi.org/10.1007/s00449-011-0591-2] [PMID: 21909678]
[39]
Bilati U, Allémann E, Doelker E. Development of a nanoprecipitation method intended for the entrapment of hydrophilic drugs into nanoparticles. Eur J Pharm Sci 2005; 24(1): 67-75.
[http://dx.doi.org/10.1016/j.ejps.2004.09.011] [PMID: 15626579]
[40]
Khan SA, Schneider M. Improvement of nanoprecipitation technique for preparation of gelatin nanoparticles and potential macromolecular drug loading. Macromol Biosci 2013; 13(4): 455-63.
[http://dx.doi.org/10.1002/mabi.201200382] [PMID: 23427187]
[41]
Yasmin R, Shah M, Khan SA, Ali R. Gelatin nanoparticles: a potential candidate for medical applications. Nanotechnol Rev 2017; 6(2): 191-207.
[http://dx.doi.org/10.1515/ntrev-2016-0009]
[42]
Cascone MG, Lazzeri L, Carmignani C, Zhu Z. Gelatin nanoparticles produced by a simple W/O emulsion as delivery system for methotrexate. J Mater Sci Mater Med 2002; 13(5): 523-6.
[http://dx.doi.org/10.1023/A:1014791327253] [PMID: 15348607]
[43]
Bajpai AK, Choubey J. Design of gelatin nanoparticles as swelling controlled delivery system for chloroquine phosphate. J Mater Sci Mater Med 2006; 17(4): 345-58.
[http://dx.doi.org/10.1007/s10856-006-8235-9] [PMID: 16617413]
[44]
Bajpai A, Choubey J. In vitro release dynamics of an anticancer drug from swellable gelatin nanoparticles. J Appl Polym Sci 2006; 101(4): 2320-32.
[http://dx.doi.org/10.1002/app.23761]
[45]
Choubey J, Bajpai AK. Investigation on magnetically controlled delivery of doxorubicin from superparamagnetic nanocarriers of gelatin crosslinked with genipin. J Mater Sci Mater Med 2010; 21(5): 1573-86.
[http://dx.doi.org/10.1007/s10856-010-3997-5] [PMID: 20135205]
[46]
Fung SY, Yang H, Chen P. Formation of colloidal suspension of hydrophobic compounds with an amphiphilic self-assembling peptide. Colloids Surf B Biointerfaces 2007; 55(2): 200-11.
[http://dx.doi.org/10.1016/j.colsurfb.2006.12.002] [PMID: 17234393]
[47]
Chen Y-C, Yu S-H, Tsai G-J, Tang D-W, Mi F-L, Peng Y-P. Novel technology for the preparation of self-assembled catechin/gelatin nanoparticles and their characterization. J Agric Food Chem 2010; 58(11): 6728-34.
[http://dx.doi.org/10.1021/jf1005116] [PMID: 20476739]
[48]
Li Z, Gu L. Effects of mass ratio, pH, temperature, and reaction time on fabrication of partially purified pomegranate ellagitannin-gelatin nanoparticles. J Agric Food Chem 2011; 59(8): 4225-31.
[http://dx.doi.org/10.1021/jf200024d] [PMID: 21395213]
[49]
Mohanty B, Aswal V, Kohlbrecher J, Bohidar H. Synthesis of gelatin nanoparticles via simple coacervation. J Surface Sci Technol 2005; 21(3/4): 149.
[50]
Xu Y, Zhang J, Liu X, et al. MMP-2-responsive gelatin nanoparticles for synergistic tumor therapy. Pharm Dev Technol 2019; 24(8): 1002-13.
[http://dx.doi.org/10.1080/10837450.2019.1621899] [PMID: 31109231]
[51]
Lu Z, Yeh T-K, Tsai M, Au JL-S, Wientjes MG. Paclitaxel-loaded gelatin nanoparticles for intravesical bladder cancer therapy. Clin Cancer Res 2004; 10(22): 7677-84.
[http://dx.doi.org/10.1158/1078-0432.CCR-04-1443] [PMID: 15570001]
[52]
Elzoghby AO, Samy WM, Elgindy NA. Protein-based nanocarriers as promising drug and gene delivery systems. J Control Release 2012; 161(1): 38-49.
[http://dx.doi.org/10.1016/j.jconrel.2012.04.036] [PMID: 22564368]
[53]
Kommareddy S, Shenoy DB, Amiji MM. Gelatin nanoparticles and their biofunctionalization. Nanotechnologies for the life sciences. Online (Bergh) 2007.
[54]
Cruje C, Chithrani D. Polyethylene glycol density and length affects nanoparticle uptake by cancer cells. J Nanomed Res 2014; 1(00006)
[55]
Kommareddy S, Amiji MM. Transfection and Analysis Using DNA-Loaded Gelatin Nanoparticles. CSH protocols 2008.
[56]
Leo E, Vandelli MA, Cameroni R, Forni F. Doxorubicin-loaded gelatin nanoparticles stabilized by glutaraldehyde: involvement of the drug in the cross-linking process. Int J Pharm 1997; 155(1): 75-82.
[http://dx.doi.org/10.1016/S0378-5173(97)00149-X]
[57]
Elzoghby AO, Samy WM, Elgindy NA. Novel spray-dried genipin-crosslinked casein nanoparticles for prolonged release of alfuzosin hydrochloride. Pharm Res 2013; 30(2): 512-22.
[http://dx.doi.org/10.1007/s11095-012-0897-z] [PMID: 23135815]
[58]
Elzoghby AO, Helmy MW, Samy WM, Elgindy NA. Spray-dried casein-based micelles as a vehicle for solubilization and controlled delivery of flutamide: formulation, characterization, and in vivo pharmacokinetics. Eur J Pharm Biopharm 2013; 84(3): 487-96.
[http://dx.doi.org/10.1016/j.ejpb.2013.01.005] [PMID: 23403015]
[59]
Qazvini NT, Zinatloo S. Synthesis and characterization of gelatin nanoparticles using CDI/NHS as a non-toxic cross-linking system. J Mater Sci Mater Med 2011; 22(1): 63-9.
[http://dx.doi.org/10.1007/s10856-010-4178-2] [PMID: 21052793]
[60]
Lantto R. Protein cross-linking with oxidative enzymes and transglutaminase: effects in meat protein systems. VTT Publications 2007.
[61]
Heidebach T, Först P, Kulozik U. Transglutaminase-induced caseinate gelation for the microencapsulation of probiotic cells. Int Dairy J 2009; 19(2): 77-84.
[http://dx.doi.org/10.1016/j.idairyj.2008.08.003]
[62]
Fuchs S, Kutscher M, Hertel T, Winter G, Pietzsch M, Coester C. Transglutaminase: new insights into gelatin nanoparticle cross-linking. J Microencapsul 2010; 27(8): 747-54.
[http://dx.doi.org/10.3109/02652048.2010.518773] [PMID: 21034367]
[63]
Jătariu Cadinoiu AN, Holban MN, Peptu CA, Sava A, Costuleanu M, Popa M. Double crosslinked interpenetrated network in nanoparticle form for drug targeting--preparation, characterization and biodistribution studies. Int J Pharm 2012; 436(1-2): 66-74.
[http://dx.doi.org/10.1016/j.ijpharm.2012.06.029] [PMID: 22721854]
[64]
Narayanan D, M G G, H L, Koyakutty M, Nair S, Menon D. Poly-(ethylene glycol) modified gelatin nanoparticles for sustained delivery of the anti-inflammatory drug Ibuprofen-Sodium: an in vitro and in vivo analysis. Nanomedicine 2013; 9(6): 818-28.
[http://dx.doi.org/10.1016/j.nano.2013.02.001] [PMID: 23428986]
[65]
Vandelli MA, Rivasi F, Guerra P, Forni F, Arletti R. Gelatin microspheres crosslinked with D,L-glyceraldehyde as a potential drug delivery system: preparation, characterisation, in vitro and in vivo studies. Int J Pharm 2001; 215(1-2): 175-84.
[http://dx.doi.org/10.1016/S0378-5173(00)00681-5] [PMID: 11250103]
[66]
Qian C, Chen Y, Zhu S, et al. ATP-responsive and near-infrared-emissive nanocarriers for anticancer drug delivery and real-time imaging. Theranostics 2016; 6(7): 1053-64.
[http://dx.doi.org/10.7150/thno.14843] [PMID: 27217838]
[67]
Aquib M, Farooq MA, Banerjee P, et al. Targeted and stimuli-responsive mesoporous silica nanoparticles for drug delivery and theranostic use. J Biomed Mater Res A 2019; 107(12): 2643-66.
[http://dx.doi.org/10.1002/jbm.a.36770] [PMID: 31390141]
[68]
Qi A, Deng L, Liu X, et al. Gelatin-encapsulated magnetic nanoparticles for pH, redox, and enzyme multiple stimuli-responsive drug delivery and magnetic resonance imaging. J Biomed Nanotechnol 2017; 13(11): 1386-97.
[http://dx.doi.org/10.1166/jbn.2017.2433] [PMID: 31271126]
[69]
Laha A, Majumdar S. Controlled Molecular Release through Polymeric Vehicle. Indian Institute of Technology Hyderabad 2017.
[70]
Qian XL, Li J, Wei R, Lin H, Xiong LX. Internal and external triggering mechanism of “Smart” nanoparticle-based DDSs in targeted tumor therapy. Curr Pharm Des 2018; 24(15): 1639-51.
[http://dx.doi.org/10.2174/1381612824666180510094607] [PMID: 29745324]
[71]
Rusu AG, Chiriac AP, Nita LE, Rosca I, Pinteala M, Mititelu-Tartau LJB. Chitosan derivatives in macromolecular co-assembly nanogels with potential for biomedical applications. 2020; 21(10): 4231-43.
[72]
Lin W, Ma G, Yuan Z, Qian H, Xu L, Sidransky E. Development of zwitterionic polypeptide nanoformulation with high doxorubicin loading content for targeted drug delivery. 2018; 35(5): 1273-83.
[73]
Ray P, Kale N, Quadir MJC, Biointerfaces SB. New side chain design for pH-responsive block copolymers for drug delivery. 2021; 200: 111563.
[74]
Mi P. Stimuli-responsive nanocarriers for drug delivery, tumor imaging, therapy and theranostics. Theranostics 2020; 10(10): 4557-88.
[http://dx.doi.org/10.7150/thno.38069] [PMID: 32292515]
[75]
Lu Y, Aimetti AA, Langer R, Gu Z. Bioresponsive materials. Nat Rev Mater 2016; 2(1): 1-17.
[76]
Raza F, Zhu Y, Chen L, et al. Paclitaxel-loaded pH responsive hydrogel based on self-assembled peptides for tumor targeting. Biomater Sci 2019; 7(5): 2023-36.
[http://dx.doi.org/10.1039/C9BM00139E] [PMID: 30839983]
[77]
Piao Y, Chen B. Self-assembled graphene oxide-gelatin nanocomposite hydrogels: Characterization, formation mechanisms, and pH-sensitive drug release behavior. J Polym Sci, B, Polym Phys 2015; 53(5): 356-67.
[http://dx.doi.org/10.1002/polb.23636]
[78]
Raza F, Zafar H, Zhu Y, et al. A review on recent advances in stabilizing peptides/proteins upon fabrication in hydrogels from biodegradable polymers. Pharmaceutics 2018; 10(1): 16.
[http://dx.doi.org/10.3390/pharmaceutics10010016] [PMID: 29346275]
[79]
Alemdar N. Fabrication of a novel bone ash-reinforced gelatin/alginate/hyaluronic acid composite film for controlled drug delivery. Carbohydr Polym 2016; 151: 1019-26.
[http://dx.doi.org/10.1016/j.carbpol.2016.06.033] [PMID: 27474650]
[80]
Ooi SY, Ahmad I, Amin MCIM. Cellulose nanocrystals extracted from rice husks as a reinforcing material in gelatin hydrogels for use in controlled drug delivery systems. Ind Crops Prod 2016; 93: 227-34.
[http://dx.doi.org/10.1016/j.indcrop.2015.11.082]
[81]
Suner SS, Sahiner M, Sengel SB, Rees DJ, Reed WF, Sahiner N. Responsive biopolymer-based microgels/nanogels for drug delivery applications. In: Makhlouf ASH, Abu-Thabit NY, Eds. Stimuli responsive polymeric nanocarriers for drug delivery applications. In: Amsterdam: Elsevier 2018; Vol. 1: pp. 453-500.
[http://dx.doi.org/10.1016/B978-0-08-101997-9.00021-7]
[82]
Mittal H, Ray SS, Kaith BS, Bhatia JK, Sharma J, Alhassan SM. Recent progress in the structural modification of chitosan for applications in diversified biomedical fields. Eur Polym J 2018; 109: 402-34.
[http://dx.doi.org/10.1016/j.eurpolymj.2018.10.013]
[83]
Ullah K, Ali Khan S, Murtaza G, et al. Gelatin-based hydrogels as potential biomaterials for colonic delivery of oxaliplatin. Int J Pharm 2019; 556: 236-45.
[http://dx.doi.org/10.1016/j.ijpharm.2018.12.020] [PMID: 30553956]
[84]
Javanbakht S, Nezhad-Mokhtari P, Shaabani A, Arsalani N, Ghorbani M. Incorporating Cu-based metal-organic framework/drug nanohybrids into gelatin microsphere for ibuprofen oral delivery. Mater Sci Eng C 2019; 96: 302-9.
[http://dx.doi.org/10.1016/j.msec.2018.11.028] [PMID: 30606537]
[85]
Das RP, Chakravarti S, Patel SS, et al. Tuning the pharmacokinetics and efficacy of irinotecan (IRI) loaded gelatin nanoparticles through folate conjugation. Int J Pharm 2020; 586: 119522.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119522] [PMID: 32534159]
[86]
Amjadi S, Hamishehkar H, Ghorbani M. A novel smart PEGylated gelatin nanoparticle for co-delivery of doxorubicin and betanin: A strategy for enhancing the therapeutic efficacy of chemotherapy. Mater Sci Eng C 2019; 97: 833-41.
[http://dx.doi.org/10.1016/j.msec.2018.12.104] [PMID: 30678974]
[87]
Chandrawati R. Enzyme-responsive polymer hydrogels for therapeutic delivery. Exp Biol Med (Maywood) 2016; 241(9): 972-9.
[http://dx.doi.org/10.1177/1535370216647186] [PMID: 27188515]
[88]
Liu J, Zhang B, Luo Z, et al. Enzyme responsive mesoporous silica nanoparticles for targeted tumor therapy in vitro and in vivo. Nanoscale 2015; 7(8): 3614-26.
[http://dx.doi.org/10.1039/C5NR00072F] [PMID: 25633047]
[89]
Zhang C, Pan D, Li J, et al. Enzyme-responsive peptide dendrimer-gemcitabine conjugate as a controlled-release drug delivery vehicle with enhanced antitumor efficacy. Acta Biomater 2017; 55: 153-62.
[http://dx.doi.org/10.1016/j.actbio.2017.02.047] [PMID: 28259838]
[90]
Huang J, Shu Q, Wang L, Wu H, Wang AY, Mao H. Layer-by-layer assembled milk protein coated magnetic nanoparticle enabled oral drug delivery with high stability in stomach and enzyme-responsive release in small intestine. Biomaterials 2015; 39: 105-13.
[http://dx.doi.org/10.1016/j.biomaterials.2014.10.059] [PMID: 25477177]
[91]
Gu X, Wei Y, Fan Q, et al. cRGD-decorated biodegradable polytyrosine nanoparticles for robust encapsulation and targeted delivery of doxorubicin to colorectal cancer in vivo. J Control Release 2019; 301: 110-8.
[http://dx.doi.org/10.1016/j.jconrel.2019.03.005] [PMID: 30898610]
[92]
Fu H, Shi K, Hu G, et al. Tumor-targeted paclitaxel delivery and enhanced penetration using TAT-decorated liposomes comprising redox-responsive poly(ethylene glycol). J Pharm Sci 2015; 104(3): 1160-73.
[http://dx.doi.org/10.1002/jps.24291] [PMID: 25449709]
[93]
Hu Q, Katti PS, Gu Z. Enzyme-responsive nanomaterials for controlled drug delivery. Nanoscale 2014; 6(21): 12273-86.
[http://dx.doi.org/10.1039/C4NR04249B] [PMID: 25251024]
[94]
Callmann CE, Barback CV, Thompson MP, Hall DJ, Mattrey RF, Gianneschi NC. Therapeutic enzyme-responsive nanoparticles for targeted delivery and accumulation in tumors. Adv Mater 2015; 27(31): 4611-5.
[http://dx.doi.org/10.1002/adma.201501803] [PMID: 26178920]
[95]
Liu Y, Ding X, Li J, et al. Enzyme responsive drug delivery system based on mesoporous silica nanoparticles for tumor therapy in vivo. Nanotechnology 2015; 26(14): 145102.
[http://dx.doi.org/10.1088/0957-4484/26/14/145102] [PMID: 25789511]
[96]
Nguyen MM, Carlini AS, Chien MP, et al. Enzyme-responsive nanoparticles for targeted accumulation and prolonged retention in heart tissue after myocardial infarction. Adv Mater 2015; 27(37): 5547-52.
[http://dx.doi.org/10.1002/adma.201502003] [PMID: 26305446]
[97]
Xin X, Teng C, Du X, et al. Drug-delivering-drug platform-mediated potent protein therapeutics via a non-endo-lysosomal route. Theranostics 2018; 8(13): 3474-89.
[http://dx.doi.org/10.7150/thno.23804] [PMID: 30026860]
[98]
Nosrati H, Mojtahedi A, Danafar H, Kheiri Manjili H. Enzymatic stimuli-responsive methotrexate-conjugated magnetic nanoparticles for target delivery to breast cancer cells and release study in lysosomal condition. J Biomed Mater Res A 2018; 106(6): 1646-54.
[http://dx.doi.org/10.1002/jbm.a.36364] [PMID: 29441671]
[99]
Cai H, Wang X, Zhang H, Sun L, Pan D, Gong Q, et al. Enzyme-sensitive biodegradable and multifunctional polymeric conjugate as theranostic nanomedicine. Appl Mater Today 2018; 11: 207-18.
[http://dx.doi.org/10.1016/j.apmt.2018.02.003]
[100]
Zhang H, Fei J, Yan X, Wang A, Li J. Enzyme-responsive release of doxorubicin from monodisperse dipeptide-based nanocarriers for highly efficient cancer treatment in vitro. Adv Funct Mater 2015; 25(8): 1193-204.
[http://dx.doi.org/10.1002/adfm.201403119]
[101]
Hou X-F, Chen Y, Liu Y. Enzyme-responsive protein/ polysaccharide supramolecular nanoparticles. Soft Matter 2015; 11(12): 2488-93.
[http://dx.doi.org/10.1039/C4SM02896A] [PMID: 25679755]
[102]
Li J, Liu F, Shao Q, et al. Enzyme-responsive cell-penetrating peptide conjugated mesoporous silica quantum dot nanocarriers for controlled release of nucleus-targeted drug molecules and real- time intracellular fluorescence imaging of tumor cells. Adv Healthc Mater 2014; 3(8): 1230-9.
[http://dx.doi.org/10.1002/adhm.201300613] [PMID: 24550203]
[103]
Srinivasarao M, Galliford CV, Low PS. Principles in the design of ligand-targeted cancer therapeutics and imaging agents. Nat Rev Drug Discov 2015; 14(3): 203-19.
[http://dx.doi.org/10.1038/nrd4519] [PMID: 25698644]
[104]
Vivero-Escoto JL, Slowing II, Trewyn BG, Lin VSY. Mesoporous silica nanoparticles for intracellular controlled drug delivery. Small 2010; 6(18): 1952-67.
[http://dx.doi.org/10.1002/smll.200901789] [PMID: 20690133]
[105]
Tang F, Li L, Chen D. Mesoporous silica nanoparticles: synthesis, biocompatibility and drug delivery. Adv Mater 2012; 24(12): 1504-34.
[http://dx.doi.org/10.1002/adma.201104763] [PMID: 22378538]
[106]
Méndez J, Monteagudo A, Griebenow K. Stimulus-responsive controlled release system by covalent immobilization of an enzyme into mesoporous silica nanoparticles. Bioconjug Chem 2012; 23(4): 698-704.
[http://dx.doi.org/10.1021/bc200301a] [PMID: 22375899]
[107]
Hu C, Cun X, Ruan S, et al. Enzyme-triggered size shrink and laser-enhanced NO release nanoparticles for deep tumor penetration and combination therapy. Biomaterials 2018; 168: 64-75.
[http://dx.doi.org/10.1016/j.biomaterials.2018.03.046] [PMID: 29626787]
[108]
Ruan S, He Q, Gao H. Matrix metalloproteinase triggered size-shrinkable gelatin-gold fabricated nanoparticles for tumor microenvironment sensitive penetration and diagnosis of glioma. Nanoscale 2015; 7(21): 9487-96.
[http://dx.doi.org/10.1039/C5NR01408E] [PMID: 25909483]
[109]
Baig MMFA, Lai W-F, Ahsan A, et al. Synthesis of ligand functionalized ErbB-3 targeted novel DNA nano-threads loaded with the low dose of doxorubicin for efficient in vitro evaluation of the resistant anti-cancer activity. Pharm Res 2020; 37(4): 75.
[http://dx.doi.org/10.1007/s11095-020-02803-1] [PMID: 32232574]
[110]
Shargh VH, Hondermarck H, Liang M. Gelatin-albumin hybrid nanoparticles as matrix metalloproteinases-degradable delivery systems for breast cancer therapy. Nanomedicine (Lond) 2017; 12(9): 977-89.
[http://dx.doi.org/10.2217/nnm-2016-0419] [PMID: 28440712]
[111]
Tsai L-C, Hsieh H-Y, Lu K-Y, Wang S-Y, Mi F-L. EGCG/gelatin-doxorubicin gold nanoparticles enhance therapeutic efficacy of doxorubicin for prostate cancer treatment. Nanomedicine (Lond) 2016; 11(1): 9-30.
[http://dx.doi.org/10.2217/nnm.15.183] [PMID: 26654241]
[112]
Shiba F. Preparation of monodisperse Prussian blue nanoparticles via reduction process with citric acid. Colloids Surf A Physicochem Eng Asp 2010; 366(1-3): 178-82.
[http://dx.doi.org/10.1016/j.colsurfa.2010.06.008]
[113]
Xue P, Cheong KK, Wu Y, Kang Y. An in-vitro study of enzyme-responsive Prussian blue nanoparticles for combined tumor chemotherapy and photothermal therapy. Colloids Surf B Biointerfaces 2015; 125: 277-83.
[http://dx.doi.org/10.1016/j.colsurfb.2014.10.059] [PMID: 25465756]
[114]
Guo X, Cheng Y, Zhao X, Luo Y, Chen J, Yuan W-E. Advances in redox-responsive drug delivery systems of tumor microenvironment. J Nanobiotechnology 2018; 16(1): 74.
[http://dx.doi.org/10.1186/s12951-018-0398-2] [PMID: 30243297]
[115]
Zhao X, Xi Y, Zhang Y, et al. Redox-Sensitive Gelatin/Silica-Aptamer Nanogels for Targeted siRNA Delivery. Nanoscale Res Lett 2019; 14(1): 273.
[http://dx.doi.org/10.1186/s11671-019-3101-0] [PMID: 31414279]
[116]
Singh A, Xu J, Mattheolabakis G, Amiji M. EGFR-targeted gelatin nanoparticles for systemic administration of gemcitabine in an orthotopic pancreatic cancer model. Nanomedicine 2016; 12(3): 589-600.
[http://dx.doi.org/10.1016/j.nano.2015.11.010] [PMID: 26656632]
[117]
Xie A, Hanif S, Ouyang J, et al. Stimuli-responsive prodrug-based cancer nanomedicine. EBioMedicine 2020; 56: 102821.
[http://dx.doi.org/10.1016/j.ebiom.2020.102821] [PMID: 32505922]
[118]
Zhu Y, Wang L, Li Y, Huang Z, Luo S, He Y, et al. Injectable pH and redox dual responsive hydrogel based on self-assembled peptides for anti-tumor drug delivery. Biomater Sci 2020; 8(19): 5415-26.
[http://dx.doi.org/10.1039/D0BM01004A]
[119]
Li J, Meng X, Deng J, et al. Multifunctional micelles dually responsive to hypoxia and singlet oxygen: enhanced photodynamic therapy via interactively triggered photosensitizer delivery. ACS Appl Mater Interfaces 2018; 10(20): 17117-28.
[http://dx.doi.org/10.1021/acsami.8b06299] [PMID: 29722261]
[120]
Han H, Valdepérez D, Jin Q, et al. Dual enzymatic reaction-assisted gemcitabine delivery systems for programmed pancreatic cancer therapy. ACS Nano 2017; 11(2): 1281-91.
[http://dx.doi.org/10.1021/acsnano.6b05541] [PMID: 28071891]
[121]
Zhu R, He H, Liu Y, et al. Cancer-selective bioreductive chemotherapy mediated by dual hypoxia-responsive nanomedicine upon photodynamic therapy-induced hypoxia aggravation. Biomacromolecules 2019; 20(7): 2649-56.
[http://dx.doi.org/10.1021/acs.biomac.9b00428] [PMID: 31125209]
[122]
Lu J, Chen Q, Ding X, Wen J, Zhang Y, Li H, et al. BSA modified, disulfide-bridged mesoporous silica with low biotoxicity for dual-responsive drug delivery. Microporous Mesoporous Mater 2019; 278: 257-66.
[http://dx.doi.org/10.1016/j.micromeso.2018.12.001]
[123]
Zhao X, Yang C-X, Chen L-G, Yan X-P. Dual-stimuli responsive and reversibly activatable theranostic nanoprobe for precision tumor-targeting and fluorescence-guided photothermal therapy. Nat Commun 2017; 8(1): 14998.
[http://dx.doi.org/10.1038/ncomms14998] [PMID: 28524865]
[124]
Wu MX, Gao J, Wang F, et al. Multistimuli responsive core–shell nanoplatform constructed from Fe3O4@ MOF equipped with pillar [6] arene nanovalves. Small 2018; 14(17): e1704440.
[http://dx.doi.org/10.1002/smll.201704440] [PMID: 29611291]
[125]
Zhou K, Zhu Y, Chen X, Li L, Xu W. Redox- and MMP-2-sensitive drug delivery nanoparticles based on gelatin and albumin for tumor targeted delivery of paclitaxel. Mater Sci Eng C 2020; 114: 111006.
[http://dx.doi.org/10.1016/j.msec.2020.111006] [PMID: 32993973]
[126]
Suarasan S, Focsan M, Potara M, et al. Doxorubicin-incorporated nanotherapeutic delivery system based on gelatin-coated gold nanoparticles: formulation, drug release, and multimodal imaging of cellular internalization. ACS Appl Mater Interfaces 2016; 8(35): 22900-13.
[http://dx.doi.org/10.1021/acsami.6b07583] [PMID: 27537061]
[127]
Desai P, Ann D, Wang J, Prabhu S. Pancreatic cancer: Recent advances in nanoformulation-based therapies. Critical Reviews™ in therapeutic drug carrier systems. 2019; 36(1)
[128]
Li F, Lu J, Liu J, et al. A water-soluble nucleolin aptamer-paclitaxel conjugate for tumor-specific targeting in ovarian cancer. Nat Commun 2017; 8(1): 1390.
[http://dx.doi.org/10.1038/s41467-017-01565-6] [PMID: 29123088]
[129]
Lee ES, Youn YS. Albumin-based potential drugs: focus on half-life extension and nanoparticle preparation. J Pharm Investig 2016; 46(4): 305-15.
[http://dx.doi.org/10.1007/s40005-016-0250-3]
[130]
Chou LY, Ming K, Chan WC. Strategies for the intracellular delivery of nanoparticles. Chem Soc Rev 2011; 40(1): 233-45.
[http://dx.doi.org/10.1039/C0CS00003E] [PMID: 20886124]
[131]
Wang K, Zhang Y, Wang J, et al. Self-assembled IR780-loaded transferrin nanoparticles as an imaging, targeting and PDT/PTT agent for cancer therapy. Sci Rep 2016; 6(1): 27421.
[http://dx.doi.org/10.1038/srep27421] [PMID: 27263444]
[132]
Song X, Gan K, Qin S, et al. Preparation and characterization of general-purpose gelatin-based co-loading flavonoids nano-core structure. Sci Rep 2019; 9(1): 6365.
[http://dx.doi.org/10.1038/s41598-019-42909-0] [PMID: 31019215]
[133]
Abdelrady H, Hathout RM, Osman R, Saleem I, Mortada ND. Exploiting gelatin nanocarriers in the pulmonary delivery of methotrexate for lung cancer therapy. Eur J Pharm Sci 2019; 133: 115-26.
[http://dx.doi.org/10.1016/j.ejps.2019.03.016] [PMID: 30905615]
[134]
Jahanban-Esfahlan R, Derakhshankhah H, Haghshenas B, Massoumi B, Abbasian M, Jaymand M. A bio-inspired magnetic natural hydrogel containing gelatin and alginate as a drug delivery system for cancer chemotherapy. Int J Biol Macromol 2020; 156: 438-45.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.04.074] [PMID: 32298719]
[135]
Li P, Chen W, Yan Y, Chen B, Wang Y, Huang X. Laser-triggered injectable gelatin hydrogels system for combinatorial upconversion fluorescence imaging and antitumor chemophotothermal therapy. ACS Appl Bio Mater 2019; 2(9): 3722-9.
[http://dx.doi.org/10.1021/acsabm.9b00220]
[136]
Lu S, Fan X, Wang H, et al. Synthesis of gelatin-based dual-targeted nanoparticles of betulinic acid for antitumor therapy. ACS Appl Bio Mater 2020; 3(6): 3518-25.
[http://dx.doi.org/10.1021/acsabm.9b01204]
[137]
Thi TTH, Lee Y, Ryu SB, Sung H-J, Park KD. Oxidized cyclodextrin-functionalized injectable gelatin hydrogels as a new platform for tissue-adhesive hydrophobic drug delivery. RSC Advances 2017; 7(54): 34053-62.
[http://dx.doi.org/10.1039/C7RA04137C]
[138]
Rao L, Bu LL, Xu JH, et al. Red blood cell membrane as a biomimetic nanocoating for prolonged circulation time and reduced accelerated blood clearance. Small 2015; 11(46): 6225-36.
[http://dx.doi.org/10.1002/smll.201502388] [PMID: 26488923]
[139]
Raza F, Zafar H, Zhang S, et al. Recent advances in cell membrane-derived biomimetic nanotechnology for cancer immunotherapy. Adv Healthc Mater 2021; 10(6): e2002081.
[http://dx.doi.org/10.1002/adhm.202002081] [PMID: 33586322]
[140]
Zhang J, Li J, Kawazoe N, Chen G. Composite scaffolds of gelatin and gold nanoparticles with tunable size and shape for photothermal cancer therapy. J Mater Chem B Mater Biol Med 2017; 5(2): 245-53.
[http://dx.doi.org/10.1039/C6TB02872A] [PMID: 32263543]
[141]
Meng Q-F, Cheng Y-X, Huang Q, et al. Biomimetic immunomagnetic nanoparticles with minimal nonspecific biomolecule adsorption for enhanced isolation of circulating tumor cells. ACS Appl Mater Interfaces 2019; 11(32): 28732-9.
[http://dx.doi.org/10.1021/acsami.9b10318] [PMID: 31339033]
[142]
Rao L, Meng Q-F, Bu L-L, et al. Erythrocyte membrane-coated upconversion nanoparticles with minimal protein adsorption for enhanced tumor imaging. ACS Appl Mater Interfaces 2017; 9(3): 2159-68.
[http://dx.doi.org/10.1021/acsami.6b14450] [PMID: 28050902]
[143]
Xie W, Deng W-W, Zan M, et al. Cancer cell membrane camouflaged nanoparticles to realize starvation therapy together with checkpoint blockades for enhancing cancer therapy. ACS Nano 2019; 13(3): 2849-57.
[http://dx.doi.org/10.1021/acsnano.8b03788] [PMID: 30803232]
[144]
Lian Y, Wang X, Guo P, et al. Erythrocyte membrane-coated arsenic trioxide-loaded sodium alginate nanoparticles for tumor therapy. Pharmaceutics 2019; 12(1): 21.
[http://dx.doi.org/10.3390/pharmaceutics12010021] [PMID: 31878155]
[145]
Cheng Z, Liu S, Wu X, et al. Autologous erythrocytes delivery of berberine hydrochloride with long-acting effect for hypolipidemia treatment. Drug Deliv 2020; 27(1): 283-91.
[http://dx.doi.org/10.1080/10717544.2020.1716880] [PMID: 32013620]
[146]
Xu E, Wu X, Zhang X, et al. Study on the protection of dextran on erythrocytes during drug loading. Colloids Surf B Biointerfaces 2020; 189: 110882.
[http://dx.doi.org/10.1016/j.colsurfb.2020.110882] [PMID: 32092635]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy