Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Electrosprayed Nanoparticles as Drug Delivery Systems for Biomedical Applications

Author(s): Sairish Malik, Sundarrajan Subramanian*, Tanveer Hussain, Ahsan Nazir and Seeram Ramakrishna*

Volume 28, Issue 5, 2022

Published on: 29 September, 2021

Page: [368 - 379] Pages: 12

DOI: 10.2174/1381612827666210929114621

Price: $65

Abstract

Background: Nanotechnology is a tool being used intensely in the area of drug delivery systems in the biomedical field. Electrospraying is one of the nanotechnological methods, which is growing due to its importance in the development of nanoparticles comprising bioactive compounds. It is helpful in improving the efficacy, reducing side effects of active drug elements, and is useful in targeted drug delivery. When compared to other conventional methods like nanoprecipitation, emulsion diffusion, and double emulsification, electrospraying offers better advantages to produce micro/nanoparticles due to its simplicity, cost-effectiveness, and single-step process.

Objective: The aim of this paper is to highlight the use of electrosprayed nanoparticles for biomedical applications.

Methods: We conducted a literature review on the usage of natural and synthetic materials to produce nanoparticles, which can be used as a drug delivery system for medical purposes.

Results: We summarized a possible key role of electrosprayed nanoparticles in different therapeutic applications (tissue regeneration, cancer).

Conclusion: The modest literature production denotes that further investigation is needed to assess and validate the promising role of drug-loaded nanoparticles through the electrospraying process as noninvasive materials in the biomedical field.

Keywords: Nanotechnology, electrospraying, drug delivery, nanoparticles, biomaterials, biomedical field.

[1]
Wang M, Mi G, Shi D, Bassous N, Hickey D, Webster TJ. Nanotechnology and nanomaterials for improving neural interfaces. Adv Funct Mater 2018; 28(12): 1700905.
[http://dx.doi.org/10.1002/adfm.201700905]
[2]
Subramanian V, Lee T. Nanotechnology-based flexible electronics. Nanotechnology 2012; 23(34): 340201.
[http://dx.doi.org/10.1088/0957-4484/23/34/340201] [PMID: 22885735]
[3]
Chakraborty M, Jain S, Rani V. Nanotechnology: emerging tool for diagnostics and therapeutics. Appl Biochem Biotechnol 2011; 165(5-6): 1178-87.
[http://dx.doi.org/10.1007/s12010-011-9336-6] [PMID: 21847590]
[4]
Bavasso I, Vilardi G, Stoller M, Chianese A, Di Palma L. Perspectives in nanotechnology based innovative applications for the environment. Chem Eng Trans 2016; 47: 55-60.
[http://dx.doi.org/10.3303/CET1647010]
[5]
West JL, Halas NJ. Applications of nanotechnology to biotechnology commentary. Curr Opin Biotechnol 2000; 11(2): 215-7.
[http://dx.doi.org/10.1016/S0958-1669(00)00082-3] [PMID: 10753774]
[6]
Koo JH, Pilato LA, Wissler GE. Polymer nanostructured materials for propulsion systems. J Spacecr Rockets 2007; 44: 1250-62.
[http://dx.doi.org/10.2514/1.26295]
[7]
Schmid G. Nanopartilces - From Theory to Application 2010.
[8]
Singh AV, Ansari MHD, Laux P, Luch A. Micro-nanorobots: important considerations when developing novel drug delivery platforms. Expert Opin Drug Deliv 2019; 16(11): 1259-75.
[http://dx.doi.org/10.1080/17425247.2019.1676228] [PMID: 31580731]
[9]
Negahdari R, Bohlouli S, Sharifi S, Maleki Dizaj S, Rahbar Saadat Y, Khezri K. Therapeutic benefits of rutin and its nanoformulations. Phytother Res 2020; 35(4): 1719-38.
[http://dx.doi.org/10.1002/ptr.6904]
[10]
Liechty WB, Kryscio DR, Slaughter BV, Peppas NA. Polymers for drug delivery systems. Annu Rev Chem Biomol Eng 2010; 1: 149-73.
[http://dx.doi.org/10.1146/annurev-chembioeng-073009-100847] [PMID: 22432577]
[12]
Khan I, Saeed K, Khan I. Nanoparticles: Properties, applications and toxicities. Arab J Chem 2019; 12: 908-31.
[http://dx.doi.org/10.1016/j.arabjc.2017.05.011]
[13]
Couvreur P. Nanoparticles in drug delivery: past, present and future. Adv Drug Deliv Rev 2013; 65(1): 21-3.
[http://dx.doi.org/10.1016/j.addr.2012.04.010] [PMID: 22580334]
[14]
Bilati U, Allémann E, Doelker E. Nanoprecipitation versus emulsion-based techniques for the encapsulation of proteins into biodegradable nanoparticles and process-related stability issues. AAPS PharmSciTech 2005; 6(4): E594-604.
[http://dx.doi.org/10.1208/pt060474] [PMID: 16408861]
[15]
Wang J, Jansen JA, Yang F. Electrospraying: Possibilities and challenges of engineering carriers for biomedical applications - a mini review. Front Chem 2019; 7: 258.
[http://dx.doi.org/10.3389/fchem.2019.00258] [PMID: 31106194]
[16]
Malik S, Hussain T, Nazir A, Khenoussi N, Cheema SA. Oriented electrospun nanofibers on stand-alone multi-segmented cylindrical collectors. J Textil Inst 2020; 112(6): 955-64.
[http://dx.doi.org/10.1080/00405000.2020.1794112]
[17]
Malik S, Hussain T, Nazir A, Khenoussi N, Cheema SA. Modified cylindrical collectors for improved orientation of electrospun nanofibers. Polym Bull 2021; 78: 849-62.
[http://dx.doi.org/10.1007/s00289-020-03144-0]
[18]
Alehosseini A, Ghorani B, Sarabi-Jamab M, Tucker N. Principles of electrospraying: A new approach in protection of bioactive compounds in foods. Crit Rev Food Sci Nutr 2018; 58(14): 2346-63.
[http://dx.doi.org/10.1080/10408398.2017.1323723] [PMID: 28609112]
[19]
Salatin S, Barar J, Barzegar-Jalali M, Adibkia K, Kiafar F, Jelvehgari M. Development of a nanoprecipitation method for the entrapment of a very water soluble drug into Eudragit RL nanoparticles. Res Pharm Sci 2017; 12(1): 1-14.
[http://dx.doi.org/10.4103/1735-5362.199041] [PMID: 28255308]
[20]
Dhas NL, Ige PP, Kudarha RR. Design, optimization and in-vitro study of folic acid conjugated-chitosan functionalized PLGA nanoparticle for delivery of bicalutamide in prostate cancer. Powder Technol 2015; 283: 234-45.
[http://dx.doi.org/10.1016/j.powtec.2015.04.053]
[21]
Piñón-Segundo E, Llera-Rojas VG, Leyva-Gómez G, Urbán-Morlán Z, Mendoza-Muñoz N, Quintanar-Guerrero D. The emulsification-diffusion method to obtain polymeric nanoparticles: Two decades of research.Nanoscale Fabr Optim Scale-up Biol Asp Pharm Nanotechnol. Elsevier 2017; pp. 51-83.
[http://dx.doi.org/10.1016/B978-0-12-813629-4.00002-4]
[22]
McCall RL, Sirianni RW. PLGA nanoparticles formed by single- or double-emulsion with vitamin E-TPGS. J Vis Exp 2013; 82(82): 51015.
[http://dx.doi.org/10.3791/51015] [PMID: 24429733]
[23]
Patel SG, Patel MD, Patel AJ, Chougule MB, Choudhury H. Solid lipid nanoparticles for targeted brain drug delivery Nanotechnology-Based Target Drug Deliv Syst Brain Tumors. Elsevier 2018; pp. 191-244.
[http://dx.doi.org/10.1016/B978-0-12-812218-1.00008-7]
[24]
Tapia-Hernández JA, Torres-Chávez PI, Ramírez-Wong B, et al. Micro- and nanoparticles by electrospray: Advances and applications in foods. J Agric Food Chem 2015; 63(19): 4699-707.
[http://dx.doi.org/10.1021/acs.jafc.5b01403] [PMID: 25938374]
[25]
Tapia-Hernández JA, Rodríguez-Félix F, Katouzian I. Nanocapsule formation by electrosprayingNanoencapsulation Technol Food Nutraceutical Ind. Elsevier 2017; pp. 320-45.
[http://dx.doi.org/10.1016/B978-0-12-809436-5.00009-4]
[26]
Jafari SM. An overview of nanoencapsulation techniques and their classification. In: Nanoencapsulation Technol Food Nutraceutical Ind. Elsevier 2017; pp. 1-34.
[http://dx.doi.org/10.1016/B978-0-12-809436-5.00001-X]
[27]
Marín ÁG, Loscertales IG, Barrero A. Conical tips inside cone-jet electrosprays. Phys Fluids 2008; 20(4)
[http://dx.doi.org/10.1063/1.2901274]
[28]
Jafari SM, McClements DJ. Nanotechnology approaches for increasing nutrient bioavailability. Adv Food Nutr Res 2017; 81: 1-30.
[http://dx.doi.org/10.1016/bs.afnr.2016.12.008]
[29]
Assadpour E, Jafari SM. An overview of specialized equipment for nanoencapsulation of food ingredients. Nanoencapsulation Food Ingredients by Spec 2019.
[http://dx.doi.org/10.1016/B978-0-12-815671-1.00001-9]
[30]
Chakraborty S, Liao IC, Adler A, Leong KW. Electrohydrodynamics: A facile technique to fabricate drug delivery systems. Adv Drug Deliv Rev 2009; 61(12): 1043-54.
[http://dx.doi.org/10.1016/j.addr.2009.07.013] [PMID: 19651167]
[31]
Siepmann J, Siegel RA, Siepmann F. Diffusion controlled drug delivery systems. Fundam Appl Control Release Drug Deliv: Springer, US 2012; pp. 127-52.
[http://dx.doi.org/10.1007/978-1-4614-0881-9_6]
[32]
Lee JH, Yeo Y. Controlled drug release from pharmaceutical nanocarriers. Chem Eng Sci 2015; 125: 75-84.
[http://dx.doi.org/10.1016/j.ces.2014.08.046] [PMID: 25684779]
[33]
Fan L, Singh SK, Fan L, Singh SK. Chemical Reaction Controlled Release. Control. Release, Springer Berlin Heidelberg 1989; pp. 89-109.
[http://dx.doi.org/10.1007/978-3-642-74507-2_3]
[34]
Zhu Y, Shi J, Shen W, et al. Stimuli-responsive controlled drug release from a hollow mesoporous silica sphere/polyelectrolyte multilayer core-shell structure. Angew Chem Int Ed 2005; 44(32): 5083-7.
[http://dx.doi.org/10.1002/anie.200501500] [PMID: 16015668]
[35]
Patra JK, Das G, Fraceto LF, et al. Nano based drug delivery systems: recent developments and future prospects. J Nanobiotechnology 2018; 16(1): 71.
[http://dx.doi.org/10.1186/s12951-018-0392-8] [PMID: 30231877]
[36]
Duschl A. NanomedicineImmune Rebalancing Futur Immunosuppr. Elsevier Inc. 2016; pp. 251-74.
[http://dx.doi.org/10.1016/B978-0-12-803302-9.00012-9]
[37]
Madkour LH. Nucleic acid medicines as green novel anticancer drugs Nucleic acids as gene anticancer drug delivery therapy. Elsevier 2019; pp. 131-49.
[http://dx.doi.org/10.1016/B978-0-12-819777-6.00010-X]
[38]
Abdel Samie SM, Nasr M. Food to medicine transformation of stilbenoid vesicular and lipid-based nanocarriers: Technological advancesDrug Deliv Asp. Elsevier 2020; pp. 227-45.
[http://dx.doi.org/10.1016/B978-0-12-821222-6.00011-7]
[39]
Attia MF, Anton N, Wallyn J, Omran Z, Vandamme TF. An overview of active and passive targeting strategies to improve the nanocarriers efficiency to tumour sites. J Pharm Pharmacol 2019; 71(8): 1185-98.
[http://dx.doi.org/10.1111/jphp.13098] [PMID: 31049986]
[40]
Surib NA, Mohd Paad K. Electrospray flow rate influenced the sized of functionalized soot nanoparticles. Asia-Pac J Chem Eng 2020; 15.
[http://dx.doi.org/10.1002/apj.2417]
[41]
Zolkepali NK, Bakar NF, Naim MN, Anuar N, Bakar MR, Eds. Nanoparticle preparation of mefenamic acid by electrospray drying. In AIP Conference Proceedings, American Institute of Physics. 2014; 1586: pp. (1)113-8.
[http://dx.doi.org/10.1063/1.4866742]
[42]
Hekmati AH, Rashidi A, Ghazisaeidi R, Drean JY. Effect of needle length, electrospinning distance, and solution concentration on morphological properties of polyamide-6 electrospun nanowebs. Text Res J 2013; 83: 1452-66.
[http://dx.doi.org/10.1177/0040517512471746]
[43]
Bhuiyan MHU, Saidur R, Amalina MA, Mostafizur RM, Islam AKMS. Effect of nanoparticles concentration and their sizes on surface tension of nanofluids. Procedia Eng Elsevier Ltd 2015; 105: 431-7.
[http://dx.doi.org/10.1016/j.proeng.2015.05.030]
[44]
Sharifi Dehsari H, Halda Ribeiro A, Ersöz B, Tremel W, Jakob G, Asadi K. Effect of precursor concentration on size evolution of iron oxide nanoparticles. CrystEngComm 2017; 19: 6694-702.
[http://dx.doi.org/10.1039/C7CE01406F]
[45]
Feitosa RC, Geraldes DC, Beraldo-de-Araújo VL, Costa JSR, Oliveira-Nascimento L. Pharmacokinetic aspects of nanoparticle-in-matrix drug delivery systems for oral/buccal delivery. Front Pharmacol 2019; 10: 1057.
[http://dx.doi.org/10.3389/fphar.2019.01057] [PMID: 31607914]
[46]
Hua S. Advances in nanoparticulate drug delivery approaches for sublingual and buccal administration. Front Pharmacol 2019; 10: 1328.
[http://dx.doi.org/10.3389/fphar.2019.01328] [PMID: 31827435]
[47]
Tran PHL, Duan W, Tran TTD. Recent developments of nanoparticle-delivered dosage forms for buccal delivery. Int J Pharm 2019; 571: 118697.
[http://dx.doi.org/10.1016/j.ijpharm.2019.118697] [PMID: 31526839]
[48]
Macedo AS, Castro PM, Roque L, et al. Novel and revisited approaches in nanoparticle systems for buccal drug delivery. J Control Release 2020; 320: 125-41.
[http://dx.doi.org/10.1016/j.jconrel.2020.01.006] [PMID: 31917295]
[49]
Saboktakin MR, Tabatabaie RM, Maharramov A, Ramazanov MA. Synthesis and in vitro evaluation of carboxymethyl starch-chitosan nanoparticles as drug delivery system to the colon. Int J Biol Macromol 2011; 48(3): 381-5.
[http://dx.doi.org/10.1016/j.ijbiomac.2010.10.005] [PMID: 20955728]
[50]
Lamprecht A, Ubrich N, Yamamoto H, et al. Biodegradable nanoparticles for targeted drug delivery in treatment of inflammatory bowel disease. J Pharmacol Exp Ther 2001; 299(2): 775-81.
[PMID: 11602694]
[51]
Coco R, Plapied L, Pourcelle V, et al. Drug delivery to inflamed colon by nanoparticles: comparison of different strategies. Int J Pharm 2013; 440(1): 3-12.
[http://dx.doi.org/10.1016/j.ijpharm.2012.07.017] [PMID: 22820482]
[52]
Izadi Z, Divsalar A, Saboury AA, Sawyer L. β-lactoglobulin-pectin nanoparticle-based oral drug delivery system for potential treatment of colon cancer. Chem Biol Drug Des 2016; 88(2): 209-16.
[http://dx.doi.org/10.1111/cbdd.12748] [PMID: 26896377]
[53]
Zakeri-Milani P, Loveymi BD, Jelvehgari M, Valizadeh H. The characteristics and improved intestinal permeability of vancomycin PLGA-nanoparticles as colloidal drug delivery system. Colloids Surf B Biointerfaces 2013; 103: 174-81.
[http://dx.doi.org/10.1016/j.colsurfb.2012.10.021] [PMID: 23201735]
[54]
Pan Y, Li YJ, Zhao HY, et al. Bioadhesive polysaccharide in protein delivery system: chitosan nanoparticles improve the intestinal absorption of insulin in vivo. Int J Pharm 2002; 249(1-2): 139-47.
[http://dx.doi.org/10.1016/S0378-5173(02)00486-6] [PMID: 12433442]
[55]
Dyer AM, Hinchcliffe M, Watts P, et al. Nasal delivery of insulin using novel chitosan based formulations: A comparative study in two animal models between simple chitosan formulations and chitosan nanoparticles. Pharm Res 2002; 19(7): 998-1008.
[http://dx.doi.org/10.1023/A:1016418523014] [PMID: 12180553]
[56]
Luppi B, Bigucci F, Cerchiara T, Zecchi V. Chitosan-based hydrogels for nasal drug delivery: from inserts to nanoparticles. Expert Opin Drug Deliv 2010; 7(7): 811-28.
[http://dx.doi.org/10.1517/17425247.2010.495981] [PMID: 20560778]
[57]
Paolicelli P, de la Fuente M, Sánchez A, Seijo B, Alonso MJ. Chitosan nanoparticles for drug delivery to the eye. Expert Opin Drug Deliv 2009; 6(3): 239-53.
[http://dx.doi.org/10.1517/17425240902762818] [PMID: 19290841]
[58]
Harmia T, Speiser P, Kreuter J. A solid colloidal drug delivery system for the eye: encapsulation of pilocarpin in nanoparticles. J Microencapsul 1986; 3(1): 3-12.
[http://dx.doi.org/10.3109/02652048609049580] [PMID: 3508173]
[59]
Rytting E, Nguyen J, Wang X, Kissel T. Biodegradable polymeric nanocarriers for pulmonary drug delivery. Expert Opin Drug Deliv 2008; 5(6): 629-39.
[http://dx.doi.org/10.1517/17425247.5.6.629] [PMID: 18532919]
[60]
Bailey MM, Berkland CJ. Nanoparticle formulations in pulmonary drug delivery. Med Res Rev 2009; 29(1): 196-212.
[http://dx.doi.org/10.1002/med.20140] [PMID: 18958847]
[61]
Khan R, Khan MH. Use of collagen as a biomaterial: An update. J Indian Soc Periodontol 2013; 17(4): 539-42.
[http://dx.doi.org/10.4103/0972-124X.118333] [PMID: 24174741]
[62]
Da Sacco L, Masotti A. Chitin and chitosan as multipurpose natural polymers for groundwater arsenic removal and AS2O3 delivery in tumor therapy. Mar Drugs 2010; 8(5): 1518-25.
[http://dx.doi.org/10.3390/md8051518] [PMID: 20559486]
[63]
Zhang S, Kawakami K. One-step preparation of chitosan solid nanoparticles by electrospray deposition. Int J Pharm 2010; 397(1-2): 211-7.
[http://dx.doi.org/10.1016/j.ijpharm.2010.07.007] [PMID: 20637272]
[64]
Gunduz O, Ahmad Z, Stride E, Edirisinghe M. Continuous generation of ethyl cellulose drug delivery nanocarriers from microbubbles. Pharm Res 2013; 30(1): 225-37.
[http://dx.doi.org/10.1007/s11095-012-0865-7] [PMID: 22956171]
[65]
Nagarajan U, Kawakami K, Zhang S, Chandrasekaran B, Unni Nair B. Fabrication of solid collagen nanoparticles using electrospray deposition. Chem Pharm Bull (Tokyo) 2014; 62(5): 422-8.
[http://dx.doi.org/10.1248/cpb.c13-01004] [PMID: 24789924]
[66]
Shalumon KT, Anulekha KH, Nair SV, Nair SV, Chennazhi KP, Jayakumar R. Sodium alginate/poly(vinyl alcohol)/nano ZnO composite nanofibers for antibacterial wound dressings. Int J Biol Macromol 2011; 49(3): 247-54.
[http://dx.doi.org/10.1016/j.ijbiomac.2011.04.005] [PMID: 21635916]
[67]
Alallam B, Altahhan S, Taher M, Mohd Nasir MH, Doolaanea AA. Electrosprayed alginate nanoparticles as crispr plasmid dna delivery carrier: Preparation, optimization, and characterization. Pharmaceuticals (Basel) 2020; 13(8): 1-29.
[http://dx.doi.org/10.3390/ph13080158] [PMID: 32707857]
[68]
Kim S, Moon MJ, Poilil Surendran S, Jeong YY. Biomedical applications of hyaluronic acid-based nanomaterials in hyperthermic cancer therapy. Pharmaceutics 2019; 11(7): E306.
[http://dx.doi.org/10.3390/pharmaceutics11070306] [PMID: 31266194]
[69]
Fang Y, Zhu X, Wang N, Zhang X, Yang D, Nie J. Biodegradable core-shell electrospun nanofibers based on PLA and γ-PGA for wound healing. Eur Polym J 2019; 116: 30-7.
[http://dx.doi.org/10.1016/j.eurpolymj.2019.03.050]
[70]
Ramesh B, Cherian KM, Fakoya AOJ. Fabrication and electrospinning of 3D biodegradable poly-l-lactic acid (PLLA) nanofibers for clinical application. Methods Mol Biol 2020; 2125: 119-28.
[http://dx.doi.org/10.1007/7651_2019_213] [PMID: 30771191]
[71]
Martins D, Scagion VP, Schneider R, Lemos ACC, Oliveira J, Correa DS. Biodegradable polymer nanofibers applied in slow release systems for agri-food applications Polym Agri-Food Appl. Springer International Publishing 2019; pp. 291-316.
[http://dx.doi.org/10.1007/978-3-030-19416-1_15]
[72]
Shasteen C, Choy Y. Controlling degradation rate of poly(lactic acid) for its biomedical applications. Biomed Eng Lett 2011; 1: 163-7.
[http://dx.doi.org/10.1007/s13534-011-0025-8]
[73]
Stitzel JD, Bowlin GL, Mansfield K, Wnek GE, Simpson DG. Electrospraying and electrospinning of polymers for biomedical applications. Int SAMPE Tech Conf vol. 32: 205-11.
[74]
Tyler B, Gullotti D, Mangraviti A, Utsuki T, Brem H. Polylactic acid (PLA) controlled delivery carriers for biomedical applications. Adv Drug Deliv Rev 2016; 107: 163-75.
[http://dx.doi.org/10.1016/j.addr.2016.06.018] [PMID: 27426411]
[75]
Valente TAM, Silva DM, Gomes PS, Fernandes MH, Santos JD, Sencadas V. Effect of sterilization methods on electrospun poly(lactic acid) (PLA) fiber alignment for biomedical applications. ACS Appl Mater Interfaces 2016; 8(5): 3241-9.
[http://dx.doi.org/10.1021/acsami.5b10869] [PMID: 26756809]
[76]
Vieira AC, Vieira JC, Guedes RM, Marques AT. Degradation and viscoelastic properties of PLA-PCL, PGA-PCL, PDO and PGA fibres. Mater Sci Forum 2010; 636-637: 825-32.
[http://dx.doi.org/10.4028/www.scientific.net/MSF.636-637.825]
[77]
Jem KJ, Tan B. The development and challenges of poly (lactic acid) and poly (glycolic acid). Adv Ind Eng Polym Res 2020.
[http://dx.doi.org/10.1016/j.aiepr.2020.01.002]
[78]
Ghaffarzadegan R, Khoee S, Rezazadeh S. Fabrication, characterization and optimization of berberine-loaded PLA nanoparticles using coaxial electrospray for sustained drug release. Daru 2020; 28(1): 237-52.
[http://dx.doi.org/10.1007/s40199-020-00335-y] [PMID: 32307652]
[79]
Yang YY, Chung TS, Bai XL, Chan WK. Effect of preparation conditions on morphology and release profiles of biodegradable polymeric microspheres containing protein fabricated by double-emulsion method. Chem Eng Sci 2000; 55: 2223-36.
[http://dx.doi.org/10.1016/S0009-2509(99)00503-5]
[80]
Haider T, Shyshov O, Suraeva O, Lieberwirth I, von Delius M, Wurm FR. Long-Chain Polyorthoesters as Degradable Polyethylene Mimics. Macromolecules 2019; 52(6): 2411-20.
[http://dx.doi.org/10.1021/acs.macromol.9b00180] [PMID: 31496544]
[81]
Malikmammadov E, Tanir TE, Kiziltay A, Hasirci V, Hasirci N. PCL and PCL-based materials in biomedical applications. J Biomater Sci Polym Ed 2018; 29(7-9): 863-93.
[http://dx.doi.org/10.1080/09205063.2017.1394711] [PMID: 29053081]
[82]
Siddiqui N, Asawa S, Birru B, Baadhe R, Rao S. PCL-Based composite scaffold matrices for tissue engineering applications. Mol Biotechnol 2018; 60(7): 506-32.
[http://dx.doi.org/10.1007/s12033-018-0084-5] [PMID: 29761314]
[83]
Prasad A, Kandasubramanian B. Fused deposition processing polycaprolactone of composites for biomedical applications. Polym Technol Mater 2019; 58: 1365-98.
[http://dx.doi.org/10.1080/25740881.2018.1563117]
[84]
Savjani KT, Gajjar AK, Savjani JK. Drug solubility: importance and enhancement techniques. ISRN Pharm 2012; 2012: 195727.
[http://dx.doi.org/10.5402/2012/195727] [PMID: 22830056]
[85]
Chen DR, Pui DYH. Electrospray and its medical applications Nanoparticles Med Environ Inhal Heal Eff. Kluwer Academic Publishers 2010; pp. 59-75.
[http://dx.doi.org/10.1007/978-90-481-2632-3_4]
[86]
Moghimi SM, Hunter AC, Murray JC. Long-circulating and target-specific nanoparticles: theory to practice. Pharmacol Rev 2001; 53(2): 283-318.
[PMID: 11356986]
[87]
Lerman C, Trock B, Rimer BK, Jepson C, Brody D, Boyce A. Psychological side effects of breast cancer screening. Health Psychol 1991; 10(4): 259-67.
[http://dx.doi.org/10.1037/0278-6133.10.4.259] [PMID: 1915212]
[88]
Álvarez RH. Present and future evolution of advanced breast cancer therapy. Breast Cancer Res 2010; 12(Suppl. 2): S1.
[http://dx.doi.org/10.1186/bcr2572] [PMID: 21050422]
[89]
Zahin N, Anwar R, Tewari D, et al. Nanoparticles and its biomedical applications in health and diseases: special focus on drug delivery. Environ Sci Pollut Res Int 2020; 27(16): 19151-68.
[http://dx.doi.org/10.1007/s11356-019-05211-0] [PMID: 31079299]
[90]
Chatterjee M, Maity R, Das S, Mahata N, Basu B, Chanda N. Electrospray-based synthesis of fluorescent poly(d, l -lactide- co -glycolide) nanoparticles for the efficient delivery of an anticancer drug and self-monitoring its effect in drug-resistant breast cancer cells. Mater Adv 2020; 1: 3033-48.
[http://dx.doi.org/10.1039/D0MA00646G]
[91]
Lee SY, Lee JJ, Park JH, et al. Electrosprayed nanocomposites based on hyaluronic acid derivative and Soluplus for tumor-targeted drug delivery. Colloids Surf B Biointerfaces 2016; 145: 267-74.
[http://dx.doi.org/10.1016/j.colsurfb.2016.05.009] [PMID: 27208440]
[92]
Zhu W, Lee SJ, Castro NJ, Yan D, Keidar M, Zhang LG. Synergistic effect of cold atmospheric plasma and drug loaded core-shell nanoparticles on inhibiting breast cancer cell growth. Sci Rep 2016; 6: 21974.
[http://dx.doi.org/10.1038/srep21974] [PMID: 26917087]
[93]
Jayaraman P, Gandhimathi C, Venugopal JR, Becker DL, Ramakrishna S, Srinivasan DK. Controlled release of drugs in electrosprayed nanoparticles for bone tissue engineering. Adv Drug Deliv Rev 2015; 94: 77-95.
[http://dx.doi.org/10.1016/j.addr.2015.09.007] [PMID: 26415888]
[94]
Khorshidi S, Karkhaneh A, Bonakdar S. Fabrication of amine-decorated nonspherical microparticles with calcium peroxide cargo for controlled release of oxygen. J Biomed Mater Res A 2020; 108(1): 136-47.
[http://dx.doi.org/10.1002/jbm.a.36799] [PMID: 31515881]
[95]
Kimna C, Deger S, Tamburaci S, Tihminlioglu F. Chitosan/montmorillonite composite nanospheres for sustained antibiotic delivery at post-implantation bone infection treatment. Biomed Mater 2019; 14(4): 044101.
[http://dx.doi.org/10.1088/1748-605X/ab1a04] [PMID: 30991372]
[96]
Prasad SR, Jayakrishnan A, Kumar TSS. Combinational delivery of anticancer drugs for osteosarcoma treatment using electrosprayed core shell nanocarriers. J Mater Sci Mater Med 2020; 31(5): 44.
[http://dx.doi.org/10.1007/s10856-020-06379-5] [PMID: 32367204]
[97]
Perteghella S, Crivelli B, Catenacci L, et al. Stem cell-extracellular vesicles as drug delivery systems: New frontiers for silk/curcumin nanoparticles. Int J Pharm 2017; 520(1-2): 86-97.
[http://dx.doi.org/10.1016/j.ijpharm.2017.02.005] [PMID: 28163224]
[98]
Roso M, Sundarrajan S, Pliszka D, Ramakrishna S, Modesti M. Multifunctional membranes based on spinning technologies: thesynergy of nanofibers and nanoparticles. Nanotechnology 2008; 19(28): 285707.
[http://dx.doi.org/10.1088/0957-4484/19/28/285707] [PMID: 21828741]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy