Generic placeholder image

Current Chinese Chemistry

Editor-in-Chief

ISSN (Print): 2666-0016
ISSN (Online): 2666-0008

Research Article

Synthesis, Characterization, and Application of Chalcone Derivatives as Chemosensors for Cyanide Anions

Author(s): Ankush Gupta*, Akshay Kumar, Nidhi Choudhary, Bharti Gupta, Harminder Singh*, Naresh Kumar and Shelly Garg

Volume 2, Issue 2, 2022

Published on: 05 October, 2021

Article ID: e051021197014 Pages: 9

DOI: 10.2174/2666001601666211005125825

Abstract

Background: The extreme toxicity of cyanide ions to living organisms encourages the researcher to develop new chemosensors for their sensitive and selective detection. Among various classes of chemosensors, chalcones are believed to be a promising candidate for designing new chemosensors for anions due to easy modification in their skeleton and conjugation system.

Research Gap and Problem Statement: Despite having various medical applications and properties, the recognition ability of chalcone derivatives is not widely explored. The traditional methods known for the sensing of cyanide ions are ion chromatography or cyanide selective electrodes. However, these methods need skilled operators and are found to be expensive and time-consuming. Also, the available methods for the detection of cyanide ions are not suitable for on-site monitoring and show interference from other competitive anions, such as fluoride, acetate, and hydroxide ions. Hence, this encouraged us to explore the chalcone derivatives as chemical sensors that are capable of detecting the cyanide ions in the presence of competitive anions, such as fluoride, acetate, and hydroxide ions.

Objectives: The development of new chalcone analogs (1E,4E)-1,5-bis(4-chlorophenyl)penta-1,4-dien-3-one (3) and (E)-3-phenyl-1-(pyridin-2-yl)prop-2-en-1-one (6), which are particularly important for the future development of chemosensors for the detection of cyanide ions in the presence of various interfering ions, such as fluoride, acetate, and hydroxide ions.

Methods: The sensing behavior of chalcone derivatives (1E,4E)-1,5-bis(4-chlorophenyl)penta-1,4-dien-3-one (3) and (E)-3-phenyl-1-(pyridin-2-yl)prop-2-en-1-one (6) have been investigated toward various anions (CN-, F-, Cl-, Br-, NO3 -, SO4 2-, PO4 2-, OH-, OAc-) using UV-vis spectroscopy. Interestingly, among various anions tested, derivatives (1E,4E)-1,5-bis(4-chlorophenyl)penta-1,4-dien-3-one (3) and (E)-3-phenyl-1-(pyridin-2- yl)prop-2-en-1-one (6) function as highly selective chemosensors for the detection of cyanide ions.

Results: We have synthesized two chalcone based derivatives (1E,4E)-1,5-bis(4-chlorophenyl)penta-1,4-dien-3- one (3) and (E)-3-phenyl-1-(pyridin-2-yl)prop-2-en-1-one (6) with simple condensation reaction for the detection of cyanide ions. The various results indicated the quick response of (1E,4E)-1,5-bis(4- chlorophenyl)penta-1,4-dien-3-one (3) and (E)-3-phenyl-1-(pyridin-2-yl)prop-2-en-1-one (6) toward cyanide anions. These two chalcone derivatives showed not only spectral change with selectivity but also showed sensitivity for the detection of cyanide anions. The developed chalcone derivatives detect cyanide ions in the presence of various interfering ions, such as fluoride, acetate, and hydroxide ions. The chemosensors (1E,4E)- 1,5-bis(4-chlorophenyl)penta-1,4-dien-3-one (3) and (E)-3-phenyl-1-(pyridin-2-yl)prop-2-en-1-one (6) for the detection of cyanide ions are particularly smart due to their real-time analysis, simplicity, and low cost in comparison to other closely related processes, such as fluorescence.

Conclusion: The sensitivity studies show the high reactivity of derivative 1,5-bis(4-chlorophenyl)penta-1,4- dien-3-one (3) as compared to (E)-3-phenyl-1-(pyridin-2-yl)prop-2-en-1-one (6). The detection limit for derivatives (1E,4E)-1,5-bis(4-chlorophenyl)penta-1,4-dien-3-one (3) and (E)-3-phenyl-1-(pyridin-2-yl)prop-2- en-1-one (6) was 1.2 μM and 300 μM, respectively. The results of (1E,4E)-1,5-bis(4-chlorophenyl)penta-1,4- dien-3-one (3) and (E)-3-phenyl-1-(pyridin-2-yl)prop-2-en-1-one (6) for cyanide detection were satisfying, suggesting their potential application for cyanide detection.

Future Direction: The goal of further research of this field is to develop water-soluble chalcone-based probes, which show emission in the Near Infra-Red (NIR) region to provide favorable conditions for biological applications.

Keywords: Chalcone, cyanide, chemosensor, photophysical, UV-vis, michael reaction.

Graphical Abstract

[1]
Udhayakumari, D.; Velmathi, S.; Chen, W.C.; Wu, S.P. A dual-mode chemosensor: Highly selective colorimetric fluorescent probe for Cu2+ and F- ions. Sens. Actuators B Chem., 2014, 204, 375-381.
[http://dx.doi.org/10.1016/j.snb.2014.07.109]
[2]
Velmathi, S.; Reena, V.; Suganya, S.; Anandan, S. Pyrrole based Schiff bases as colorimetric and fluorescent chemosensors for fluoride and hydroxide anions. J. Fluoresc., 2012, 22(1), 155-162.
[http://dx.doi.org/10.1007/s10895-011-0942-z] [PMID: 21837384]
[3]
Bai, B.; Mao, X.; Wei, J.; Wei, Z.; Wang, H.; Li, M. Selective anion-responsive organogel based on a gelator containing hydrazide and azobenzene units. Sens. Actuators B Chem., 2015, 211, 268-274.
[http://dx.doi.org/10.1016/j.snb.2015.01.111]
[4]
Kaur, N.; Kumar, S. Colorimetric metal ion sensors. Tetrahedron, 2011, 67, 9233-9264.
[http://dx.doi.org/10.1016/j.tet.2011.09.003]
[5]
Zhu, M.; Yuan, M.; Liu, X.; Xu, J.; Lv, J.; Huang, C.; Liu, H.; Li, Y.; Wang, S.; Zhu, D. Visible near-infrared chemosensor for mercury ion. Org. Lett., 2008, 10(7), 1481-1484.
[http://dx.doi.org/10.1021/ol800197t] [PMID: 18336033]
[6]
Cheng, C.C.; Chen, Z.S.; Wu, C.Y.; Lin, C.C.; Yang, C.R.; Yen, Y.P. Azo dyes featuring a pyrene unit: New selective chromogenic and fluorogenic chemodosimeters for Hg(II). Sens. Actuators B Chem., 2009, 142, 280-287.
[http://dx.doi.org/10.1016/j.snb.2009.07.020]
[7]
Ding, Y.; Zhu, W.H.; Xie, Y. Development of ion chemosensors based on porphyrin analogues. Chem. Rev., 2017, 117(4), 2203-2256.
[http://dx.doi.org/10.1021/acs.chemrev.6b00021] [PMID: 27078087]
[8]
Cao, Z.; Cao, Y.; Kubota, R.; Sasaki, Y.; Asano, K.; Lyu, X.; Zhang, Z.; Zhou, Q.; Zhao, X.; Xu, X.; Wu, S.; Minami, T.; Liu, Y. Fluorescence anion chemosensor array based on pyrenylboronic acid. Front Chem., 2020, 8, 414.
[http://dx.doi.org/10.3389/fchem.2020.00414] [PMID: 32548089]
[9]
Kaur, N.; Kaur, G.; Fegade, U.A.; Singh, A.; Sahoo, S.K.; Kuwar, A.S. Anion sensing with chemosensors having multiple NH recognition units. TrAC. Trends Analyt. Chem., 2017, 95, 86-109.
[http://dx.doi.org/10.1016/j.trac.2017.08.003]
[10]
Amuthakala, S.; Selvan, D.S.A.; Rahiman, A.K. 4-Functionalized terpyridine derivative as dual responsive chemosensor for biologically important inorganic cations and fluoride anion. J. Iran. Chem. Soc., 2020, 17, 1237-1248.
[http://dx.doi.org/10.1007/s13738-019-01851-8]
[11]
Yan, F.; Sun, J.; Zang, Y.; Sun, Z.; Zhang, H.; Wang, X. Benzothiazole applications as fluorescent probes for analyte detection. J. Iran. Chem. Soc., 2020.
[http://dx.doi.org/10.1007/s13738-020-01998-9]
[12]
Wang, F.; Wang, L.; Chen, X.; Yoon, J. Recent progress in the development of fluorometric and colorimetric chemosensors for detection of cyanide ions. Chem. Soc. Rev., 2014, 43(13), 4312-4324.
[http://dx.doi.org/10.1039/c4cs00008k] [PMID: 24668230]
[13]
Li, Z.; Dai, Y.; Lu, Z.; Pei, Y.; Song, Y.; Zhang, L. A Photoswitchable triple chemosensor for cyanide anion based on dicyanovinyl-functionalized dithienylethene. Eur. J. Org. Chem., 2019, 2019, 3614-3621.
[http://dx.doi.org/10.1002/ejoc.201900369]
[14]
Sun, Y.; Shan, Y.; Sun, N.; Li, Z.; Wu, X.; Guan, R.; Cao, D.; Zhao, S.; Zhao, X. Cyanide and biothiols recognition properties of a coumarin chalcone compound as red fluorescent probe. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2018, 205, 514-519.
[http://dx.doi.org/10.1016/j.saa.2018.07.071] [PMID: 30064116]
[15]
Xu, Z.; Chen, X.; Kim, H.N.; Yoon, J. Sensors for the optical detection of cyanide ion. Chem. Soc. Rev., 2010, 39(1), 127-137.
[http://dx.doi.org/10.1039/B907368J] [PMID: 20023843]
[16]
Koenig, R. Environmental disasters. Wildlife deaths are a grim wake-up call in Eastern Europe. Science, 2000, 287(5459), 1737-1738.
[http://dx.doi.org/10.1126/science.287.5459.1737] [PMID: 10755922]
[17]
Cardoso, A.P.; Mirione, E.; Ernesto, M.; Massaza, F.; Cliff, J.; Rezaul Haque, M. Processing of cassava roots to remove cyanogens. J. Food Compos. Anal., 2005, 18, 451-460.
[http://dx.doi.org/10.1016/j.jfca.2004.04.002]
[18]
Thanayupong, E.; Suttisintong, K.; Sukwattanasinitt, M.; Niamnont, N. Turn-on fluorescent sensor for the detection of cyanide based on a novel dicyanovinyl phenylacetylene. New J. Chem., 2017, 41, 4058-4064.
[http://dx.doi.org/10.1039/C6NJ03794A]
[19]
Zhang, C.; Ji, K.; Wang, X.; Wu, H.; Liu, C. A reversible and selective chemosensor based on intramolecular NH···NH hydrogen bonding for cyanide and pH detection. Chem. Commun. (Camb.), 2015, 51(38), 8173-8176.
[http://dx.doi.org/10.1039/C5CC01280E] [PMID: 25873106]
[20]
Wei, T.B.; Li, W.T.; Li, Q.; Su, J.X.; Qu, W.J.; Lin, Q. A turn-on fluorescent chemosensor selectively detects cyanide in pure water and food sample. Tetrahedron Lett., 2016, 57, 2767-2771.
[http://dx.doi.org/10.1016/j.tetlet.2016.05.028]
[21]
Lee, M.; Moon, J.H.; Swamy, K.M.K.; Jeong, Y.; Kim, G.; Choi, J. A new bis-pyrene derivative as a selective colorimetric and fluorescent chemosensor for cyanide and fluoride and anion-activated CO2 sensing. Sens. Actuators B Chem., 2014, 199, 369-376.
[http://dx.doi.org/10.1016/j.snb.2014.04.005]
[22]
Wang, J.; Ha, C.S. Ratiometric, colorimetric and fluorescent chemosensor for “turn-on” detection of cyanide (CN-). Analyst (Lond.), 2011, 136(8), 1627-1631.
[http://dx.doi.org/10.1039/c0an00932f] [PMID: 21373670]
[23]
Shi, B.; Zhang, P.; Wei, T.; Yao, H.; Lin, Q.; Zhang, Y. Highly selective fluorescent sensing for CN- in water: utilization of the supramolecular self-assembly. Chem. Commun. (Camb.), 2013, 49(71), 7812-7814.
[http://dx.doi.org/10.1039/c3cc44056g] [PMID: 23884287]
[24]
Ou, X.; Jin, Y.; Chen, X.; Gong, C.; Ma, X.; Wang, Y. Colorimetric test paper for cyanide ion determination in real-time. Anal. Methods, 2015, 7, 5239-5244.
[http://dx.doi.org/10.1039/C5AY01033K]
[25]
Mahapatra, A.K.; Maiti, K.; Maji, R.; Manna, S.K.; Mondal, S.; Ali, S.S. Ratiometric fluorescent and chromogenic chemodosimeter for cyanide detection in water and its application in bioimaging. RSC Advances, 2015, 5, 24274-24280.
[http://dx.doi.org/10.1039/C4RA17199C]
[26]
Fitriana, A.S.; Pranowo, H.D.; Purwono, B. Chalcone based colorimetric sensor for anions: Experimental and TD-DFT study. Indones. J. Chem., 2016, 16, 80-86.
[http://dx.doi.org/10.22146/ijc.21181]
[27]
Yeap, G.Y.; Hrishikesan, E.; Chan, Y.H.; Mahmood, W.A.K. A New emissive chalcone-based chemosensor armed by coumarin and naphthol with fluorescence “turn-on” properties for selective detection of f- ions. J. Fluoresc., 2017, 27(1), 105-110.
[http://dx.doi.org/10.1007/s10895-016-1938-5] [PMID: 27679994]
[28]
Gupta, A.; Garg, S.; Singh, H. Development of chalcone-based derivatives for sensing applications. Anal. Methods, 2020, 12(42), 5022-5045.
[http://dx.doi.org/10.1039/D0AY01603A] [PMID: 33103673]
[29]
Hosoya, T.; Nakata, A.; Yamasaki, F.; Abas, F.; Shaari, K.; Lajis, N.H.; Morita, H. Curcumin-like diarylpentanoid analogues as melanogenesis inhibitors. J. Nat. Med., 2012, 66(1), 166-176.
[http://dx.doi.org/10.1007/s11418-011-0568-0] [PMID: 21830091]
[30]
Singh, P.K.; Singh, V.K. Highly enantioselective Friedel-Crafts reaction of indoles with 2-enoylpyridine 1-oxides catalyzed by chiral pyridine 2,6-bis(5′,5′-diphenyloxazoline)-Cu(II) complexes. Org. Lett., 2008, 10(18), 4121-4124.
[http://dx.doi.org/10.1021/ol8016929] [PMID: 18722459]
[31]
Lee, H.J.; Park, S.J.; Sin, H.J.; Na, Y.J. Kim, C. A selective colorimetric chemosensor with an electron-withdrawing group for multi-analytes CN- and F-. New J. Chem., 2015, 39, 3900-3907.
[http://dx.doi.org/10.1039/C5NJ00169B]
[32]
Song, E.J.; Kim, S.; Park, G.J.; Park, S.J.; Choi, Y.W.; Kim, C. Selective colorimetric assay of cyanide ions using a thioamide-based probe containing phenol and pyridyl groups. Tetrahedron Lett., 2014, 55, 6965-6968.
[http://dx.doi.org/10.1016/j.tetlet.2014.09.049]
[33]
Kim, S.M.; Kang, M.; Choi, I.; Lee, J.J.; Kim, C. A highly selective colorimetric chemosensor for cyanide and sulfide in aqueous solution: Experimental and theoretical studies. New J. Chem., 2016, 40, 7768-7778.
[http://dx.doi.org/10.1039/C6NJ01832G]
[34]
Tang, Y.H.; Qu, Y.; Song, Z.; He, X.P.; Xie, J.; Hua, J.; Chen, G.R. Discovery of a sensitive Cu(II)-cyanide “off-on” sensor based on new C-glycosyl triazolyl bis-amino acid scaffold. Org. Biomol. Chem., 2012, 10(3), 555-560.
[http://dx.doi.org/10.1039/C1OB06242E] [PMID: 22101917]
[35]
Mo, H.J.; Shen, Y.; Ye, B.H. Selective recognition of cyanide anion via formation of multipoint NH and phenyl CH hydrogen bonding with acyclic ruthenium bipyridine imidazole receptors in water. Inorg. Chem., 2012, 51(13), 7174-7184.
[http://dx.doi.org/10.1021/ic300217v] [PMID: 22716094]
[36]
Sun, J.; Liu, Y.; Jin, L.; Chen, T.; Yin, B. Coordination-induced gelation of an L-glutamic acid Schiff base derivative: the anion effect and cyanide-specific selectivity. Chem. Commun. (Camb.), 2016, 52(4), 768-771.
[http://dx.doi.org/10.1039/C5CC07903A] [PMID: 26568259]
[37]
Lin, Y.D.; Peng, Y.S.; Su, W.; Tu, C.H.; Sun, C.H.; Chow, T.J. A highly selective colorimetric and turn-on fluorescent probe for cyanide anion. Tetrahedron, 2012, 68, 2523-2526.
[http://dx.doi.org/10.1016/j.tet.2012.01.026]
[38]
Peng, L.; Wang, M.; Zhang, G.; Zhang, D.; Zhu, D. A fluorescence turn-on detection of cyanide in aqueous solution based on the aggregation-induced emission. Org. Lett., 2009, 11(9), 1943-1946.
[http://dx.doi.org/10.1021/ol900376r] [PMID: 19344183]
[39]
Sun, S.; Shu, Q.; Lin, P.; Li, Y.; Jin, S.; Chen, X. Triphenylamine based lab-on-a-molecule for the highly selective and sensitive detection of Zn2+ and CN- in aqueous solution. RSC Advances, 2016, 6, 93826-93831.
[http://dx.doi.org/10.1039/C6RA17354C]
[40]
Mahapatra, A.K.; Manna, S.K.; Pramanik, B.; Maiti, K.; Mondal, S.; Ali, S.S. Colorimetric and ratiometric fluorescent chemodosimeter for selective sensing of fluoride and cyanide ions: Tuning selectivity in proton transfer and C-Si bond cleavage. RSC Advances, 2015, 5, 10716-10722.
[http://dx.doi.org/10.1039/C4RA12910E]
[41]
Kim, M.S.; Yun, D.; Chae, J.B.; So, H.; Lee, H.; Kim, K.T.; Kim, M.; Lim, M.H.; Kim, C. A novel thiophene-based fluorescent chemosensor for the detection of Zn2+ and CN-: imaging applications in live cells and zebrafish. Sensors (Basel), 2019, 19(24), 5458.
[http://dx.doi.org/10.3390/s19245458] [PMID: 31835755]
[42]
Barare, B.; Babahan, I.; Hijji, Y.M.; Bonyi, E.; Tadesse, S.; Aslan, K. A highly selective sensor for cyanide in organic media and on solid surfaces. Sensors (Basel), 2016, 16(3), 271.
[http://dx.doi.org/10.3390/s16030271] [PMID: 26927099]
[43]
Long, C.; Hu, J.H.; Fu, Q.Q.; Ni, P.W. A new colorimetric and fluorescent probe based on Rhodamine B hydrazone derivatives for cyanide and Cu2+ in aqueous media and its application in real life. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2019, 219, 297-306.
[http://dx.doi.org/10.1016/j.saa.2019.04.052] [PMID: 31051424]
[44]
Xu, Y.; Dai, X.; Zhao, B.X. A coumarin-indole based colorimetric and “turn on” fluorescent probe for cyanide. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2015, 138, 164-168.
[http://dx.doi.org/10.1016/j.saa.2014.11.013] [PMID: 25490042]
[45]
Zhu, T.; Li, Z.; Fu, C.; Chen, L.; Chen, X.; Gao, C. Development of an anthraquinone-based cyanide colorimetric sensor with activated C–H group: Large absorption red shift and application in food and water samples. Tetrahedron, 2020, 76, 131479.
[http://dx.doi.org/10.1016/j.tet.2020.131479]
[46]
Thaker, B.T.; Kanojiya, J.B. Synthesis, Characterization and Mesophase Behavior of New Liquid Crystalline Compounds Having Chalcone as a Central Linkage. Mol. Cryst. Liq. Cryst., 2011, 542, 84/[606]-98/[620].
[http://dx.doi.org/10.1080/15421406.2011.570123]
[47]
Schmidt, M.W.; Baldridge, K.K.; Boatz, J.A.; Elbert, S.T.; Gordon, M.S.; Jensen, J.H. General atomic and molecular electronic structure system. J. Comput. Chem., 1993, 14, 1347-1363.
[http://dx.doi.org/10.1002/jcc.540141112]
[48]
Gordon, M.S.; Schmidt, M.W. Chapter 41 - Advances in electronic structure theory: GAMESS a decade later; Elsevier, 2005, pp. 1167-1189.
[http://dx.doi.org/10.1016/B978-044451719-7/50084-6]
[49]
Park, S.; Kim, H.J. Highly activated Michael acceptor by an intramolecular hydrogen bond as a fluorescence turn-on probe for cyanide. Chem. Commun. (Camb.), 2010, 46(48), 9197-9199.
[http://dx.doi.org/10.1039/c0cc03910a] [PMID: 21042601]
[50]
Sun, Y.; Chen, H.; Cao, D.; Liu, Z.; Chen, H.; Deng, Y. Chalcone derivatives as fluorescence turn-on chemosensors for cyanide anions. J. Photochem. Photobiol. Chem., 2012, 244, 65-70.
[http://dx.doi.org/10.1016/j.jphotochem.2012.06.012]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy